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Abstract 

Deep Reinforcement Learning (RL) has considerably advanced over the past decade. At the same 
time, state-of-the-art RL algorithms require a large computational budget in terms of training time to 
converge. Recent work has started to approach this problem through the lens of quantum computing, 
which promises theoretical speed-ups for several traditionally hard tasks. In this work, we examine a 
class of hybrid quantum-classical RL algorithms that we collectively refer to as variational quantum 

deep Q-networks (VQ-DQN). We show that VQ-DQN approaches are subject to instabilities that cause 
the learned policy to diverge, study the extent to which this afflicts reproducibility of established results 
based on classical simulation, and perform systematic experiments to identify potential explanations for 
the observed instabilities. Additionally, and in contrast to most existing work on quantum reinforcement 
learning, we execute RL algorithms on an actual quantum processing unit (an IBM Quantum Device) and 
investigate differences in behaviour between simulated and physical quantum systems that suffer from 

implementation deficiencies. Our experiments show that, contrary to opposite claims in the literature, it 
cannot be conclusively decided if known quantum approaches, even if simulated without physical im- 
perfections, can provide an advantage as compared to classical approaches. Finally, we provide a robust, 
universal and well-tested implementation of VQ-DQN as a reproducible testbed for future experiments. 
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. Introduction 

Techniques for reinforcement learning (RL) have seen considerable progress during the
ast decade. Driven by both, algorithmic advances and the emergence of deep learning [1–3] ,
L has emerged from a conceptual approach to successfully tackling tasks previously deemed

nfeasible. This includes aspects of robotic manipulation [4–7] , autonomous driving [8–10] ,
nd mastering combinatorially-hard board games [11–14] . At the same time, state-of-the-art
eep RL methods require an exorbitant computational budget to match or exceed human
erformance on seemingly simple tasks, such as playing arcade video games. As an example,
adia et al. [15] report training times of roughly 53000 h, distributed over 256 machines, to
chieve superhuman performance on all 57 Atari games of the Arcade Learning Environment
enchmark [16] . Also, the learning dynamics of these approaches, both in terms of stability
nd optimality, are not yet fully understood and remain a subject of current research [17–20] .

Concurrent to these developments, quantum computing [21] has started to receive increas-
ng interest in real-life applications. It promises computational speedups, especially selected
eakly-structured search problems like integer factoring [22] , or exploration of unstructured

earch spaces [23,24] by exploiting fundamental phenomena of quantum mechanics (see Sec-
ion 2.2 ). Reinforcement learning can be regarded as a search problem (in terms of seeking
n optimal policy, as we outline in Section 2.1 ). Consequently, it is natural to ask whether a
uantum speedup is realisable in this domain. 

Limitations on achievable speedups have been studied in detail [25] , and lower bounds
re known for several important fundamental problems [26] . Despite numerous technolog-
cal challenges rooted in, amongst others, noise and imperfections of near-term intermedi-
te scale quantum devices [27] , sufficient margins for industrially relevant improvements re-
ain [28,29] , but necessitate a more precise understanding and a critical evaluation of the

erformance of quantum approaches on currently available hardware designs. Since RL, like
ther machine learning approaches, relies on stochastic components that may amplify varia-
ions in algorithmic performance (and, more generally, challenge replication efforts), this is
nother aspect that requires careful consideration. 

In this article, we examine and extend a class of recent hybrid quantum-classical ap-
roaches to reinforcement learning that we collectively refer to as Variational-Quantum Deep
-Networks (VQ-DQN). Originally proposed by Chen et al. [30] and later refined by Lock-
ood and Si [31] , VQ-DQN builds upon the deep Q-networks (DQN) algorithm [32,33] , which

eplaces the core neural network component with a quantum machine learning model, namely,
 variational quantum circuit (VQC) [34] . Although the results published in [32,33] promise
nteresting properties, we show that VQ-DQN approaches are subject to instabilities that ul-
imately cause the learned policy to diverge. Policy divergence is obviously detrimental to
he practical utility of the approach, especially if it already happens in perfect simulations of
uantum systems. Quantum computers that can be manufactured under the constraints of cur-
ent technological limitations additionally suffer from noise, imperfections, and very strongly
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imited amounts of available quantum bits. They are referred to as noisy, intermediate scale
uantum computers (NISQ). To understand the additional degradation caused by these imper-
ections on the performance of RL approaches, we perform comparative experiments on actual
uantum hardware—a gate-based IBMQ device ( Falcon r4) operated in Ehningen, Germany. 

In general, our investigation is part analysis and part reproduction study, and we provide a
eproduction package with a well-tested implementation 

2 of VQ-DQN. To make best use of
vailable libraries and to provide an open testbed for future experiments, our implementation
s written in two separate quantum frameworks, which are each coupled to a machine-learning
ramework: Tensorflow-Quantum [35] (TFQ)/Tensorflow [36] and Qiskit [37] /Pytorch [38] . 

The paper is structured as follows: Section 2 provides a concise introduction to DQN
2.1) , VQCs (2.2) , and the VQ-DQN algorithm (2.3) . Section 3 reviews related work. Sec-
ion 4 describes our methodological approach towards finding and characterising instabilities.
ection 5 summarizes our experiments. Section 6 explains the validation experiment on real
uantum device. Further, we proceed to compare the DQN with variational quantum circuit
gainst a DQN with classical neural network in Section 7 . Finally, we conclude in Section 8 .

. Background 

To introduce the concepts used in this study, the following paragraph discusses notation
nd basic principles of both, machine learning and quantum computation. 

