Socio-Technical Distillation

From Micro-Level Responsibilities to Macro-Level
Architecture Views

Pia Eichinger
Matriculation Number: 3267895
Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science (M.Sc.)

OSTBAYERISCHE

‘ ’ | |—| TECHNISCHE HOCHSCHULE

REGENSBURG

Master Thesis

Faculty of Computer Science and Mathematics
Laboratory for Digitalisation

Date of Submission: September 30th, 2022
Supervisor: Prof. Dr.rer. nat. Wolfgang Mauerer
Co-Advisor: Dr.-Ing. Ralf Ramsauer

Abstract

The development of large software systems requires thousands of individuals to collab-
orate. This necessitates a logical decomposition of the system into smaller, manageable
pieces, augmented by clearly defined ways of appraising and admitting modifications to the
code base. While software architectures and integration processes are established means,
neither can be automatically inferred from fundamental technical artefacts, such as source
code. Rather, they require a-priori human involvement, judgement, and abstraction. Yet
commonly, maintaining the formal description of architectures and process specifications is
not a primary concern.

I show that often, open-source projects already contain well-tended micro-level informa-
tion on code responsibility, and therefore the required human knowledge. In this work, I
automatically derive macro-level views of software architectures, enriched with semantically
understandable component identifiers without direct human involvement.

In this work, I show how to visually track the temporal evolution of the derived macro-
level architectural views. I argue that my results form a basis for quantitatively judging
quality properties of projects. This is exemplified by applying my methodology to a specific
use case, where I assess component viability for safety-critical software and other semi-formal
certifications.

Finally, I evaluate my methodology using a carefully crafted mixed-method approach,
comprising statistical modelling and analysis, expert-based assessment of results, and tar-
geted interviews with key developers.

Zusammenfassung

Die Entwicklung grofier Softwaresysteme benétigt die Kooperation von tausenden indivi-
duellen Entwicklern. Dies bedarf einer logischen Zersetzung des Systems in kleinere, hand-
habbare Teile, erweitert durch klar definierte Wege, um Modifikationen an Code zu bemessen
und zuzulassen. Wahrend Softwarearchitekturen und Integrationsprozesse etablierte Mittel
sind, kann keins von beiden automatisch aus technischen Artefakten wie Source Code er-
schlossen werden. Stattdessen benotigen sie a-priori menschliche Involvierung, Ansicht und
Abstraktion. Jedoch ist die Instandhaltung formaler Beschreibungen von Architekturen und
Prozessspezifikationen oft kein priméres Anliegen.

Ich zeige, dass open-source Projekte héufig bereits gut gepflegte micro-level Informatio-
nen iiber Code-Verantwortlichkeiten besitzen und somit also das vorausgesetzte menschliche
Wissen. In dieser Arbeit leite ich automatisch macro-level-Sichten auf Softwarearchitekturen
her, bereichert mit semantisch verstdndlichen Komponenten-Identifikationen ohne direkte
menschliche Mitwirkung.

Im Rahmen dieser Arbeit zeige ich, wie man die zeitliche Entwicklung der abgeleiteten
macro-level-Sichten auf Architekturen verfolgen kann. Ich argumentiere, dass meine Resul-
tate eine Basis fiir quantitative Bewertung von Projektqualititseigenschaften formen. Dies
veranschauliche ich durch Anwenden meiner Methodik auf einen spezifischen Anwendungs-
fall, in dem ich Komponentenrealisierbarkeit fiir sicherheitskritische Software und andere
semi-formale Zertifizierungen beurteile.

Letzendlich evaluiere ich die vorgestellte Methodik mithilfe einer sorgfiltig gefertigten
und gemischten Validierungsmethode, die sich aus statistischer Modellierung und Analyse,
expertenbasierter Resultatevaluierung und gezielten Befragungen mit zentralen Entwicklern
zusammensetzt.

Contents

1.

2.

