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ABSTRACT

Public development processes are a key characteristic of open source
projects. However, fixes for vulnerabilities are usually discussed
privately among a small group of trusted maintainers, and inte-
grated without prior public involvement. This is supposed to pre-
vent early disclosure, and cope with embargo and non-disclosure
agreement (NDA) rules.While regular development activities leave
publicly available traces, fixes for vulnerabilities that bypass the
standard process do not.

We present a data-mining based approach to detect code frag-
ments that arise from such infringements of the standard process.
By systematically mapping public development artefacts to source
code repositories, we can exclude regular process activities, and
infer irregularities that stem from non-public integration channels.
For the Linux kernel, the most crucial component ofmany systems,
we apply ourmethod to a period of seven months before the release
of Linux 5.4.We find 29 commits that address 12 vulnerabilities. For
these vulnerabilities, our approach provides a temporal advantage
of 2 to 179 days to design exploits before public disclosure takes
place, and fixes are rolled out.

Established responsible disclosure approaches in open develop-
ment processes are supposed to limit premature visibility of secu-
rity vulnerabilities. However, our approach shows that, instead,
they open additional possibilities to uncover such changes that
thwart the very premise. We conclude by discussing implications
and partial countermeasures.
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1 INTRODUCTION

On 14 August 2018, a series of patches was integrated in Linux to
provide mitigations for the Level 1 Terminal Fault (L1TF) [42, 43]
vulnerability1 – a speculative execution attack with severe con-
sequences that enable large scale data leakage across virtual ma-
chines on Intel-based cloud appliances. While associated CVE en-
tries were already filed in December 2017 [1], the vulnerability was
embargoed until 14 August 2018 [17] – the same day of the dis-
closure and integration of the critical patches for Linux. Unlike
ordinary patches, these patches were—for obvious reasons—not
discussed and developed on one of Linux’s public communication
channels (i.e., mailing lists) beforehand.

However, the fact that a patch was not publicly discussed be-
trays it: we will show that it is possible to detect such patches as
soon as they enter a public repository. This gives attackers valuable
information advantage to design exploits. For the aforementioned
attack, it took another five days until the patches were integrated
and rolled out by Debian 9,2 a popular and wide-spread Linux dis-
tribution.

In this paper, we present a methodology to reverse engineer de-
velopment processes:We collect all publicly available development
artefacts andmap them against the software repository. Using tech-
niques to connect developer communication with repository en-
tries [37], we are are able to uncover commits from non-public se-
cret integration channels with high probability using semi-automatic
methods. In this paper, and without loss of generality, we exer-
cise the approach for mail-based development workflows (as used
by the Linux kernel, QEMU, GCC, and many other projects), and
show how to systematically obtain off-list patches: Code changes
that were developed outside the official public lists. Besides fixes
for security vulnerabilities, we also find that there exist systematic
channels to inject code into the Linux kernel while bypassing pub-
lic discussion. Our method provides two advantages for malicious
attackers: (a) it significantly reduces search efforts for fixes of se-
curity vulnerabilities, compared to fully manual investigation, and
(b) it provides temporal advantage for the design of attacks. We
claim following contributions:

1 See Linux commit 958f338e96 (hyperlink available in PDF).
2See the announcement of Debian kernel 4.9.110-3+deb9u3.

http://arxiv.org/abs/2009.01694v1
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=958f338e96f874a0d29442396d6adf9c1e17aa2d
https://lists.debian.org/debian-security-announce/2018/msg00208.html
https://salsa.debian.org/kernel-team/linux/commits/debian/4.9.110-3+deb9u3
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● We present a method to systematically detect development
process infringements in open-source projects that works
as soon as commits arrive in repositories
● We detect and categorise different types of secret integra-
tion channels of the Linux kernel, such as bypass of develop-
ment processes or non-publicly discussed fixes for security
vulnerabilities
● We discuss methods that mitigate potential threats to open-
source software ecosystems

Outline. The rest of this paper is structured as follows: We first
give an overview of the problem statement in Section 2. In Sec-
tion 3, we provide a quick introduction to common open-source
development practises as they are, for example, implemented by
the Linux kernel community. We then present our methodology
of mapping development artefacts in Section 4. In Sections 5, we
run our analysis and evaluate a certain time window of the Linux
kernel. The discussion in Section 6 focuses on potential threats to
the ecosystem. Section 7 presents related work. Finally, Section 8
concludes the paper and gives an outlook on future work.

2 SECRET INTEGRATION CHANNELS

The openness of the development processes is a key aspect of any
open-source software (OSS) project: Almost all development activi-
ties happen in public. Since development artefacts (i.e., discussions
or patch data on public mailing lists) are observable, this allows us
to analyse the process in detail.

However, especially the development of fixes for critical secu-
rity vulnerabilities intentionally happens behind closed scenes [41].
After their disclosure, fixes silently appear as commits in the repos-
itory. Nonetheless, those commits can not be assigned to any prior
artefact that relates to its public pre-integration history. Unless the
vulnerability is explicitly announced or attracts medial attention,
we disprove the common belief that patches typically drown in the
noise of other commits in the repository.

Nevertheless, a full coverage of all public available development
resources allows us to systematically exclude regular development
noise in order to separate it from irregularities: We mine for com-
mits in repositories that come from secret integration channels—
and detect them just-in-time to design exploits for vulnerabilities.
Figure 1 illustrates the chase formissing links: we deduce that com-
mits that can not be assigned to publicly observable artefacts must
arise from secret integration channels.

Collaborative development tools, such as version control sys-
tems, bug trackers, continuous integration software ormailing lists [28],
are central hubs in modern software projects. Those tools gather
collateral development artefacts and traces that directly relate to
the the final result of the development process: an actual change
of code in terms of a commit in a version control system, such as,
for example, git [7].