.1. Deep Q-learning 

Most formulations of RL center around the notion of a Markov decision process
MDP) [39] , where an agent interacts with an environment at discrete time steps t . In
ach time step, the current configuration of the environment is summarised by the state
 t ∈ S . Based on this information, the agent selects an action A t ∈ A according to a policy
(s, a) = P [ A t = a| S t = s] . Executing the selected action causes a transition of the envi-

onment to a next state S t+1 ; simultaneously, the agent receives a scalar reward R t+1 that
uantifies the contribution of the selected action towards solving the task. The agent’s goal is
o maximize the return, i.e., the discounted sum of rewards, G t = 

∑ T 
t ′ = t γ

t ′ R t ′ until a terminal
tate S T is reached. In that, the discount factor γ controls how much the agent favors imme-
iate over future rewards. Both S t+1 and R t+1 are assumed to obey the Markov property (i.e.,
onditional independence of previous states and actions given S t , A t ). However, the MDP’s
ynamics , P [ S t+1 , R t+1 | S t , A t ] , are typically unknown to the agent, which necessitates learning
 policy by trial-and-error. 

The fundamental idea of Deep Q-Learning (also referred to as deep Q net-
orks , DQN) [32,33] is to learn the optimal state-action value function Q ∗(s, a) =
ax π E [ G t | S t = s, A t = a, π ] – that is, the return expected when taking action a in state s,

nd then following an optimal policy in all future states. Once Q ∗(s, a) is known, an optimal
olicy can be easily recovered by selecting actions greedily, that is π∗(s) = argmax a Q ∗(s , a) .
his is achieved by training a neural network to satisfy the well-known Bellman Optimality
quation (BOE) that relates the values of a state-action pair to the value of the next state: 

 ∗(s, a) = E 

[
R t + γ max 

a ′ 
Q ∗(S t+1 , a 

′ ) | S t = s, A t = a 

]
(1)
2 See https:// doi.org/ 10.5281/ zenodo.7030069 . 
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More concretely, the deep Q-network is trained to minimize the difference between the left-
nd right-hand side of this equation (also known as the temporal difference error or TD-error ),
nder some loss function (e.g., L 2 ), evaluated on mini-batches of transitions (S t , A t , R t+1 , S t+1 )

ampled by the agent. These transitions are sampled using an off-policy approach – instead of
pplying the current greedy policy (also called target policy ), an ε-greedy behavior policy that
elects a random action with probability ε is chosen. Decaying ε over the course of training
llows the agent to explore the environment, while guaranteeing that the behavior policy and
arget policy (and hence, the underlying data distributions) converge eventually. 

As Mnih et al. [40] point out, learning Q ∗ with a high-capacity function approximator
eads to convergence problems. To this end, DQN makes use of (1) a target network , which
s a copy of the deep Q-network with temporarily fixed weights to evaluate the right-hand
ide of Eq. (1) , and (2) an experience replay buffer [41] from which experienced transitions
re re-sampled for mini-batch gradient descent. For a detailed discussion of these specifics,
e refer the interested reader to [32,33] . 

.2. Variational quantum circuits 

Quantum computation uses the qubit as the fundamental unit of information. In contrast
o classical bits, a set of n qubits can not only assume the 2 

n classical basis states (i.e.,
, 1 , . . . , 2 

n − 1 ), but also any superposition of these basis states. Note that superimposable
uantum states reside in an infinite state space than their classical counterparts, which is often
een as an indication of increased computational capabilities, although the exact reason for
ossible quantum speeds remains elusive [42] . 

The variational quantum circuit is a machine learning model based on quantum cir-
uits [34] . Similar to neural networks, VQCs consist of sequential layers that represent pa-
ameterised transformations on the VQC’s quantum state. In particular, VQC layers apply
.g. learnt single-qubit rotations (in X -, Y -, and Z direction using the corresponding Pauli
perators [21] ) to each qubit of the circuit. Entanglement can be generated by applying a
eries of CNOT-gates [21] to pairs of qubits. The specific single-qubit rotation parameters are
earned via gradient-descent on an error signal, computed over the expected measurements in

direction of one or more output qubits. 

.3. VQ-DQN 

Variational quantum deep Q-networks (VQ-DQN) [30,31,43] replace the deep neural net-
ork in DQN with a VQC. 

.3.1. Q-value extraction 

For a given input MDP state, Q-values are predicted for all |A| actions simultaneously by
aking the expectation value of a measurement (in Z direction) of a corresponding number of
utput qubits. The resulting measurements lie within [ −1 ; 1] ; obtaining valid action values
hus requires further processing, for instance by scaling the measured results by a learnt

ultiplicative factor. 

.3.2. Input encoding 

To input a (classical) MDP state s ∈ S to the VQC, that state needs to be represented
s a quantum state | �(s) 〉 using the available qubits. Chen et al. [30] address this problem
4 
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y only considering MDPs with discrete state spaces and associating each MDP state with
ne of the 2 

N quantum basis states. Lockwood and Si [31] and Skolik et al. [43] extend this
ethod to MDP states with continuous components with a simple encoding scheme, with
hich the authors report results on the “Blackjack” and “CartPole-v0” environments (see
ef. [44] for implementation details). In particular, each component of the input state s is
ncoded by applying parameterised Pauli rotation gates [21] to one respective qubit in the
ircuit (initialised to | 0〉 ). Lockwood and Si [31] propose two encoding schemes: Scaled (S)
ncoding, which determines a rotation angle by scaling finite-domain input components to
0, 2π ] , and Directional (D) encoding, which encodes infinite-domain inputs by rotating the
ubit by π if the input is greater than 0. Skolik et al. [43] additionally present Continuous
C) encoding, which computes rotation angles as the arctan of the respective input component.

