
A Novel Software Architecture for Mixed
Criticality Systems

Ralf Ramsauer1, Jan Kiszka2, and Wolfgang Mauerer1,2(&)

1 Technical University of Applied Sciences Regensburg, Regensburg, Germany
ralf.ramsauer@oth-regensburg.de,

wolfgang.mauerer@othr.de
2 Siemens AG, Corporate Research, Munich, Germany

Abstract. The advent of multi-core CPUs in nearly all embedded markets has
prompted an architectural trend towards combining safety critical and uncritical
software on single hardware units. We present a novel architecture for mixed
criticality systems based on Linux that allows us to consolidate critical and
uncritical parts onto a single hardware unit. CPU virtualisation extensions
enable strict and static partitioning of hardware by direct assignment of
resources, which allows us to boot additional operating systems or bare metal
applications running aside Linux. The hypervisor Jailhouse is at the core of the
architecture and ensures that the resulting domains may serve workloads of
different criticality and can not interfere in an unintended way. This retains
Linux’s feature-richness in uncritical parts, while frugal safety and real-time
critical applications execute in isolated domains. Architectural simplicity is a
central aspect of our approach and a precondition for reliable implementability
and successful certification. While standard virtualisation extensions provided
by current hardware seem to suffice for a straight forward implementation of our
approach, there are a number of further limitations that need to be worked
around. This paper discusses the arising issues, and evaluates the suitability of
our approach for real-world safety and real-time critical scenarios.

Keywords: Mixed criticality � Raltime � Virtualisation � Hypervisor � Linux

1 Introduction

Software for safety-critical systems requires strict certification, and uncritical parts
must not interfere with critical ones. Reliability of the software is crucial while the
amount of software, measured in Lines of Code (LoC) is a limiting factor for certifi-
cation processes.

Obtaining a functional safety certification for a kernel like Linux that contains
millions of lines of code is obviously a challenging enterprise OSADL Project:
SIL2LinuxMP (OSADL 2014), yet product vendors do not want to miss the capabil-
ities of Linux in mixed-criticality systems. We present a novel architectural approach

© The Author(s) 2020
S. Keil et al. (Eds.): EADTC 2018/2019, LNEE 670, pp. 121–128, 2020.
https://doi.org/10.1007/978-3-030-48602-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48602-0_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48602-0_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48602-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-48602-0_11

that satisfies both goals, safety for critical parts and feature-richness for uncritical parts:
Jailhouse1, a Linux-based partitioning hypervisor.

Jailhouse transforms symmetric multiprocessing (SMP) systems to asymmetric
multiprocessing (AMP) systems by inserting virtual barriers to the system and I/O bus.
From a hardware point of view, the system bus is still shared, while software is allowed
to only access resources within its scope.

Jailhouse is enabled from a standard Linux running on bare-metal hardware (cf.
Fig. 1). It takes control over all hardware resources described in a system configuration
file, reassigns them back to Linux and lifts Linux in the state of a virtual machine
(VM). The hypervisor core of Jailhouse acts as Virtual Machine Monitor (VMM).
Jailhouse does not fit into the usual classification of hypervisors Formal requirements
for virtualizable third generation architectures (Goldberg 1973), it can be seen as a
mixture of Type-1 and Type-2 hypervisors: It is a bare-metal hypervisor that runs on
raw hardware without an underlying system level, but requires Linux to initialise
hardware before it takes global control over the whole system.

Unlike other real-time partitioning approaches like XtratuM Partitioned Embedded
Architecture based on Hypervisor: The XtratuM approach (Crespo et al. 2010) or
PikeOS Evolution of the PikeOS microkernel (Kaiser and Wagner 2007) that aim to
manage hardware resources and hence forbid direct access, Jailhouse only supports
direct hardware access. Instead of using complex and time-consuming (para-)virtuali-
sation Xen and the Art of Virtualization schemes (Braham et al. 2003) for emulation of
device drivers, Jailhouse uses virtualisation extensions only for isolation purposes and
does neither provide a scheduler nor virtual CPUs. It is a signalbox for direct routing of
hardware devices to isolated domains, called »cells«. Only resources that are essential
for a hardware platform and that cannot be partitioned in hardware are virtualised.

For creating new isolated domains, Jailhouse removes hardware resources2 from
Linux (also called the root cell) and reassigns them to isolated domains, called non-root
cells. Virtualisation extensions ARM Architecture Reference ManualSecure Virtual
Machine Architecture Reference ManualIntel virtualization technology (ARM 2013;
Uhlig et al. 2005; AMD 2005) guarantee strict isolation: any access violation, for
instance prohibited access to certain memory areas, wake up (trap Formal requirements
for virtualizable third generation architectures) the hypervisor (Popek and Goldberg
1974), which eventually stops execution. Certain instruction executed by the guest
cause traps and must be handled by the hypervisor.