In their everyday work, OSS developers present their patches
to the public as part of the integration process. On communica-
tion platforms, changes are discussed and reviewed before they are
integrated by maintainers, trusted individuals that are authorised
to commit changes to official resources [34]. While several web-
based collaboration systems aim to ease workflows of development
processes [28], especially system software (e.g., operating systems,

Publicly Observable Artefacts Secret Channels

?

?

Figure 1: Disclosing secret integration channels. On the left:

artefacts on public channels (e.g., patches on mailing lists)

are assigned to commits in the repository.On the right: Com-

mits that lack assignable public artefacts arise from secret

integration channels.

system level libraries or compilers) back mailing lists as their pre-
dominant tool of choice [6, 19]. Patches are wrapped in mails, sent
to public lists and distributed to all subscribers. Everyone is wel-
come to join the discussion in the mail thread and comment on the
patch. Later, the patch is picked up by a maintainer, who integrates
it to their repository. It is not untypical that maintainers fine-tune
a patch before they apply it [6, 41].

As one of the world’s largest software undertakings [44], the
Linux kernel is the core of a popular and wide-spread operating
system and one of largest projects that follows this mail-based de-
velopment model [41]. More than 10,000 patches are integrated
into each major release in eight week cadence.

Nevertheless, a rapidly changing code base, size and complex-
ity inherently results in software defects that can lead to severe
software vulnerabilities. In 2019, 170 CVE entries were filed for
all different versions and flavours of the Linux kernel, and many
more potential security vulnerabilities have been fixed without
CVE analysis and assignment [12]. Unavoidably, the kernel com-
munity has processes on managing critical vulnerabilities.

In contrast to regular development activities, vulnerabilities shall
be reported to and discussed on privatemailing lists [41]. The ratio-
nale behind private discussions is the responsible disclosure vulner-
ability disclosure model: Software producers get the chance to pro-
vide fixes for vulnerabilities before they are publicly disclosed [9].
Therefore, security mailing lists are closed-recipients lists to avoid
early public attention. Only carefully selected and trusted individu-
als have permission to join those lists. Security lists are used for co-
ordination, and to setup private communication between reporters
and affected subsystems. They can also be used to develop the ac-
tual fixes for the issues [27].

Eventually, when the fix is in its final state, it is released for all
affected version of the kernel that are supported by the community:
This leaves the first publicly visible footprint of the vulnerability:
the patch(es) in the repository. Yet, it misses a link to a publicly
observable artefact.
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3 LINUX KERNEL DEVELOPMENT PROCESS

Given enough eyeballs, all bugs are shallow

Linus’ Law – by Eric S. Raymond [38]

This section gives a brief overview of the Linux kernel develop-
ment process (LKDP). One peculiarity of the LKDP is the large
number of contributors (thousands per year) and participants, which
lead to the well-known hypothesised connection given above be-
tween the decreasing difficulty of detecting bugs with an increas-
ing number of reviewers. Since we abuse the principle to detect
patches that have seemingly not receive sufficient public attention,
it is pertinent to recapture key characteristics of the development
process that are relevant for our approach.

3.1 Core Characteristics

Development of the Linux kernel proceeds in two-phase cycles:
New code and features are merged during a two-week long merge
window, which is followed by a two-month long stabilisation win-
dow [31]. This leads to development cycles of approximately 2.5
months between two major releases. More than 10,000 patches are
integrated in each cycle into Linus Torvalds’ (the project owner’s)
git tree, which is commonly called Linux mainline. Before code
changes (patches) are integrated intomainline, theymust have been
discussed on a public mailing list. This is demanded by the submis-
sion guidelines of Linux, and is intended to ascertain good code
quality [35]. Because of scalability, availability, robustness, and sim-
plicity, many low-level system software components prefer mail-
based communication over usingweb-based technologies [25]. Other
communication channels channels need not be considered for our
purposes.

Similar to a commit in a repository, an email encapsulates a
patch that contains a commit message, an informal description
of the changes, and a diff that specifies insertions and deletions
of code—relative to a specific code base. Typically, larger logical
changes are split into multiple small patches. This gives a patch
series whose elements are tied together by a cover letter. Cover let-
ters give an informal, higher-level overview of the series. Together
with the proper patches, it is sent as a mail thread to maintainers
and the corresponding list(s) of the affected subsystem(s) of the
project.

Everyone can join the discussion of patches as lists are usu-
ally unmoderated. Maintainers who are responsible for the list to
which the series is posted, or for a subsystem that the patch ad-
dresses, eventually (a) refuse the patch, (b) ask for further refine-
ment of the patch, (c) pick up the patch and commit it to their
maintainer tree. Maintainer trees are staging points before code
changes are finally integrated mainline. It is not unusual that (b)
is repeated over several iterations until the patch series is deemed
acceptable for merging.

Because of the massive number of emails and patches, the Linux
kernel currently utilises over 200 different mailing lists that are
logically partitioned by topic or subsystem. On average, an email
is received by one of those lists every 20 seconds.

Maintainers are organised in a semi-formal hierarchy [33]. Dur-
ing a merge window, maintainers ask hierarchically higher-level
maintainers to pull their changes, which is possible in two ways:

Either by picking up and integrating patch data from mailing lists,
or by pulling code from repositories. Once the top-level maintainer
Linus Torvalds pulls and publishes changes, they become part of
Linux mainline.

3.2 Lifecycle Management

The latest release of Linux is called the stable tree, and is actively
supported with bug-fixes until the next mainline release is cut,
and becomes the new stable tree. Additionally, the Linux kernel
community supports several versions of the kernel in parallel [24]
that are referred to as long-term support (LTS) versions. They are
based on selected stable trees, and receive official support for up to
six years. Figure 2 illustrates the parallel development of mainline
Linux and the maintenance of LTS versions.