. Related work 

.1. Deep Q-Learning and its instabilities 

The DQN approach dates back to Watkin’s Q-Learning [45] and has seen a lot of interest
ver the years due to its immense potential in learning capabilities. Deep Q-Learning is
tself an active field of research because of its versatility in end applications. Nevertheless,
s versatile as the end applications are, the algorithm possesses space for improvements
n its stability and speed of convergence to a solution [15,17,46–51] . In particular, the Q-
earning approaches, i.e., off-policy learning with function approximation and bootstrapping,
re known to diverge in certain scenarios. This divergence occurs more often when the Q-
alue is approximated using a non-linear function approximator such as a deep neural network.
owever, the root causes are still unknown [18,52–54] . 

.2. Quantum reinforcement learning 

Over the past few years, there have been several attempts to improve the performance
f reinforcement learning algorithms via possible ‘quantum advantage’ using quantum com-
uting. Like in the classical realm, no one method has emerged as the superior approach
n performance or generality. The first quantum reinforcement learning (QRL) algorithm (to
ur knowledge) has been proposed by Dong et al. [55] , which uses a modified version of
rover’s algorithm [23] to learn a state-value function. As in the classical reinforcement learn-

ng family, whose members vary in algorithm and methodology, various algorithms for QRL
ave been studied [56–59] . The VQ-DQN algorithm was originally proposed by Chen et al.
30] where the authors have used variational quantum circuits to solve two different discrete
nvironments, namely, ‘cognitive radio’ and ‘frozen lake’. Both these environments are dis-
rete environments where the state space is finite. The next study on VQ-DQN algorithm was
onducted by Lockwood and Si [31] , where the authors used a VQC to solve both continuous
nd discrete environments. Another study that analyses the learning performance and behav-
or of VQ-DQN was conducted by Skolik et al. [43] . Here the authors explore the effects of
aving a VQC as a Q-value approximator along with techniques like data re-uploading and
 hybrid quantum-classical model. 
5 
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Fig. 1. Results from Ref. [31] , reproduced using the published source code. The light blue lines indicate the total 
reward collected in an episode, using the greedy policy for each agent. The light red lines represent a moving 
average of the (up to) 20 previous episode returns. Results are averaged over five experiments, which is represented 
by the strong red and strong blue lines. The experiments are based on the CartPole-v1 environment, where the 
maximum achievable return value is 500. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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. Reproduction study 

To gauge the learning capability of VQ-DQN, we first reproduce the results published by
ockwood and Si [31] on the CartPole-v1 task (cf. Section 2.3 ). We train five VQ-DQN
gents and evaluate their performance during training using the source code 3 published by
he authors. The results are visualised in Fig. 1 . The blue line indicates episode returns.
he red line represents a moving average of the (up to) 20 previous returns. 4 While our
easurements reproduce the computational outcome of the published results, we identify two

otable methodological aspects that require careful consideration and interpretation: 
Training frequency —A step of mini-batch gradient descent is carried out only once per

pisode (namely, after its termination). This differs substantially not only from the original
QN algorithm, but also from the pseudo-code provided by Lockwood and Si [31] , were

raining is executed in regular intervals after a set number of trajectories has been sampled
y the agent. We are not aware of other approaches in the literature that pursue or analyse
his approach, and conjecture that it might have a detrimental effect on learning, since the
istribution of transitions in the replay buffer grows faster than the amount of data that the
gent perceives. The adaptation also complicates the comparison between independent runs
f the algorithm, depending on the length of the experienced episodes. 
3 Available on GitHub (link in PDF). 
4 Note that these statistics have been measured with the original source code, without modification. Superficial 
ifferences in visual appearance are caused by the plot aesthetic settings. 
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Fig. 2. Standard VQC architecture. 
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Performance evaluation —Measuring agent performance in terms of a moving average
ver previous runs is not a good indicator for learning success: Averaged returns have been
enerated by different policies, that is, trained on increasing numbers of transitions at differ-
nt stages of ε-decay. Further, the averaging approach shadows any underlying instabilities as
ndicated by the raw episode returns: In all five runs, the blue line oscillates strongly between
ow and high return values, indicating that the underlying policy network/circuit fails to con-
erge towards an optimal policy. Note that in complex environments, DQN convergence can
e non-monotonic in terms of measured returns (see, e.g., Ref. [32] ). Observing oscillations
f this magnitude on CartPole (which can be learnt in an approximately monotonic fashion
y a simple neural network with DQN, refer to 7 ) does not give a promising outlook on
Q-DQN’s capability to generalise to more challenging tasks. 
Besides, we would like to explicitly point out that the experiment is based on

artPole-v1 , where return values of up to 500 can be achieved. In contrast, returns in
artPole-v0 cannot exceed 200, which is important to take into account when judging
loseness to optimality of particular approaches, especially when the visual display of episode
eturn time series uses clipped axes. 

One other study which overcame these instabilities using a VQ-DQN algorithm to solve the
artpole environment is conducted by Skolik et al. [43] . Here the authors have used slightly
ifferent gate connectivity in their VQC compared to Lockwood and Si [31] . Apart from the
hange in VQC architecture, the authors also perform a gradient descent optimization step
fter every 30 sampling steps. They also present their total reward attained in each episode
veraged over ten different agents rather than presenting a moving average. 