Since Jailhouse remaps and reassigns resources, the hypervisor will not get active
after setting up and starting all cells under ideal conditions. The following circum-
stances require hypervisor intervention:

• Cell management (e.g., create, start, stop or destroy cells)
• Access violations (memory, I/O ports)
• Interception of non hardware virtualisable resources (e.g., parts of the ARM Generic

Interrupt Controller)
• Trapping on certain CPU instructions (e.g., x86 cpuid)

1 Available at https://github.com/siemens/jailhouseunderGPLv2.
2 E.g. CPU(s), memory, (PCI) devices, …

122 R. Ramsauer et al.

https://github.com/siemens/jailhouseunderGPLv2

On common bare-metal hypervisors, interrupts are dispatched by the hypervisor
and reinjected into the guest. On Intel x86, we make use of Interrupt Remapping
support and directly map hardware interrupts to cells without trapping the hypervisor:
interrupts arrive directly in the assigned cell. This results in lower interrupt arrival times
and interrupt latencies, which is beneficial for appliances with hard real-time
requirements.

In this way, a safety-certified (minimalist) operating system or bare-metal appli-
cation can run on a single multi-core system in parallel to Linux. The minimalist
approach of Jailhouse results in only a few thousands lines of code for the core parts,
which simplifies any certification process.

The rest of this paper is structured as follows: First, we present the hardware
partitioning techniques of Jailhouse. We implement a multicopter demonstration
platform and run critical parts software (the flight stack) in a jailhouse cell. We give
architectural overview of our platform and brief introduction to our hardware
setup. Afterwards, present obstacles that appeared during the implementation on real
hardware, and present possible solutions.

2 Architecture

To activate the hypervisor (cf. Fig. 2), Linux must be booted with a predefined amount
of reserved memory for the hypervisor and for additional non-root cells. After loading
the hypervisor binary to its destination inside this memory area, the hypervisor startup
code is entered by each CPU and the VMM is initialised.

After the hypervisor is initialised, non-root cells can be created. A non-root cell
consists at least of one CPU and a certain amount of memory that can be preloaded by
the root cell with a secondary operating system. Linux shuts down selected CPUs and
calls the Hypervisor to create a new cell by providing a cell configuration. The VMM
creates this new isolated domain by removing resources from the root cell and reas-
signing them to the newly created domain. Other resources like PCI devices, memory-
mapped devices or I/O ports, can be exclusively assigned to a cell. After the cell has
been started, it can reject any further tries on modifying its state. This ensures inad-
vertent modifications of critical domains.

Generally, Jailhouse allows guests to share physical pages with the root cell.
Besides enabling inter cell communication, the mechanism also allows for sharing
memory-mapped I/O pages, which, if desired, allows us to access hardware resources

Fig. 1. Activation sequence of the Jailhouse hypervisor. After Linux has placed and started the
hypervisor, an additional real-time operating system is started in an isolated critical domain.

A Novel Software Architecture for Mixed Criticality Systems 123

from within multiple domains. Such concurrent access is, however, not arbitrated by
Jailhouse and needs to be addressed appropriately by the guests3.

Figure 2 shows a possible partitioned system layout for three cells: the Linux root-
cell, an additional Linux non-root cell and a bare-metal real-time operating system. As
mentioned before, communication between cells is realised by memory regions that are
shared between two cells, together with a signaling interface. This ensures a minimal
code footprint. Jailhouse does not emulate any driver functionality, but device drivers
may, for instance, use these means to establish a virtual high-performance ethernet
connection between two cells. Depending on hardware support, signaling is imple-
mented based on a virtual PCI device through Message-Signaled Interrupts (MSI-X) or
legacy interrupts. On systems without PCI support, Jailhouse emulates a generic and
simple PCI host controller.

Jailhouse currently supports 64-bit x86 (Intel and AMD), ARMv7, and ARMv8
architectures. Several operating systems were already successfully ported to run as
Jailhouse guests. Linux can act as a Jailhouse guest on all supported architectures, the
root file system is provided in memory as initial ramdisk. Let us remark that we
successfully ported the RTEMS real-time operating system for the ARM architecture
with limited efforts. Additionally, a port of FreeRTOS already exists4.