Linux distributions and vendors usually choose LTS versions as
the basis of their kernel (whichmay additionally contain a substan-
tial amount of added drivers, domain-specific features, and many
other additional elements), since they provide a stable and reli-
able base that will not be subjected to invasive changes (e.g., API
changes) during their lifetime. New features are only acceptedmain-
line. Stable and LTS trees may only receive stabilisation patches,
bug fixes, or fixes for vulnerabilities.

In case patches to LTS versions are also relevant for mainline,
they must be, by the upstream first convention, integrated in main-
line before they are ported back to stable releases. After their re-
lease, distributions pick patches from stable versions and apply
them to their own kernel repository. From a temporal perspective,
the typical pathway of a bug fix is mainline→stable→distribution.

3.3 Exceptional Vulnerability Handling

The aforementioned public review and integration process allows
for an exception when fixes for security vulnerabilities must be
handled. The Linux kernel is a key software component of a large
class of machines from embedded industrial control appliances to
cloud computing servers. Consequently, the Linux kernel commu-
nity has established standard procedures for responsible disclo-
sure [11, 14].

Linux submission guidelines encourage developers to report ex-
ploitable security bugs to the non-public security team mailing list
security@kernel.org: “For severe bugs, a short embargo may be
considered to allow distributors to get the patch out to users; in
such cases, obviously, the patch should not be sent to any public
lists.” [41]

Similar to the regular public development process, patches for
vulnerabilities are iteratively discussed, reviewed and refined – but
all related conversations take either place in private email conver-
sations or on closed lists. Once participants agree on a fix [27], or
after embargoes are expired, the majority of fixes follow the same
procedures as bugs: Patches for mainline and affected stable ver-
sions are published at the same time, before they are integrated
into distribution repositories. Figure 2 (Vulnerability 1) illustrates
the temporal process of a typical vulnerability. There is a second
type of coordinated disclosure for severe vulnerabilities that we
discuss in Section 6.

security@kernel.org


to appear in CCSW ’20, November 9, 2020, Virtual Event, USA Ralf Ramsauer, Lukas Bulwahn, Daniel Lohmann, and Wolfgang Mauerer

2019 2020

Linux mainline

v4
.1
8

v4
.1
9

v4
.2
0

v5
.0

v5
.1

v5
.2

v5
.3

v5
.4

v5
.5

Official Linux Stable v4.19.x

v4
.1
9

v4
.1
9.
16

v4
.1
9.
28

v4
.1
9.
37

v4
.1
9.
58

v4
.1
9.
67

v4
.1
9.
84

v4
.1
9.
98

Debian 10 v4.19.y-distro
v4.19

v4.19.16-1

v4.19.28-1

v4.19.37-3

v4.19.37-5+deb10u1

v4.19.67-1

v4.19.67-2+deb10u2

v4.19.98-1

Time

forks

forks

Vulnerability 2Vulnerability 1

2019 2020

Linux mainline

v4
.1
8

v4
.1
9

v4
.2
0

v5
.0

v5
.1

v5
.2

v5
.3

v5
.4

v5
.5

Official Linux Stable v4.19.x

v4
.1
9

v4
.1
9.
16

v4
.1
9.
28

v4
.1
9.
37

v4
.1
9.
58

v4
.1
9.
67

v4
.1
9.
84

v4
.1
9.
98

Debian 10 v4.19.y-distro
v4.19

v4.19.16-1

v4.19.28-1

v4.19.37-3

v4.19.37-5+deb10u1

v4.19.67-1

v4.19.67-2+deb10u2

v4.19.98-1

Time

forks

forks

Vulnerability 2Vulnerability 1

Figure 2: Linux development timeline:Mainline, stable trees and distribution trees are supported in parallel. Typically, fixes for

vulnerabilities are first fixed in mainline (cf. Vulnerability 1) and on a stable tree, before they are ported back by distributions.

In rare cases (cf. Vulnerability 2), patches appear in distributions before they are published in mainline.

4 METHODOLOGY

The basic idea of our approach is to mine public Linux repositories
for patches that have not been discussed on any public mailing list.
Previous work [18, 19] associates ongoing development in email
threads to commits in repositories such that pre-integration histo-
ries of changes can be uncovered. For our purposes, we basically
need to reverse the question, and find commits in repositories that
do not enjoy any traceable pre-integration history.

Temporally, a patch should first appear on a public mailing list
before it can be found in the repository. Hence, any new commits
in the repository that can not be assigned to emails were integrated
through non-public integration channels.

The nature of OSS allows for collecting all required develop-
ment artefacts. However, assigning patches onmailing lists to com-
mits in repositories is a non-trivial task caused by the lack of reli-
able, machine-encoded provenance information.

4.1 Information Processing

Commits in repositories are identified by their unique commit hash,
and patches on mailing lists are identified by their uniqueMessage-
ID. Yet, the mapping of Message-IDs to commit hashes is lost dur-
ing the manual integration process of maintainers [7, 19].

The kernel community is aware of the gap of code traceability,
which is a frequent subject of meta-discussions [3, 22] on the im-
provement of the development process. The issue is unsolved by
the community at the time of writing.

Recent publications from the software-engineering community
attempt to usemining techniques to reconstruct the pre-integration
history of software projects in ex-post analyses (see, for instance,

Refs. [19, 37]). Simple textual comparison fails to recover the his-
torywith high accuracy [19], as patches onmailing lists may signif-
icantly differ from their counterparts in the repository: Maintain-
ers rewrite commit messages, add additional changes to the code,
move code, or apply patches against a different state if the code
base [7, 19], which can (slightly) change the content of the com-
mitted itself. The initial version of a patch can significantly vary
from further revisions or from its final state in the repository.