Skolik et al. [43] have studied and tested various combinations of pure and quantum-
lassical hybrid VQC architectures in their work. However, the pure VQC model did exhibit
he same instabilities exhibited by Lockwood and Si’s model. Skolik et al. [43] used a hybrid
QC model where the inputs to and outputs from the VQC were multiplied with classical
eights’ along with the data re-uploading strategy [60] to overcome these instabilities. Data

e-uploading is a strategy where the encoding circuit is reintroduced at multiple instances
n a VQC. The standard encoding method follows a traditional neural network setup where
he input to the network generally comes before the variational layers as shown in Fig. 2 .
owever, in a gate-based VQC, both the input and the variational parameters are fed into

he circuit as rotational angles. Therefore, there is no theoretical limitation on the maximum
umber of gates nor the number of repetitions of input features that can be fed into the circuit.
ence, the encoding circuit can be placed before every variational layer as shown in Fig. 3 .
Reintroducing the encoding circuit increases the expressivity of the model [61] . It was

hown by Schuld et al. [61] that the functions represented by VQCs are Fourier sums. In
7 
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Fig. 3. VQC architecture with data re-uploading strategy. 
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hich, the variational layers determine the amplitudes of the Fourier sum and the encod-
ng layer fixes the frequency spectrum. Hence, the more encoding layers present via data
e-uploading, the larger the frequency spectrum represented by the VQC the higher the ex-
ressivity of the represented function class can be. Even though the hybrid model exhibited
 relatively stable learning behavior, the impact of classical weights on the overall training
rocess is not distinguished nor studied. The results of our replication attempt of the work by
kolik et al. 5 are shown in Fig. 4 . These experiments were conducted based on the parameters
iven in the Appendix section of Ref. [43] . The measurement results shown in Fig. 4 confirm
he published results. 

. Experiments 

Previous implementations of the VQ-DQN approach show various methodological is-
ues [31] that we have discussed in detail in the previous section. For having a stable
nd uniform VQ-DQN framework that coincides with the classical RL practices and to
rovide a replication of existing results on top of mere reproduction, we re-implement the
riginal deep Q-learning algorithm as described in [32,33] in Tensorflow [36] /Tensorflow-
uantum [35] (TFQ). In contrast to the previous implementations, which use TFQ too, our

e-implementation allows to conveniently integrate extensions and has a higher degree of
onfigurability of hyperparameters. Furthermore we included a flexible validation mechanism,
hich is used to evaluate the performance of a current policy. Since in previous implemen-

ations a fair comparison between different studies was difficult due to several meanings of
eturn values (e.g. averaging over past episodes as in Ref. [31] vs. taking a single episodes
eturn value as in Ref. [43] ), we designed our validation mechanism to allow a uniform
omparison of different classical and quantum RL approaches. ( Section 5.1 discusses imple-
entation details). This section covers experiments, which were conducted using the quantum

imulators of the TFQ framework. In addition to our TFQ implementation, we also ported the
ode to the Qiskit [38] framework in order to run experiments on the IBM Quantum [62] de-
ices, which is described in detail in Section 6 . 

Using our TFQ-implementation, we run a set of experiments to systematically evaluate the
bserved instabilities. Throughout all our experiments, we used the CartPole-v0 environment
o ensure comparability with [43] and [31] , and also to keep computational cost at bay. Sec-
ion 5.2 investigates the effects of the chosen input encoding and Q-value extraction method
n performance and stability. Using these insights, we run an extensive cross-validation study
5 The associated source code published by the authors of [43] is available on GitHub (link in PDF). Skolik et al. 
lso provide a simplified implementation as a tutorial in the TFQ documentation (link in PDF). Note that we were 
ot aware of these implementations during our reproduction process. 
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Fig. 4. Replication attempt of the results from Skolik et al. [43] . Here we replicated the hybrid quantum-classical 
model with data re-uploading and the pure quantum model with data re-uploading as proposed by Skolik et al. [43] . 
The experiments are based on the CartPole-v0 environment, where the maximum achievable return value is 
200. 
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escribed in Section 5.3 . Additionally we have investigated properties of the VQC parame-
er space as a potential cause for instabilities; as the experiments conducted based on this
peculation did not lead to a justifiable root cause, we focus only on the experiments on
he input-encoding, Q-value extraction methods, and cross-validation mentioned above in this
aper. However, we have included a brief discussion in Appendix A for reference. 

.1. Methodology 

To describe our methodology, let us first set the employed conventions: By sampling steps ,
e refer to the transitions sampled from the ε-greedy behavior policy. By training step , we
nderstand one iteration of gradient descent. Words in monospaced font indicate configurable
arameters of the algorithms. 

To ensure comparability between our different experimental setups, and especially between
revious research and our dedicated experiments, we choose sampling steps as fundamental
nit of training time. Each experiment is run for 50000 sampling steps. We deliberately
se a long time horizon to capture any phenomena that may materialise late in the learn-
ng process caused by slow convergence, but retain the possibility to terminate successful
9 
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uns prematurely, as described in detail below. Initially, the replay memory is pre-filled with
rain_after = 1000 sampling steps, corresponding to at least five full episodes, using a
niform random policy with ε = 1 . 

A sampling step does not necessarily entail a training step; instead, a training step is
arried out every train_every sampling steps. As backpropagation [63] on quantum de-
ices is computationally intensive due to gradients being estimated via the parameter-shift
ule [64,65] , we introduced this parameter as a means to keep the number of training steps
er episode feasible. We note, however, that in this paper, we only report validation results on
uantum hardware, while the agent has been trained in simulation. Similarly, we update the
arget network parameters to equal the policy network parameters every update_every sam-
ling steps. After the initial warm-up phase, we decay ε linearly over epsilon_duration
ampling steps in total, starting at a value of epsilon_start = 1 , and ending at a value of
psilon_end = 0.01 . Keeping ε > 0 ensures continued exploration with a near-greedy policy.