3 Jailhouse Multicopter Platform

To prove the suitability of Jailhouse for industrial use cases, we implemented a fully
functioning multicopter platform for demonstration purposes. We chose this platform
as its requirements are similar to industrial appliances as they arise, for instance, in
semiconductor manufacturing or when collaborative tasks between machines and
humans need to be performed: The flight stack, a highly reliable and safety-critical part
of the system, is responsible for balancing and navigating the aircraft. Sensor values

Fig. 2. Ideal vs. real hardware partitioning: Under ideal conditions (left), devices can
exclusively be mapped to a cell. In reality (right), functionalities of some peripheral devices
may be required in multiple domains or overlap. While the system bus is still shared, the
Jailhouse hypervisor takes care that cells will only access resources within their scope. Safe
communication between critical and uncritical domains is enabled by shared memory.

3 This technique is mainly used for debugging purposes.
4 https://github.com/siemens/freertos-cell.

124 R. Ramsauer et al.

https://github.com/siemens/freertos-cell

must be sampled at high data rates, processed, and eventually be used to control rotors.
The control loop is governed by different flight modes, such as a manual mode,
stabilised mode or automatic modes like position hold. For a safe and reliable mission,
the control loop must respond deterministically. System crashes may result in real
crashes with severe consequences.

This obviously requires a real-time capable operating system. We ported the whole
critical flight stack to a Jailhouse cell, while uncritical tasks still benefit from the Linux
ecosystem and will not interfere with the flight stack in an unacceptable way.
Remaining cells can serve any uncritical payload, such as communication with the
ground station or camera tracking.

In the critical domain, a second tailored and minimalist Linux operating system
with the PREEMPT_RT Internals of the RT Patch real-time kernel extension is exe-
cuted. As flight stack, we chose the Ardupilot project. No modifications (besides board
support and missing hardware drivers) are required. This underlines that existing
applications can be deployed in a Jailhouse setup with little effort.

For controlling a multicopter platform, several sensors and actuators are connected
to different inter-board buses and peripherals: gyroscopes, compasses, GPS, RC-control
receiver and motor control form the controlling circuit. This requires access to SPI, I2C,
UART and GPIO hardware devices from the critical cell. A simplified architectural
overview of the partitioned system is shown in Fig. 2.

As hardware platform, we chose an NVIDIA Jetson TK15 with a quad-core Cortex-
A15 ARMv7 CPU with virtualisation extensions. The TK1 is connected to an Emlid
Navio26 sensor shield. The system is divided into two parts: two cores are assigned to
the uncritical part, the other two to the critical one.

We remove resources that are required for controlling the platform from the root
cell and reassign them to the critical domain. The flight stack always controls the
machine, even if uncritical cells misbehave. A crash in an uncritical cell does not cause
a crash of the critical appliance. The functioning of this architecture is a solid testament
to the suitability of Jailhouse for implementing real-time safety-critical systems that are
based to a large extent on existing components.

4 Requirements on Partitioning Hardware

Despite the real-world practicability of our approach, we discovered limitations that are
caused by hardware design. While every of these limitations can be worked around in
software, the issues should be addressed by hardware manufacturers in future to pro-
vide optimal base components for mixed-criticality systems. Every workaround results
in extra functionality in the hypervisor code, which contravenes the original goal of a
most reduced minimal footprint, and also leads to slower response times. Such inter-
ception are, of course, contrary to the envisioned partitioning concept.

5 http://elinux.org/Jetson_TK1.
6 https://docs.emlid.com/navio2/.

A Novel Software Architecture for Mixed Criticality Systems 125

http://elinux.org/Jetson_TK1
https://docs.emlid.com/navio2/

4.1 Memory-Mapped I/O

Peripheral devices are usually accessed by reading from or writing to dedicated
physical memory addresses. Those addresses are backed by the registers of the par-
ticular device. The typical page size of almost all modern architectures is 4 KiB or
more, and represents the finest granularity of memory that can be assigned to a cell
without the need for trapping and dispatching access.

While 32 or more bits for physical addresses provide enough space to place dif-
ferent devices on different pages, hardware manufacturers often place multiple devices
on one single page, even different types of devices.

This is problematic for hardware partitioning, since only entire memory pages can
be assigned to a cell without the need for trapping and dispatching on memory access.
Jailhouse implements subpaging, a technique where the hypervisor allows for mapping
memory areas to guests that are smaller than the page size. When subpaging is enabled
for a certain memory area, Jailhouse will trap on any access to that page and either
permit access or crash the cell because of access violations. This leads to noticeable and
undesired slow-downs.

4.2 Indivisible Hardware Resources

Placing different devices on different physical memory pages is not always sufficient
for hardware partitioning: functionality of a single device might be needed in two cells.
Typical devices that are required in multiple cells are DMA controllers, system clock
and reset controllers, or GPIO devices. Jailhouse supports sharing of physical memory
pages, but it does neither moderate access nor understand the underlying hardware
access protocol: Jailhouse will not ensure that parameters are not overwritten by other
cells.