While several approaches to rate similarity rating of patches
have been devised [18, 19, 37], each provides a similarity score sim
for a pair of patches. For the comparison of patches, we do, in the
first place, not differentiate between patches as commits in repos-
itories or patches as mails on mailing lists. LetM be the set of
patches on mailing lists and C be the set of commits in the reposi-
tory. Let furtherU be universe of patches U =M∪C. We can define
sim as:

sim ∶ U × U → [0, 1] (1)

where 0 denotes no similarity, and 1 denotes textual equivalence.
The operator sim considers various tuneable aspects for the com-
parison of two patches.We choose amethod due to Ramsauer et al. [37]
that provides high accuracy.

The overall rating for the similarity of two patches in this ap-
proach consists of a similarity score of the commit message and a
similarity score for the diff. Both are weighted by a heuristic fac-
tor. The score for the comparison of commit messages and diffs
is mainly based on token-based Levenshtein string distances [29]
(for other details that are not relevant for our purpose, we refer to
Ref. [37]).

The approach turns assigning patches in mails to commits in
repositories to a problem in graph theory: The universe U forms
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the vertices of an undirected and weighted graphG = (U ,E). The
weightw(e) of an edge e = {e1,e2} ∈ E is determined by a function
sim that rates the similarity of two patches e1 and e2:

w(e) ∶= sim(e1,e2) (2)

Determining all edges in E requires (∣U∣2 ) computational expen-
sive calls of sim. Therefore, prefiltering strategies mitigate the com-
binatorial explosion for a high number of patches ∣U ∣: Patches are
only compared if they, for example, modify at least one common
file. Further prefiltering methods are explained in [37].

The graph G is used to derive an undirected and unweighted
subgraphG′ = (U ,E′) that only contains edges exceeding a certain
threshold t for the edge weight:

E
′
= {{e1,e2} ∈ U ∣ sim(e1,e2) > t} (3)

G′ consists of connected components that divide U into parti-
tions of similar patches, that is, equivalence classes. We identify
those equivalence classes as ∼S :

[x]S = {y ∈ U ∣ x ↝G ′ y}, (4)

where ↝G ′ denotes reachability. Note that ∣[x]S ∣ > 0. Figure 3 il-
lustrates the creation of clusters of similar patches. We distinguish
between three different types of clusters:

1. Unintegrated Patches: [x]S ⊂M.
All members of this equivalence class can only be found on mail-
ing lists. Members are, for example, different revisions of the same
patch.

No commit in repositories can be found in this category. This
means that the patch has either not been integrated yet (as the
discussion is, for example, still ongoing), or, that the patch has been
rejected and is not object to integration.

2. Integrated Patches: ∃x1,x2 ∈ [x]S ∶ x1 ∈M∧ x2 ∈ C.
This category describes an finished integration process, as mem-
bers of the equivalence class can be found on both: the mailing list

and the repository. Again, [x]S ∩M describes several revisions of
the patch, [x]S ∩C denotes the assigned commits in the repository.

Note that several commits in the repository may be assigned:
While backports also match to mainline commit, there may even
been multiple mainline commits, as a patch can be picked up by
multiple maintainers and appear as multiple commits.

3. Off-list Patches: [x]S ⊂ C.
No public development artefact can be assigned to the commit(s) in
[x]S . Besides false positives results of the heuristic, this category
contains commits that arise from non-public integration channels.

With patches in group 3, we are able to identify commits that
come from secret integration channels. Those commits will be sub-
ject of our analysis in Section 5.

4.2 Data Acquisition

TheLinux Kernel community officially provides mailing list archives.3

As archiving method, they use the public-inbox storage format.4

The public-inbox approach stores mails in git repositories and pro-
vides a convenient data exchange format as standard tooling can
be used to search for or to extract mails from the repository. Dif-
ferent mailing lists are stored in separate repositories.

However, a low amount of false positives because of misses re-
quires full coverage of all mailing list data for the time frame of
interest. While official resources reach back to early days of Linux,
archives do not cover all mailing lists. Only a subset of ≈100 lists of
over 200 referenced lists of the project are provided by the Linux
Foundation.

Therefore, we subscribed to all 200 publicly available lists and
collect mailing list data since May 2019. Our archives receive reg-
ular updates and are publicly available5. We use the open-source
tool PaStA6 for the construction of the commit hash↔message-id
map.

5 ANALYSIS

In contrast to a just-in-time online analysis that constantly moni-
tors new incoming mails and commits on a regular basis, we per-
form the detection of off-list patches as an ex-post analysis of a
predefined time window. From a retrospective view, we can exam-
ine if a commit would have been detected as an off-list patch if a
just-in-time online analysis would have been performed.

5.1 Overview

We are naturally limited by the availability of artefacts for the
choice of time window for the analysis. For the time window of
emails, we consider the date since creation of our data collection
(2019-May-01) until we performed the analysis (2019-Dec-01).

Patches typically take weeks tomonths until they are integrated
to the repository [18]. To select commits in the repository that are
relevant for the analysis, we need to be aware that git, the version

3Available at http://lore.kernel.org
4see https://public-inbox.org/README.html
5Available at https://github.com/orgs/linux-mailinglist-archives/
6Available at https://github.com/lfd/PaStA

http://lore.kernel.org
https://public-inbox.org/README.html
https://github.com/orgs/linux-mailinglist-archives/
https://github.com/lfd/PaStA
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control system that is used by the Linux kernel, distinguishes be-
tween two temporal events: the author date and the commit date.
The commit date is the date when the commit has been applied
to the developer’s (local) repository. Rewriting a repository’s his-
tory can affect commit dates. The author date is the date when the
commit was originally made (e.g., the date when the codewas com-
mitted by the original author to their repository) or, in case of an
email-based workflow, the timestampwhen the email was sent (i.e.,
the Date: header of a mail). Hence, we integrate all commits with
an author date within the same time window as chosen for emails.
We respect all commits that meet the abovementioned criterion up
to Linux version 5.4 (released 2019-Nov-24).

In that time window, we found 516,197 different messages, ≈
40%of them contain actual patches. However, not all mails that con-
tain patches are relevant for the analysis. Messages contain mails
from bots, pull requests, backports and other noise. The tool PaStA
filters those messages by applying appropriate heuristics.