Introduction and Contributions
Related Work

Mathematical Background

3.1. Community Detection in Graphs

3.2. Normalised Compression Distance

3.3. Repository Mining

3.4. Cluster Similarity
3.4.1. Purity e
3.4.2. V-Measure e e e

Technical Preliminaries and Definitions

4.1. Open Source Software L L

4.2. Analysed Open Source Projects L
421, LINUX . ..o
4.22. QEMU e
4.23. U-BOOT e
4240 XEN .« .o e e

4.3. The Development Process o
4.3.1. Patch Implementation and Design
4.3.2. Peer Review and Patch Acceptance

4.4. Maintainers Usage L
4.4.1. MAINTAINERS e
4.4.2. The get__maintainer.pl Script

PaStA
5.1. PaStA Related Work
5.2. MAINTAINERS Parsing it

From Micro- to Macro-Level Views

6.1. Analysis Pipeline L

6.2. Micro-Level Views e
6.2.1. Concept e
6.2.2. Validity e

6.3. Network View e e
6.3.1. Concept e
6.3.2. Validity e

6.4. Macro-Level Views e
6.4.1. Concept e
6.4.2. Temporal Evolution

Use Case: Conformance

7.1. Motivation e e e e
7.2. Technical Integration Process
7.3. Notions of Conformance
7.4. Analysis Pipeline

15
15
16

17
17
17
17
18
18
19
20
22
22
23

7.5. Verification: Maintainer Survey

7.5.1. Survey Design
7.5.2. Responses for Case A — macro-level view conforming
7.5.3. Responses for Case B — invalid integration

7.6. Conformance Observations & Evolution: LINUX Overall and LINUX Features
7.7. Project Conformance

Reproduction
8.1. Docker e e e
8.2. Reproduction Package L

Discussion

9.1. Threats to Validity: Internal Validity
9.2. Threats to Validity: External Validity
9.3. Threats to Validity: Data/Construct Validity

10. Conclusion

A.

Appendix

AL LINUX . .o e e e
A2. QEMU . . . e e
A3. U-BOOT e

. References

1. Introduction and Contributions

Large software systems (e.g., the LINUX kernel) comprise millions of lines of code, oftentimes
created by tens of thousands of developers. Code quality rests on several pillars—proper use
of implementation language and tools, an architecture that provides a high-level structure, and
processes for evolution management [4].

Since it is impossible for a single individual to curate the entire software system, code bases
are often portioned into manageable areas of responsibility [16, 76]. In Open-Source Software
(OSS) projects, developers responsible for a particular area are usually called maintainers [32].
As domain experts, they are in charge of reviewing, shepherding and integrating code changes
(i.e., patches) proposed by contributing developers. Maintenance and responsibility strategies
are firmly rooted in OSS development [52, 104, 29]: Code is peer-reviewed and validated by other
knowledgeable individuals, and then integrated by maintainers [4, 76, 31, 32]. Such strategies
are supposed to ensure high code quality and avoid common mistakes up front [4, 1]. Similar
approaches are employed in commercial settings [97]. In particular, system-level components,
which will be subject for analysis in this work, predominantly use mailing lists for developer and
code discussion, even if other projects have started to employ different means [49].

Software undergoes continuous change, with an ever-shifting workforce [9], triggering archi-
tectural drift, away from the initial specifications, which are often not kept in sync with the
factual state of the code base [3, 34, 50, 103]. Likewise, the documented processes usually fail to
faithfully describe the de-facto approach of communities. Often, architecture and processes may
not even be documented in the first place. Although distilling software architectures from the
code base has been intensely studied [62, 58, 6, 7, 94, 91, 57, 5, 40], it remains, in the words of
Bass, Clements and Kazman [13], an “interpretative, interactive, and iterative process [...] that
it is not automatic”.