Most devices provide full functionality without DMA transfers. In real-time con-
texts, where I/O response time matters more than I/O throughput, DMA controllers
should either be exclusively assigned to a single cell or should not be used if possible.
Shared DMA access from different cells requires partitionable DMA controllers.

GPIO devices should exclusively be assigned to a single cell as well. As long as
they are not partitionable, accesses have to be dispatched by the hypervisor.

Clock and Reset controllers allow for gating and ungating of device clocks, to
select a particular clock source, and to select a prescaler for the clock. They also allow
for setting and clearing reset lines of devices. Such clock and reset controllers are
usually organised as a single hardware device that controls all available devices of a
system. An uncritical cell that has access to the clock and reset controller can therefore
deactivate or reset resources that are assigned to a critical cell, and influence the
behaviour of the whole system.

One software based solution is to gate and initialise all devices, and then prohibit
any further access to the clock and reset controller. While this solution would actually
be straight forward, many existing drivers make the assumption that a clock and reset
controller is always present and (de-)assert resets during runtime. Other device drivers,
like SPI, UART or I2C driver need to change their speed or baud rate during runtime,
which requires them to access the clock and reset controller as well.

126 R. Ramsauer et al.

As long as clock and reset registers of all devices are bound to a single common
clock and reset controller device, it is not possible to partition them without paravir-
tualisation or dispatching in the hypervisor. This solution is efficient for practical
purposes, since clock and reset controllers are usually accessed very rarely compared to
regular accesses of a device. The disadvantage is the variety of clock and reset con-
trollers and their different protocols.

Even if shared access to clock and reset controllers is admissible, existing clock
driver code is usually not prepared to run on partitioned hardware: available resources
are often hard encoded in driver code, and clock drivers often reset or disable all
existing system clocks during startup.

4.3 Erroneous Hardware Behaviour

Hardware misbehaves. During the implementation of our demonstration platform, we
observed that accessing registers of devices with ungated clocks causes an immediate
freeze of the whole system. This misbehaviour occurs in all Tegra-based platforms up
to tegra1867 and is caused by flaws in the hardware design. This problem can be fixed
in software by trapping on affected memory areas when their clock gets ungated to
guarantee the stability of the rest of the system.

5 Conclusion

Partitioning hypervisor techniques are promising and can be used in mixed-criticality
scenarios. By using standard operating systems, we minimised the effort that is required
for porting existing legacy payload applications. A minimalist hypervisor core sim-
plifies certification efforts.

We successfully demonstrated the usability of hardware partitioning. However,
hardware manufacturers need to change design aspects with respect to the demand that
the hardware can be partitioned. Any software-based workarounds lead to more pre-
ventable hypervisor code and more hypervisor logic.

This demand requires software engineers and hardware manufacturers to strengthen
their focus on Hardware-Software Co-design, in particular when it comes to building
mixed-criticality systems that will gain increasing importance in many manufacturing
domains.

References

OSADL: Open Source Automation Development Lab, OSADL Project: SIL2LinuxMP (2014)
Popek, G.J., Goldberg, R.P.: Formal requirements for virtualizable third generation architectures.

Harvard University, Cambridge (1974)
Crespo, A., Ripoll, I., Masmano, M.: Partitioned embedded architecture based on hypervisor: the

XtratuM approach (2010)

7 http://www.mail-archive.com/jailhouse-dev@googlegroups.com/msg01522.html.

A Novel Software Architecture for Mixed Criticality Systems 127

http://www.mail-archive.com/jailhouse-dev%40googlegroups.com/msg01522.html

Kaiser, R., Wagner, S.: Evolution of the PikeOS microkernel (2007)
Barham, P., Dragovic, B., Fraser, K. et al.: Xen and the art of virtualization (2003)
ARM: ARM Architecture Reference Manual (2013)
AMD: Secure virtual machine architecture reference manual (2005)
Uhlig, R., Neiger, G., Rodgers, D., et al.: Intel virtualization technology (2005)
Rostedt, S., Hart, D.V.: Internals of the RT patch (2007)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

128 R. Ramsauer et al.

http://creativecommons.org/licenses/by/4.0/

	A Novel Software Architecture for Mixed Criticality Systems
	Abstract
	1 Introduction
	2 Architecture
	3 Jailhouse Multicopter Platform
	4 Requirements on Partitioning Hardware
	4.1 Memory-Mapped I/O
	4.2 Indivisible Hardware Resources
	4.3 Erroneous Hardware Behaviour

	5 Conclusion
	References