The remaining messages are first compared against each other
to find clusters of similar patches (i.e., several revisions of the same
logical patch) and are then compared and mapped against 30,396
commits in the repository. Thresholds significantly influence the
precision of the results. We chose thresholds in alignment with
Ref. [37]. In the time window of our analysis, we mapped ≈ 96% of
all commits against patches frommailing list and therefore regular
development noise, while 1,240 commits were not assigned to any
Message-Id.

A commit with a missing mapping to a message can fall into
one of the following categories: (1) The heuristic failed to detect
the patch (false negative) (2) The original patch was sent to the list
before we started recording mailing list data (miss of discussions)
(3) off-list patches – patches that were integrated through a non-
public channel.

5.2 Off-list Patches

With a manual investigation of the remaining 1,240 commits, we
were able to find different categories for off-list patches in the
Linux kernel repository. Figure 4 illustrates different types of off-
list integration channels.

Revert commits. A revert commit is a commit that reverts a pre-
vious commit in the repository’s history. They are used, for in-
stance, to eliminate new features or enhancements if they cause
undesired side effects or if they are in a defective or an incomplete
state. It is often the preferred choice to revert the commit, as it is
more efficient and less error prone to simply revert corresponding
changes rather than to provide expensive or complex fixes, espe-
cially at the end of a development cycle. A refined version of the
commit can later be integrated during the next development cy-
cle.7

Many maintainers do not send reverting patches to mailing lists.
They either integrate the reverting patch directly, or they send a
response to the original thread of introducing patch that it will be
reverted while omitting the actual reverting patch. Hence, we lack
the reverting patches on mailing lists.

7 Example: Linux Commit 69bf4b6b54fb: [...] and it’s [the bug] not immediately obvious
why it happens. It’s too late in the rc cycle to do anything but revert for now.
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Figure 4: Public observable (left) and non-public integration

channels (right).

Such reverting patches can automatically be detected, as the sub-
ject line of the commit message contains the keyword Revert by
convention. For the time window of the analysis, we detected 64
off-list revert commits in the repository.

Commits by Repository Owners. Repository owners have a spe-
cial role in projects: They have the permission to push code to of-
ficial resources.

In case of Linux, Linus Torvalds is the owner of the official repos-
itory and the last approving authority. It is his final decision to
judge if a patch or pull request is integrated mainline.

This, in turn, allows him for integrating or reverting patches ad
libitum. It is not unusual that he reverts patches without discussion
or short before the release of a new version.8

Torvalds sees himself as the manager of the Linux kernel – and
no longer as active developer. Nevertheless, he sometimes inte-
grates code or fixes without any prior public discussion. We can
automatically detect those commits, as project owners are known.
For the timewindow of the analysis, we detected 48 off-list patches
fromLinus Torvalds. None of them contained security-related fixes.

However, the phenomenon of bypassing public review processes
can also be observed at other maintainers.

Bypass of public review processes. During our analysis, we found
several regular patches that have never been sent to any public
mailing list. To exclude false negatives of the heuristic, we con-
tacted 18 different authors and collected affirmative answers from
14 authors – four did not answer.

All of them confirmed our finding that their patch(es) have never
been posted on a public mailing list. For example, we found that
one maintainer committed 40 patches to their repository in the
time window of our analysis. The author confirmed our assump-
tion and commented that they did not expect it to be that many.

8 Example: Release of Linux 5.3: Linux Commit 72dbcf7215

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69bf4b6b54fb7f52b7ea9ce28d4a360cd5ec956d
https://lkml.org/lkml/2019/9/15/241
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=72dbcf72156641fde4d8ea401e977341bfd35a05
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Most patches were only minor stylistic fixes, but we also found in-
vasive patches. The author agreed that those patches would have
required a public review process. We questioned maintainers why
they skipped the official review process. Their typical answers was
that they accidentally forgot to send the patch.

While many of those commits contain uncontroversial changes
like documentation, style or typographical fixes, other commits
contain in-depth fixes for subsystems. One maintainer explained
that they picked up a fix from another subsystem that is also valu-
able for their area of responsibility. However, all responding main-
tainers agreed that those patches should have been publicly dis-
cussed.

Established non-public integration channels. Besides maintainers
that directly commit patches without discussion, we also found
subsystems that tend to bypass public review processes.

We have evidence from our observations that some subsystems
deliberately bypass public review processes. For example, there are
whole architectures and subsystems that are in the responsibility
of certain companies.9 A corporate representative has the role as
an official mainline subsystem maintainer, which gives them the
possibility to send pull requests to Linus—by trust. Within those
subsystems, we can find off-list patches from authors other than
the maintainer. Still, those patches can not be found on any pub-
lic mailing lists. At the same, the author’s and maintainer’s email
address show that both work for the same company.

From such artefacts in commits, we conclude the existence of
non-public company internal review and integration processes. How-
ever, those patches do intentionally bypass public review process.

One maintainer confirmed our assumption and underlined that
they forgot to add the public list, and that normally all patches are
discussed on the public mailing list before they land.

Security Vulnerabilities. The remaining commits contain fixes
for security vulnerabilities. According to Linux’s security process
(explained in Section 3), patches for security vulnerabilities should
be discussed on private non-public communication channels.

Typically, the majority of those patches drown in the noise of
thousands of other commits. To prevent simple keyword-based
search heuristics, commit messages are worded neutrally, links to
CVE entries are only sometimes mentioned in the commit mes-
sage [26].

To confirm our assumption that we hit security vulnerabilities
through non-public integration channels, we contacted 12 authors.
A list of the related and confirmed vulnerabilities can be found
in Table 1. All of them confirmed that those patches are security
related and that they have either been discussed on the non-public
security mailing list, or been sent directly to the maintainer.