It is based on both, technical and social aspects. Hall et al. [40] state that, as of 2018, “existing
remodularisation algorithms have sought to produce improved designs automatically, but have
been unable to do so satisfactorily”, and that they “must necessarily involve a degree of input
from an expert”.

Multi-Step Approach. [propose a multi-stepped approach towards distilling macro-level ar-
chitecture views from socio-technical artefacts, as also visualised in the description of my data
analysis pipeline in Figure 1:

@ Methodology: We can learn from existing engineering artefacts that implicitly capture infor-
mation on social aspects, and use these low-level (micro) artefacts to distil a high-level (macro)
architecture view with semantic explainability, in a fully automatic way.

@) Use case: While my methodology is largely generic, I demonstrate its applicability to one
important use case: how to ensure process conformance and architectural cohesion of software
modifications. This is particularly relevant for the composition of safety-critical systems based on
OSS components, as many safety standards take adherence to a-priori defined processes as major
quality criterion, which is however in stark contrast to OSS development that is self-organised
and without means of centrally enforcing process policies. Based on my techniques, I suggest and
evaluate a novel approach that quantitatively measures such conformance in an ex-post setting.
This could open a future bridge between safety-critical development and high-quality open-source
components, because sufficient quantitative evidence for their qualities could then be provided
by my approach. These could be appreciated by safety standards, despite the fact the integrating
a-priori prescriptions into OSS development processes would still remain impossible.

@ Mized-method validation: To validate both the generic methodology and the specific use
case, I perform a carefully designed mixed-method analysis [30, 64], using state-of-the-art sta-

(2)|Use Case'
n 1
@ | Results®
=
=
<

Conformance

Maintainers
Information

Figure 1: Analysis pipeline to implement my approach.) Methodology: Distillation from micro- to
macro-level view. (2) Use case: Conformance analysis. (3) The extensive mixed-methods
validation of my results.

tistical methods, expert-based classification, and maintainer interviews. These validations are
directly appended after the introduction and results from both the methodology and the use
cases.

Areas of responsibility. In software development, social responsibilities for technical artefacts
are captured by a semi-formal, yet machine-readable mapping between code artefacts and develo-
pers, such as MAINTAINERS files. It connects parts of the source tree to areas of responsibility,
the sections or subsystems [25]. In turn, these are assigned to the care of one or more human
maintainers.

Architectural views in the software engineering literature are often based on system compo-
nents [40, 58, 62]. This point of view differs from structures declared in the MAINTAINERS file, as
the latter can provide several thousand areas of responsibility, drastically more than than the tens
of architectural subsystems typically considered for large software systems like the LINUX ker-
nel [59]. While high-level architectural views are based on macro-level subsystems, responsibility
sections provide a micro-level view.

As I show in this work, areas of responsibility can be a basis for deriving information closely
related to architectural decomposition, and can serve to uncover effective reference processes. In
other words, I argue that the macroscopic architecture and process view can be derived form
a microscopic assignment of responsibilities. Given that OSS projects often provide no or only
outdated architectural information [42], this is important to derive notions of processes that
are directly rooted in systems themselves, without having to rely on any externally mandated
specification. As the change history in maintainers specifications shows (see below for a quan-
titative analysis), developers take great care to keep the information up-to-date, which ensures
that derived macro-level views are aligned with changing code bases.

Contributions. In my approach of establishing a methodology, evaluating it on a specific use
case, and submitting both to a mixed-method validation, my contributions are the following:

o Based on structural properties of the micro-level view, as well as social network analysis,
we distil architectural macro-level views. Different from earlier approaches integrating
sociological knowledge, my analysis is fully automated.

e As part of my methodology, I establish a visualisation of the resulting structures which is

interpretable, since all components are meaningfully labelled. I am further able to visually
demonstrate their evolution over time.

e As part of my use case, I trace the flow of patches from their initial conception, via discus-
sion and refinement, to eventual integration, and compare the effective integration paths
with the prescriptions derived from the views.

e As part of my mixed-method validation, I confirm, based on expert knowledge and devel-
oper interviews, that the macro-level architecture view represents a meaningful decompo-
sition of the studied system.

e In validation, I also define measures to quantify the degree of conformity to self-prescribed
integration processes, and study their temporal evolution for the four subject projects
Linux, QEMU, U-BooT, and XEN, characterised in Table 2.