Since performance on the ε-greedy policy is not indicative of learnt performance when ε

s large [66] , we estimate the expected return achieved by the current greedy policy in regular
ntervals. Specifically, we measure return over a single episode on a copy of the training
nvironment every validate_every = 100 sampling steps (note that the parameter does not
nfluence the actual training process, and is just used for performance monitoring). If the
verage validation return over the past consecutive 25 validation steps reaches 196 (recall
hat the maximum return is 200, and that we need to allow for some jitter), we regard the
ask as solved and terminate training early. While this differs from the official CartPole-v0
enchmark (see https:// gym.openai.com/ envs/ CartPole-v0/ ) that necessitates a return of at least
95 sustained over 100 episodes, we find that training is very unlikely to diverge past this
oint, given that ε has decayed sufficiently. 6 

.2. Encoding and extraction methods 

After experimentally verifying the correctness of our implementation, we replace the Q-
etwork by a VQC using the circuit architectures proposed in Refs. [31,43] . The need for
apping input parameters onto quantum states has already been discussed in Section 2.3.2 ;
e consider the following approaches: 

1. Continuous (C) : continuous encoding applied to all input components. 
2. Scaled & Continuous (SC) : scaled encoding applied to finite-domain input components,

continuous encoding otherwise. 
3. Scaled & Directional (SD) : scaled encoding applied to finite-domain input components,

directional encoding otherwise. 

Along with the encoding strategies, we also investigate the impact of different Q-value
xtraction methods on agent performance. This is necessary due to the mismatch between
QC outputs and Q-values. In particular, we distinguish between: 
6 We provide a set of results on the accompanying website that have enjoyed traversing the maximum number of 
pisodes, and none of the results shows difference in convergence behaviour depending on the convergence criterion 
sed. However, for experiments on the experimental IBM Quantum device, a reduced number of episodes is crucial 
o ensure practical feasibility of the calculations. 

10 
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Fig. 5. Validation returns for using the VQC-layer structure as in Ref. [31] (top) and Ref. [43] (bottom) with different 
input encoding strategies. The columns correspond to the extraction strategy (ltr. Global Scaling (GS), Global Scaling 
with Quantum Pooling (GSP), Local Scaling (LS), Ref. Section 5.2 ). Results are averaged over five experiments each. 
These experiments are based on the CartPole-v0 environment, where the maximum achievable return value is 
200. 

 

 

5
 

m  

f  

r  

v  

o
 

t  

p  

p  

s
 

w  

s  

d
 

f  
1. Local Scaling : each output is scaled by a dedicated trainable weight as described in
Ref. [43] . 

2. Global Scaling (GS) : all outputs are scaled by a single trainable weight. 
3. Global Scaling with Quantum Pooling (GSP) : quantum pooling as described in

Ref. [31] , followed by global scaling. 

.2.1. Initial experiment 
We conducted experiments for each combination of input encoding, Q-value extraction

ethod and circuit architecture, totalling in 18 runs. To this end, we adapted hyperparameters
rom Ref. [43] to our slightly modified algorithm described in Section 5.1 (without data
e-uploading). VQC weights are initialised to zero to avoid barren plateaus [67] , i.e. the
anishing gradient problem as suggested in Ref. [68] and classical weights are initialised to
ne. 

Results are shown in Fig. 5 . As is apparent, instabilities occur in every run and are not
ied to a specific encoding-/extraction setting. Nevertheless, some models only achieve com-
aratively low returns on average: In particular, runs involving directional encoding tend to
erform sub-par, which we attribute to the high information-loss incurred by the encoding
cheme. Directional encoding is therefore not considered in further experiments. 

To minimize the number of classical parameters, we focus on global scaling (with and
ithout pooling) in further experiments. While local scaling has not performed worse or less

table, the additional classical parameters increase model capacity, and might therefore shadow
eficiencies on the quantum parts. 

As described by Mnih et al. [40] , Q-Learning is known to be instable, when a nonlinear
unction approximator, such as a classical neural network or a VQ-DQN, is used to rep-
11 
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Table 1 
Hyperparameter settings for cross-validation. 

Hyperparameter Description Default value 

Fixed parameters throughout cross validation runs 
num_steps #sampling steps 50000 
train_after #sampling steps before first training step 1000 
train_every #sampling steps between training steps 10 
update_every_start initial #sampling steps between target network updates 30 
update_every_end final #sampling steps between target network updates 500 
update_every_duration #sampling steps for update_every increase 35000 
replay_capacity max. #transitions in replay buffer 50000 
optimizer Loss-function optimizer Adam [74] 
batch_size batch size for gradient descent 32 
loss TD error loss function L _ 2
epsilon_start initial value for ε decay 1.0 
epsilon_end final value for ε decay 0.01 
validate_every #sampling steps between validation runs 100 
eta_end final value for learning rate η 0. 01 ∗ eta_start 

Hyperparameters subject to cross validation 
eta_start initial value for learning rate η {0.001, 0.01, 0.1} 
eta_duration #training steps for learning rate decay {2000, 4000} 
epsilon_duration #sampling steps for ε decay {10000, 20000, 30000} 
gamma discount factor γ {0.99, 0.999} 
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esent the state-action value function. Our implementation already incorporates mechanisms
uggested by Mnih et al. to support convergence in Q-Learning. However, these mechanisms
o not guarantee a stable behaviour and we can not rule out that the instabilities in VQ-DQN
re caused by classical algorithmic constraints. In Section 7 we compare the VQ-DQN to a
lassical neural network using the same algorithm. Our results support the hypothesis that
he reason for instabilities could be classical. Therefore, in the next subsection, we study the
ffect of classical hyperparameters on the training process of VQ-DQN. 