We calculated, in days, how long it takes for Debian 10 (Buster)
and Ubuntu 18.04 (Bionic Beaver Hardware Enablement Kernel)
to apply the patch to the distribution’s fork of the Linux kernel.
Positive numbers denote a potential temporal advantage for an at-
tacker, negative numbers mean that the distribution applied the
patch before it was disclosed to public. The categories of vulnera-
bilities contain denial of service attacks, buffer overflows, privilege
escalation, and buffer over-reads.

9We do not want publicly point to those subsystems.

In our analysis, we found, among others, fixes for the spectre-
like attacks CVE-2019-11135 [39] and CVE-2019-1125 [2]. Ubuntu
integrated both fixes before they were publicly disclosed, while
Debian only integrated fixes for CVE-2019-11135 before they were
publicly disclosed.

We also found patches for an easy to exploit10 denial-of-service
attack for ARM64-based Cavium systems. The vulnerability has no
assigned CVE entry. It took almost two months for Ubuntu Bionic
to integrate the patch. At the time of writing, Debian Buster, as
well as the affected 4.19 Linux LTS tree, still lack appropriate fixes.

For the majority of vulnerabilities, our approach gives an at-
tacker a temporal advantage from2 to 179 days.Whilemost patches
for vulnerabilities are included on the stable Linux LTS trees, some
distributions still lack patches for the corresponding vulnerabili-
ties.

6 DISCUSSION

In this section, we first examine validity and potential weaknesses
of our approach, and then discuss how our results affect OSS devel-
opment processes. We conclude with suggestions how they can be
adapted to accept (and deal with) risks that are anyway unavoid-
able, and concentrate on handling highly critical issues as good as
possible.

6.1 Validity

Analysis method. Our work conducts an ex-post analysis. We
consider a time window of seven months worth of mailing list
data, and compare it against the corresponding time window in
the repository. This allows us to judge from a future perspective if
a patch would have been detected as an off-list patch at the time it
was integrated into the repository.

Nevertheless, the retrospective position is only required to de-
termine the practicability of the approach: It is straightforward to
extended our methods to apply just-in-time, which is obviously
necessary to abuse any undistributed security fixes. Periodic, fre-
quent updates of the repository andmailing list data ascertain valid
and current data, and are a mere technical detail. New incoming
commits must be compared against the available mailing list data.
If a patch is not an off-list patch, then the corresponding mailing
list entry must be available at the moment of the analysis. As soon
as a commit is pushed to a public available repository, our method
allows to determine if the commit comes from a private channel.

In a private discussion, Greg Kroah-Hartman,maintainer, among
others, of the stable and LTS trees of the Linux kernel, states the
undocumented procedures how patches are distributed behind the
scenes [27]. The exchange strategies vary depending on the in-
volved maintainer(s) and the issue at hand: One possibility is to
exchange patches via private email. Another method is to distrib-
ute patches as git bundles, a technique that allows for exchang-
ing elements of a git repository without relying on public remote
servers, while it still guarantees stable commit hashes to maintain
unique patch identifiers. In a third method Linus Torvalds pulls
patches from a maintainer tree. Since such trees are publicly avail-
able, this method opens a further temporal advantage for attackers,

10According to an assessment by the author of the fixes [45]
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Table 1: A list of vulnerabilities thatwere detectedby our approach and confirmedby corresponding authors. Anegative period

means that patches were integrated by distributions before the vulnerabilities were disclosed. SecML means if the patch was

routed through the security mailing list, or privately discussed with maintainers.

CVE-2019 Description Patches SecML Ubuntu 18.04 Debian 10

NA DoS vulnerability for Cavium systems 4 no 59d n/a
NA smack: use after free 1 no 14d n/a
13233 x86/insn-eval: use after free 1 yes 54d 61d
13272 pot. privilege escalation 1 yes 25d 12d
12817 ppc: inter-process memory leak 2 yes -5d 44d
1125 x86/speculation: spectre v1 swapgs 4 yes -5d 2d
14283 floppy: out-of-bounds read 2 yes 71d 18d
14283 floppy: DoS / div by zero 2 yes 71d 18d
11833 ext4: leak of sensitive data 1 yes 71d 29d
NA s390: pot. leak of sensitive data 1 yes 45d n/a
NA apparmor: out of bounds by user-controlled data 1 no 179d 60d
11135 x86/tsx/speculation: TSX async abort side channel 9 yes -1d -1d

as a just-in-time analysis can also monitor patches from maintain-
ers’ repositories.

Generalisability. The primary concern of this paper is an in-depth
analysis of patch flow into the Linux kernel repository from non-
public resources by using peculiarities of its mail-based develop-
ment process. However, our approach is neither limited to Linux as
analysis target, nor tomailing lists asmeans of discussion. Variants
of this process are used by many other system-level OSS projects,
for instance GCC, QEMU, U-Boot, LLVM, busybox, and many oth-
ers. Except for handling some technical details and taking minor
process differences (e.g., the use of multiple parallel communica-
tion channels) into account, our approach can be directly applied
to such systems, albeit we do not consider an according evaluation
in this paper.

The exact reasons for the existence of non-public integration
channels depend on the project. Especially in projects with smaller
communities, maintainers often tend to directly commit code changes
without public announcement or discussion (e.g., busybox), as up-
front public discussion is often considered time-consuming and
dispensable. However, this limitation is mitigated by the fact that
projectswith smaller communities only receive amoderate amount
of patches. Especially critical system software typically demands
adherence to public review processes, regardless of community
size.

Our idea of development process reverse engineering is also ap-
plicable to processes that do not build upon mailing lists: If any
publicly available development artefacts (e.g., pull requests, entries
in issue trackers, . . . ) are available that include relevant data before
their integration, then reverse process engineering uncovers any ir-
regularities, in particular, deliberate violations of the development
process.