Structure. I first give an overview of related work in in Section 2. I furthermore present all
mathematical concepts and algorithms that my method, my analysis or my validation employs
in Section 3. In Section 4, I explain the technical preliminaries that my work analyses and uses.
The tool PaStA, the central tool for all my analyses, is presented in Section 5. In Section 6, I
explain the micro-level- and macro-level view on software systems, and describe my methodology.
I then present a concrete use case that investigates process conform integration of code changes
in Section 7. Next, I elaborate on the reproducibility of my work and results in Section 8.
The discussion in Section 9 elaborates on possible threats to the validity of the work. Finally,
Section 10 concludes this thesis and gives an outlook on future work.

Reproducibility. The analysis pipeline is available as open-source software on the supplementary
website (link in PDF) and is accompanied by a fully automated reproduction package. This
includes all raw input data used in calculations, a deployment of the analysis software (self-
contained, without dependencies on external components), as well as all post-processing scripts
to evaluate and visualise the data.

Credit. This work, specifically the chapters 2, 4, 6, 7, 9 and 10 all share material with a pre-
printed paper "Socio-Technical Distillation: From Micro-Level Responsibilities to Macro-Level
Architecture Views”, authored by Pia Eichinger, Ralf Ramsauer, Christian Hechtl, Thomas Bock,
Sven Apel, Stefanie Scherzinger and Wolfgang Mauerer.

https://totally-anonymous.github.io/
https://totally-anonymous.github.io/

2. Related Work

Analysing code responsibility registries. The role of a maintainer with a designated area of
responsibility is established in software development, as well as the custom to discuss patches
on mailing lists [76]. Specifically, my work relies on analysing MAINTAINERS files which are
established artefacts in empirical software engineering research, and commonly used to identify
which developers are also maintainers [32, 54, 26]. Further studies observed, among other aspects,
the workload distribution among maintainers [104, 84, 85, 71]. Similar analyses have also been
conducted among practitioners [25]. However, I am not aware of attempts to derive macro-level
architectural views from MAINTAINERS.

A related concept are the Google [66, 97] OWNERS files. At least one code owner must participate
in the code review process, which is a stricter requirement than for MAINTAINERS based
processes.

GitHub further introduced CODEOWNERS files [39] in 2017, which are by now well-adopted.!
Different from MAINTAINERS, sections in CODEOWNERS are not explicitly declared with titles,
but often, projects have the convention of diligently assigning section titles within comments,
de-facto very similar to MAINTAINERS. GitHub has built-in support for CODEOWNERS format,
such as automatically suggesting suitable maintainers for code review.

Identifying subsystems. Software architecture and automated system abstraction is related to
this work, and heavily researched. Consequently, I can only highlight selected seminal works.

Automated solutions for reverse engineering software from source code date as far back as
1993, when Miiller et al. presented (semi-)automated solutions, using graphs and clustering.
They have been intensively studied thereafter [94, 6, 7, 57], a highly prominent example being
the tool Bunch by Mancoridis, Mitchell et al. in 1999 [58, 60].

Though many approaches inspecting the code base (or, in the work of Beyer et al., code chan-
ges [15]) have been implemented over the years, with or without manual domain knowledge input,
it is still a heavily researched topic since current solutions wield unsatisfactory results, as Hall et
al. argue in their work on the SUMO tool [40]. Similar to my approach, Hall et al. recast their
notion of software modularisation as a set partitioning problem. My approach differs insofar
as mine is completely automated and decoupled from code semantic, whereas SUMO requires
corrective feedback from developers.