.3. Cross-Validation 

As instabilities persist throughout our experiments, we turn to hyperparameters as a source
f instabilities. To this end, we re-utilize the above setting (C, SC/GS, GSP) with hyperparam-
ters from Ref. [43] as a starting point. Following recommendations [69–72] from classical
upervised learning, we add a linear decay to the learning rate η. In particular, we decrease

over a period of eta_duration training steps from eta_start towards a target value
f eta_end = 0.01 ∗eta_start . Additionally, we progressively increase the update_every
arameters as learning progresses. This choice is motivated by the observation that the delta
etween target and policy network decreases as the agent becomes more proficient on the
ask. Finally, to optimize resource utilization and minimize training time, we increase the
atch size from 16 to 32, since this does not have a major impact on the agent’s performance
73] . 

We cross-validate over the following hyper-parameter choices: eta_start (i.e., the ini-
ial learning rate) ∈ { 10 

−3 , 10 

−2 , 10 

−1 } , eta_duration (learning rate decay duration) ∈
 2000, 4000} , epsilon_duration ∈ { 10000, 20000, 30000} , gamma ∈ { 0. 99 , 0. 999 } . The re-
aining parameters have been kept fixed over all experiments and are listed in Table 1 .
12 
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Fig. 6. Validation returns for our best-performing hyperparameter constellations in the baseline configurations. The 
figure considers the results for the VQC architecture described in Ref. [31] (left) and Ref. [43] (right). Columns 
correspond to the extraction method (ltr. Global Scaling (GS), Global Scaling with Quantum Pooling (GSP), Local 
Scaling (LS)), rows correspond to the input encoding strategy (Continuous (C), Scaled & Continuous (SC), see 
Section 5.2 ). The experiments are based on the CartPole-v0 environment, where the maximum achievable 
return value is 200. 

Table 2 
Hyperparameters cross-validation results. The table provides values for eta_start ( ηs ), eta_duration ( ηd ), 
epsilon_duration ( εs ), and gamma ( γ ). Encodings C, SC, GS, and GSP as defined in Section 5.2 . 

Architecture Baseline Baseline + data re-uploading 

ηs ηd εd γ ηs ηd εd γ

[31] /C/GSP 0.01 2000 20000 0.99 0.01 2000 30000 0.99 
[31] /C/GS 0.001 4000 20000 0.99 0.01 2000 30000 0.999 
[31] /SC/GSP 0.01 2000 20000 0.99 0.1 2000 20000 0.999 
[31] /SC/GS 0.01 4000 30000 0.99 0.01 2000 30000 0.99 
[43] /C/GSP - - - - 0.01 2000 30000 0.999 
[43] /C/GS - - - - 0.01 2000 10000 0.99 
[43] /SC/GSP 0.01 2000 10000 0.999 0.01 2000 10000 0.99 
[43] /SC/GS 0.01 4000 30000 0.99 0.01 2000 10000 0.99 
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he following subsections describe our results obtained on the baseline setting (without data
e-uploading), and a modified variant with data re-uploading, respectively. 

.3.1. Baseline 
Results for the baseline case are depicted in Fig. 6 and Table 2 . We only present a selection

f the best-performing hyperparameter constellations due to space constraints, but provide
he full set of results on the accompanying website. As evident from the figure, almost
very model was able to achieve stable optimal performance (according to our early-stopping
riterion). Generally, the SC encoding tends to convergence faster as compared to models with
ontinuous encoding; in the best case (Skolik et al./SC/GSP), optimal performance is reached
fter a mere 97 validation steps. This shows that VQ-DQN is in fact capable of learning a
table optimal policy, albeit hyperparameter tuning is a sensitive influence factor. 
13 
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Fig. 7. Validation returns for our best-performing hyperparameter constellations in the baseline configurations with 
data re-uploading. The figure considers the results for the VQC architecture described in Ref. [31] (left) and 
Ref. [43] (right). Columns correspond to the extraction method (ltr. Global Scaling (GS), Global Scaling with Quan- 
tum Pooling (GSP), Local Scaling (LS)), rows correspond to the input encoding strategy (Continuous (C), Scaled 
& Continuous (SC), see Section 5.2 ). The experiments are based on the CartPole-v0 environment, where the 
maximum achievable return value is 200. 
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.3.2. Baseline with data re-uploading 

From Fig. 6 , it is evident that the performance of the VQ-DQN algorithm also suffers due
o the choice of encoding strategy used along with the bad choice of hyperparameters. For
xample, the agent with the continuous encoding format does not learn an optimal policy
n many cases. Here to increase the expressivity of the model, we can use techniques such
s data re-uploading [43,60] . The results for the baseline case with data re-uploading are
epicted in Fig. 7 and Table 2 . As in Section 5.3.1 , We only present a selection of the best-
erforming hyperparameter constellations due to space constraints. From the results shown in
ig. 7 , we can conclude that the data re-uploading strategy does not significantly increase the
Q-DQN algorithm’s performance. Though it increases the expressive power of the model,
hich in turn allows the agent to learn optimal behavior in some cases (for example, agent
ith Continuous (C) encoding), the performance change is negligible or even negative in
ost cases. Moreover, the data re-uploading strategy increases the gate count in the VQC

rchitecture, and this increase in gate count is not ideal for the NISQ devices due to noise. 