Scalability. In a timewindowof roughly sevenmonths, we found
30,396 relevant commits in the repository (authored after 2019-
May-01 and integrated before Linux v5.4, released 2019-Nov-24).
Within those commits, we found 1,240 potential off-list patches.
By applying heuristics to exclude revert patches and commits by

project owners, wewere able to exclude further 112 commits. With
our approach, we filtered ≈96% of regular development noise.

Nevertheless, 1,128 commits required manual analysis, which
may seem to imply a considerable impediment to a fully automatic
system at first glance. However, commits span a time window of
207 days. On a daily basis, this accounts to manual investigation of
(rounded up) six commits per day. Assuming, in accordance to our
personal experience gathered, that an experienced developer can
decide within a minute or two if a patch addresses a vulnerability,
then the daily time investment would only require a reasonable
amount [36] of around ten minutes.

Not enjoying the benefits of our system would require a fully
manual inspection of all incoming commits, which is unrealistic:
The official repository of the Linux kernel (merge commits are al-
ready excluded) received 70,632 commits between release v5.0 and
v5.4. The development between those releases took 329 days. On
average, 215 patches were integrated per day. Assuming the same
amount of time required for manual investigation, an experienced
developer would need more than three hours of concentrated re-
viewing per day. Hence, we argue that our approach is suitable for
real-world scenarios, as it significantly reduces the amount of time
that is required for manual review.

However, the time to find some security-related fixes could be
reduced even to zero by employing simple heuristics, such as filter-
ing for well-known author or institution names: For instance, out
of the 12 fixes we identified, 3 originated from Jann Horn (GPZ).
While this might have been pure coincidence, we argue that learn-
ing about the social structure behind Linux could be exploited in
this respect.

Internal Validity. Ourmethod systematically uncovers non-public
integration channels and identifies commits that are potential fixes
for security vulnerabilities. However, the method fails for vulnera-
bilities that are discussed in public before integration.

Statistical data on howmany patches are sent to private security
mailing lists, or how many critical vulnerabilities are discussed in
public are not available. Hence, it is hard to calculate the accuracy
of the approach since the recall is not available. Yet, we found 12
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vulnerabilities in our analysis, which underlines the practical util-
ity of our approach.

However, it is worth mentioning that counting or searching for
CVE entries for a certain time window is neither an appropriate
method of accounting the number of vulnerabilities in a system
nor an alternative method to automatically find security vulnera-
bilities: Only a fraction of kernel security fixes get CVEs [13, 26]
assigned. CVEs are also known to be abused as integration short-
cuts [27],11 and do on occasion not even address real vulnerabili-
ties [12].

Construct Validity. We discussed ourmethodwith experts of the
closed Linux security mailing list. They confirmed validity of our
approach to gain information on non-public integration channels.

6.2 Consequences

Fixes for Vulnerabilities. The primary success criterion for our
approach is simple: Can attackers gain temporal advance to design
exploits? We argue that this is the case if the patch can be found in
public resources before software distributors roll out patches: Re-
verse engineering of the development process allows for aimed tar-
geting of commits that would otherwise hide between thousands
of other commits.

As mentioned in Section 3, the majority of patches for vulner-
abilities first appear in the Linux mainline and stable trees before
distributions pick up the relevant patches. From a temporal per-
spective, patches first appear on mainline and stable trees, and are
then integrated by distributions (cf. 2, Vulnerability 1). We call this
the mainline first disclosure model.

However, there is an exception for highly critical vulnerabilities:
Before their public disclosure, patches are secretly disclosed to the
kernel maintainers of the distributions, which buys them time to
prepare their kernel tree to roll out updates (cf. Figure 2, Vulnera-
bility 2) as soon as an embargo ends. In this way, a patch can be
integrated to the distribution’s tree before it is published mainline.

This method ensures that affected systems can receive fixes as
soon as the vulnerability is officially disclosed. Yet, this process re-
quires time-consuming and extensive coordination between main-
tainers of distributions and the kernel community, since a strict
temporal publishing coordination is required tomake the approach
effective. Coordination efforts are even more complex when hard-
ware bugs (such as bugs in speculative execution [23, 32]) are in-
volved, as multiple operating systems can be affected. This addi-
tionally requires cross-community coordination—between differ-
ent operating systems (variants of BSD, Windows, macOS), com-
mercial and non-commercial vendors, and, under exceptional cir-
cumstances [23], even with compiler manufacturers. This process
is therefore only considered in rare cases.

We call this process the distro first disclosure model, as patches
are integrated by distributions before they are officially published
mainline.

According to Kroah-Hartman [27], there is no clear definition of
the disclosure process, and no definitive criteria for circumstances
when the distro first model should be used. As an ad-hoc process,

11For instances, processes of commercial companies that must be passed before con-
tributions can be placed in open source projects can contain shortcuts for critical
vulnerabilities, and “critical” is equated with “has CVE assigned”.

subsystem maintainers decide how to handle a fix: patches can,
for example, be routed through maintainer trees to Linus Torvalds,
or Linus merges the patch directly, depending on the area of the
kernel that was involved.

To give an example, fixes for flaws in the speculative execution
model (cf. CVE-2019-11135 [39] and CVE-2019-1125 [2]) of mod-
ern CPUs were entirely developed and rolled out to distributions
in private. Our approach can still detect that the patches stem from
off-list channels as soon as they are available in a repository – but
at that point in time, patched binaries are already available for the
public. Nevertheless, our method can still provide some valuable
temporal advance as the availability of patches does not imply im-
mediate deployment in the field.

However, the mainline first disclosure model is used for the ma-
jority of fixes for vulnerabilities. As distributions maintain forks of
the Linux kernel, and manually select patches that are integrated
frommainline, it can take up tomonths for patches to be integrated
(cf. Table 1). In particular, selecting patches for local forks on a case-
by-case basis misses relevant fixes that are available on LTS.

For these cases, the integration process of distribution kernels
can be considered as security by obscurity, since (a) the patches
do not follow a coordinated disclosure process to distributions to
protect affected systems before their official publication, and (b)
the existence of the actual fixes is obfuscated by private discussion
and regular development noise.

We hence argue that release strategies of distributions should
be reconsidered, as we have demonstrated that distributions are
vulnerable for attacks over long periods of time.

Furthermore, we argue that fixes for vulnerabilities should be
publicly discussed after their disclosure. While preliminary ver-
sions for severe vulnerabilities that require distro first integration
should be developed under the distro first model, we recommend
using a full disclosure model in all other cases. Early versions of
fixes for vulnerabilities can still be discussed on secret lists, but
they should be publicly reviewed after their embargo.

A public review process can enhance the software quality of the
fix per se—after all, this is the main concern of public discussion—,
but can also avoid the the inadvertent introduction of additional
vulnerabilities by fixing one vulnerability, which is unfortunately
a real pattern [12]. Public discussion before integration would also
defeat our mechanisms, which is eventually desirable.

Code Infiltration. In addition to detecting fixes for vulnerabili-
ties, we also encountered hidden integration channels besides secu-
ritymailing lists, such asmaintainers or companies that—systematically
or inadvertently—bypass official submission procedures, for instance
by direct maintainer commitswithout external review, or company-
internal review. The existence of such channels, shows that trusted
individuals can easily infiltrate the project, and secretly introduce
malicious artefacts (while this possibility is given, our method al-
lows for finding concrete instances, which is otherwise not pos-
sible). The existence of such commits contradicts one of the key
promises of an open development model.

We contacted maintainers for subsystems for which we found
such patches, and they confirmed our assumption that they inte-
grated code without prior public review. While maintainers are
aware of that they sometimes intentionally bypass the process,
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they were surprised of the magnitude of unreviewed patches—the
confirmed “record” is more than 40 per half-year per author, the
estimated number for unconfirmed cases is higher.

7 RELATED WORK

Software vulnerability life cycle analysis is related to this areawork,
and a well-researched topic [5, 16, 40].

Huang et al. [16] find a considerable delay between disclosure of
vulnerabilities and the availability of fixes. Based on a case study of
six different projects, they found an average time of 52 days from
vulnerability disclosure to releasing an actual fix. However, they
also find that almost half of the vulnerabilities are fixed within one
week.

In 2010, Arora et al. [5] argue that instant disclosure of a vulner-
ability forces vendors to speed up the release of a fix by 35 days.

Shahzhad et al. [40] analyse the life cycle of vulnerabilities that
are filed in software vulnerability data sets. In their large-scale
analysis that includes a big variety of different projects, they find
that the amount of time required to fix vulnerabilities decreased
from 1998 to 2011: Since 2008, 80% of all vulnerabilities are fixed by
vendors before their disclosure. Yet, their study does not consider
that providing a patches is only a first step, but necessitates inte-
gration in software distributions, and actual deployment by users.

In a large-scale empirical study, Li and Paxson [30] investigate
bug-fixes for security vulnerabilities in open-source projects. For
their comprehensive analysis, they assign 3,094 CVE entries in the
National Vulnerability Database (NVD) to 4,080 commits in 682
unique git repositories. Mining for links to commits in the CVE de-
scription establishes the approximate connection between CVE en-
try and commit hash. Later, they extract characteristics of security-
related commits. They find that security fixes are less complex and
more localised than non-security fixes. Furthermore, they find that
70% of security-related patches were committed before public dis-
closure and conclude that development and deployment processes
provide a window of opportunity for exploitation. However, for a
responsible disclosure process, it is necessary that patches must
be developed (and committed) before disclosure. Yet, the date of
a commit is not necessarily the date of its public visibility. In this
work, we showed that developers intentionally distribute and re-
lease patches on secret channels before they finally publicly pub-
lish the repositories. Attackers do not have the opportunity for
prior exploitation in those cases. In this work, we respect this fact
and use the time difference of the public availability of a binary
software release and the date of the public disclosure as the basis
for our analysis.

Kroah-Hartman argues that only a small fraction of Linux ker-
nel security fixes are assigned to CVE entries [26]. From 2006-2018,
1005 CVEs were assigned to the kernel. He argues that, on average,
bugs with CVE entries are 100 days fixed in mainline before they
get a CVE assigned. Furthermore, he argues that the amount of vul-
nerabilities of vendor distributions can significantly be reduced by
choosing LTS versions of Linux.

Insider attacks, such as infiltration, or compromises of organisa-
tional structures, are well-known in literature [8, 21].We showed a
practical outsider attack that exploits the openness of the develop-
ment model itself by using its development artefacts to conclude to

systematic integration of patches that lack public discussion. In [4],
Anderson argues that the security of a development model should
not depend whether it is open or closed.

The software engineering community uses artefact mining tech-
niques to to draw quantitative conclusions on development pro-
cesses [20] or to determine various software performance indica-
tors [10, 15].

8 CONCLUSION

We showed that reverse engineering of public development pro-
cesses allows to detect code that arises from non-public integra-
tion channels. Our approach removes 96% of regular development
noise and points to hot spots that contain fixes for critical security
vulnerabilities. With our method, we were able to detect 12 vulner-
abilities in Linux in a time window of seven months. We collected
responses from all authors that confirm our presumptions. Attack-
ers can use this information to gain temporal advantage, as they
can design exploits before affected systems receive patches.

Furthermore, we found evidence that some subsystems andmain-
tainers intentionally bypass the regular development process. There-
fore we argue that it is possible to systematically infiltrate mali-
cious code to the kernel by bypassing the (mandatory) public re-
view processes. We shared our findings with the Linux kernel com-
munity and discussed possibilities of potential mitigations.

Our future work will focus on just-in-time online analyses and
automated process monitoring: Automatic notifications to main-
tainers or authors can help to raise the awareness of the impor-
tance of public code review processes.
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