.4. Discussion on instabilities in VQ-DQN 

In our approach of VQ-DQNs, we train a VQC with a classical optimization loop. Such a
etting is known to be prone to the barren plateau effect [67] , which describes a problem of
anishing gradients that causes the inability to converge to an optimal return value. However,
arren plateaus only occur in random VQCs. To counter randomness in the quantum circuits,
e initialised all VQC parameters systematically to zeros. Since the VQCs in our experiments

re neither very wide (4 Qubits), nor deep (5 “Layers”), randomness induced by gradient-
ased optimization is also limited. Therefore we rule out barren plateaus as the source of
nstabilities. 

With the possibility of the barren plateau avoided, one can say that every agent with its
nique architecture combinations and a reasonable encoding scheme is capable of learning the
14 
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ptimal policy to solve the cart pole environment. This can be seen from the results shown in
ections 5.3.1 and 5.3.2 . The architecture combinations which did not learn an optimal policy
uring experiments conducted by different authors (Ref. [43] and [31] ) showed a tendency to
earn the optimal policy during our experiments. The reason why these agents show such a
endency is the selection of the right set of classical hyperparameters. The agents learned the
ptimal policy only for a few sets of classical hyperparameters during our hyperparameters
earch. This made us conclude that the VQC-DQN algorithms are highly sensitive to classical
yperparameters. 

The results from Sections 5.3.1 and 5.3.2 elucidate that the data re-uploading strategy does
ot always outperform its corresponding architecture without data re-uploading in sampling
fficiency. One possible reason for this could be that the optimal hyperparameter set required
or these architectures might fall outside the search space used in the experiments. One
ther possible reason for this underperformance can be inferred from the work of Schuld
t al. [61] . Schuld et al. show that the function represented by a VQC is a Fourier sum. In
articular, the variational layers determine the amplitudes and the encoding layers determine
he frequency spectrum. As shown in ref [75] , when it comes to data re-uploading strategy,
he variational layers between two encoding layers might not be expressive enough which
educes the overall expressivity of the VQC. The expressivity can be increased by increasing
he number of variational layers. However, this leads to an architectural change which is out
f scope for this study. 

. Validation on IBM quantum device 

Results from Sections 5.3.1 and 5.3.2 illustrate that a VQC can learn a stable policy to
olve the CartPole-v0 environment using the DQN algorithm if the right set of hyperpa-
ameters are used. In order to gauge the detrimental influence of device noise on an agent
rained using an ideal simulator in solving the environment, we tested the trained model in
n actual IBM quantum device [62] . As a first step, we had to port the VQ-DQN algorithm
rom the Tensorflow/TFQ API [35,36] to the Pytorch/Qiskit API [37,38] as the IBM quantum
evices use the Qiskit API [37] as their primary programming library. There is one signif-
cant difference between the Qiskit API [37] and the TFQ API [35] to be noted here. The
FQ [35] API calculates the expectation value analytically, whereas the Qiskit API [37] es-

imates the expectation value by simulating the ideal quantum device and measuring its
utcomes. Likewise, the expectation values are estimated in the IBM quantum device [62] by
easuring the outcome multiple times. Further, we trained the best-performing model with-

ut data re-uploading from Section 5.3.1 using Qiskit qasm_simulator [37] and verified the
orrectness of our implementation in comparison to the results from Section 5.3.1 . We chose
 model without data re-uploading due to the fact that the quantum devices available right
ow are prone to noise. Hence adding more gates via data re-uploading in NISQ devices
eems counter-productive. Once the correctness was verified, we uploaded the weights trained
sing the qasm_simulator to the IBM Quantum (ibmq_ehningen) device and validated the
earned policy. The results of these validation runs are shown in Fig. 8 . 

Though the agents trained in the ideal simulator learned an optimal policy to solve the
artpole-v0 environment, testing the trained agent in the ibmq_ehningen device did not
eproduce the optimal behavior. This degradation in behavior is due to the noise present in
he IBM Quantum device. An agent trained in the IBM Quantum device from scratch might
educe the effect of noise and learn a policy close to the optimal policy. Additionally, different
15 
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Fig. 8. Results of our validation run on ibmq_ehningen [62] . The experiments are based on the 
CartPole-v0 environment, where the maximum achievable return value is 200. 
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ypes of error mitigation techniques can be employed to reduce the effects of noise at the cost
f additional overhead. However, when we attempted to train the agent from scratch on the
BM quantum device, the training turned out to be infeasible due to the following practical
ssues: 

1. We observed waiting times in the queue to start a job execution (referred to as fair-share
queue for jobs in IBM Quantum systems) in the cloud-based IBM Quantum device that
were typically two orders of magnitude (or more) larger than the actual job execution
time. As (roughly speaking) a single action selection corresponds to a single job in
the fair share queue, even completion of a single episode takes a substantial amount of
time. 

2. The overall time it takes to achieve low-variance estimators of expectation values can
become quite large due to the large number of shots (i.e., measurement samples) taken
for a single circuit instance. 

Here, the first hindrance can be overcome in time as the availability of quantum devices
nd resources is expected to increase in the near future. As improvements in hardware and
rchestration of quantum and classical computational resources progress, we might also be
itness to an increased number of circuit layer operations per second (CLOPS) [76] . When
e started the training process in the ibmq_ehningen device, the job execution time for

ach action selection took between 15 to 30 s, and each training step took around 3 min
as the training step performs gradient decent via parameter-shift rule). These long execution
nd waiting times make the training process in real quantum devices impractical for training
lgorithms like VQ-DQN, where the agent has to interact with the environment sequentially.

. Comparison to classical neural network 

A popular “quantum advantage” claimed by a good fraction of the literature in QRL is
hat the VQC has better state-action pair representation, samples efficiently, and learns an
16 
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Fig. 9. Comparison between VQ-DQN and classical NN averaged over 30 different agents. The experiments are 
based on the CartPole-v0 environment, where the maximum achievable return value is 200. 
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ptimal policy faster than the classical neural network [30,31,43] . Hence to compare the
ample efficiency of a VQ-DQN-agent trained on an ideal simulator against a classical neural
etwork, we trained a simple fully-connected network with one hidden layer to solve the
artpole-v0 environment. To ensure a fair comparison, we restricted the total number of
arameters of the network to 58, and did cross-validation on the same set of hyperparameters
s explained in Section 5.3 . 

The results shown in Fig. 9 indicate that initially, the VQC seems to learn faster than
he neural network. For a more rigorous discussion we resort to Ref. [77] , where sample
fficiency of an algorithm is defined for an online learning setting as the number of time
teps from which on an agent trained by the algorithm perceives an average reward exceeding
 certain threshold V thresh with high probability. 

For a weaker statement adapted to a numerical treatment, we propose to use significance
esting under the null hypothesis of mean reward being smaller than V thresh . Thus, we define
ample efficiency as the number of time steps from which on the null hypothesis is rejected
ith respect to the given threshold. As statistical test we propose to use a one-sample t-test

78,79] , in particular its one-sided version as we compare the performance of a particular
lgorithm against a given threshold. Thus, we perform sufficiently many independent runs of
ach algorithm and fix the significance level at α = 0. 05 . 
17 
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With respect to this metric the variational quantum circuit indeed crosses V thresh = 120
aster than the classical network; however, for larger threshold values, no definite statement
an be made. 

. Conclusion 

We have systematically studied the performance of quantum-assisted reinforcement learn-
ng schemes on both simulators and physical quantum computers. We find—not quite
nexpected—that at the current, early state of technological development, quantum computers
o not bring any measurable advantage in this scenario. We even find that simulated quantum
ystems do not bring clear advantages over classical approaches. 

Nonetheless, a number of constructive insights can be drawn from our experiments. Fol-
owing previous work, we have trained models on classical simulators and only performed
he execution step on quantum hardware. This approach, albeit practically necessitated by
urrent-day hardware, creates a mis-match in terms of handling noise: For future work, we
ecommend including noise in the training process, especially since Ref. [80] suggests for
mall-scale systems that existing noise models lead to a good match between simulation and
ardware, and therefore provide a more faithful basis for comparing between algorithmic
erformance on simulated and physical hardware. 

Most importantly, our results do not corroborate observations made when reinforcement
earning on quantum computers was first introduced into the literature in Ref. [30] : While
he authors in this approach upload weights determined by classical training onto a quantum
achine as we do in this paper, they find that executing the model does not vary much

etween simulation and NISQ machine. We, on the contrary, observe a total mismatch in
erformance. We expect the most probable explanation for this discrepancy to lie in (a) the
ize of the machine (five versus 27 qbits) and the problem of choice (cognitive-radio versus
artpole; a random policy as would be caused by growing amounts of noise from NISQ
evices is obviously better suited to the former than the latter). 

We encounter additional hindrances towards the practical application of quantum comput-
rs: Waiting time on queues in a shared, cloud-like environment is a major practical issue,
hich will however be alleviated with the broader availability of quantum chips. Nonetheless,

he temporal contributions of sequential elements of algorithms to the overall computation time
ould also occur in a non-shared setting and do substantially increase wall-time run-times,
hich is an obvious impediment to practical utility. 
As long as noise and imperfections are unavoidable, we find that adapting algorithms and

pproaches to account for these issues is a major design challenge for quantum algorithms.
ne possible approach would be to equip simulated QPU designs with appropriate, yet tunable

nd physically realistic noise behaviour. By seeking optimal models and parameters under
hese unavoidable constraints, an “ideal” noise model can be identified, and future QPUs be
uilt such that design trade-off decisions are taken so that the resulting hardware closely
imics the identified noise and imperfection behaviour. In other words, we hypothesise that

n the space of hardware design decisions, and assuming that hardware imperfections impact
ifferent computations in a different way, this opens a degree of freedom that can be leveraged
o design custom algorithmic-specific hardware. 
18 
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ppendix A. Reparameterization 

As part of our initial investigation into potential sources of divergent behavior, we analysed
odel weight distributions over time. Here, we noticed that in some runs, the magnitudes of

he learned VQC weights increase indefinitely over time. This behavior is intriguing, consid-
ring that the respective parameters control qubit rotations (in X-, Y- or Z-basis) in radians,
nd therefore naturally “wrap” at 2π (in the sense that a parameter θ and θ + 2π specify
he same circuit). The periodicity in parameter space translates to a periodicity in the loss
unction. This can intuitively be thought of as “copies” of the loss landscape at 2π increments
long the respective dimensions. In consequence, circuit weights growing beyond 2π imply
hat an adjacent copy of the optimization landscape is visited and a potential minimizing
alue along this dimension has been overshot. 

To rule out that this phenomenon impedes learning, we modify the quantum circuit by
quashing the (unbounded) VQC parameters θ to the range [0; 2π ] using the transformation
f (θ ) = 2π · σ (θ ) (where σ is the well-known sigmoid function). This effectively ensures that
ny given set of parameter values uniquely specifies the qubit transformation enacted by the
ircuit, while being optimizable by backpropagation. 

Unfortunately, all of our experiments involving reparameterizations did not yield better
erformance or further insights. We take this as evidence that periodicities are, after all, not
he root cause of instabilities in VQ-DQN. 
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