The need for incorporating social responsibility artefacts is established. In 1999, Bowman et
al. presented a case study on LINUX that showed that understanding large software architec-
tures through social artefacts has potential: "We suggest that all ownership architecture that
documents the relationship between developers and source code is a valuable aid in understand-
ing large software systems” [19]. They discuss that ownership architectures identify experts
for system components, show non-functional dependencies, and provide quality estimates for
components. This information is useful for understanding systems.”

Their work groups developers and maintainers into social communities. In contrast, my work
leverages information of the MAINTAINERS files, which assigns source code artefacts to social
responsibilities, together with informal descriptions of the particular areas. In [9], Ashraf et al.
showed that social communities can significantly change over time. Since my method is fully
automated, and relies on curated input artefacts, it can deal with such changes.

In 2005, Andritsos et al. cites Bowman’s et al. work as having shown the high potential of using
ownership information in fully-automated reverse engineering, but states that its merit is yet to be
evaluated. Rather than using responsibility information, they introduce a hierarchical clustering

I Proliferation of CODEOWNERS reaches over 7.5k OSS GitHub projects at the time of this writing, as observed with
a BigQuery search.

https://gerrit.googlesource.com/plugins/find-owners/+/master/src/main/resources/Documentation/syntax.md
https://github.com/ArchitectingSoftware/Bunch

algorithm of a software system based on information loss for files and its dependencies [5]. As
of 2022, Bowman’s work dates far back, but has (to the best of the my knowledge) not been
applied and verified yet, which makes my method the first to do so.

Common applications of derived abstractions are system comprehension [40], or detecting
violations of coding patterns. For the latter, I refer to the comprehensive book chapter by
Lindig [56]. In contrast, I will introduce a new use case that has not yet been studied in this
context, namely the process conformance in integrating patches into the code base.

Patch analysis. Previous work on patch integration focuses on the speed of integration, or

prediction thereof [48]. Yet in my use case, I will target the correctness of patch integration.
Certain technical aspects of my work defer to the open-source tool PaStA [72, 73], originally

designed to detect semantically similar patches on mailing lists and in revision control systems.

Social-network analysis. To detect structures within graphs, there is a family of algorithms
for Social Network Analysis that arrange multiple disjoint subsets of nodes into cells. Popular
representatives of this family the random walk clustering methods, where the underlying idea
is to randomly “walk” along edges. A random walker will spend considerable time within a
community, due to the higher edge density [33]. Specific implementations (such as [27]) extend
the walktrap algorithm by Pons and Latap [65] to also consider edge weights.

https://github.com/lfd/PaStA

3. Mathematical Background

The research presented in this thesis relies on various mathematical concepts. To provide insight
into the theoretical background of this work, I will explain them in this chapter.

3.1. Community Detection in Graphs

Graphs are one of the most broadly used mathematical concepts to represent things such as
a system or a network. Its simplicity allows for easy modelling and analysing of structures.
To detect certain partitions in a graph, so called communities, there exist various community
detection algorithms. A desired property of this partitioning is a high edge density among its
vertices [33].

Proper and statisfactory community detection is still very hard despite multiple approaches
that were developed and researched over the years [33]. Since the “correct” way of grouping a
graph can be a very opinionated topic, I used various community detection algorithms, namely
Walktrap, Louvain and Infomap, to compare to each other and validate my results. A visual
comparison of the four algorithms can be seen in Figure 2. We will briefly present and explain
all four algorithms.

Walktrap. The first method is called Walktrap. It was developed by Pons and Latapy [65].
The underlying idea is that of a walker, traversing a graph while choosing edges at random,
getting “trapped” within a group of densely connected vertices or spending more time among
them. These groups will then be considered the communities of the graph..

The algorithm by Pons and Latapy uses a walker with random walks of length ¢, becoming
“trapped” in densely connected clusters. The originally proposed method does not consider edge
weights, only the presence or absence of edges, but can be easily extended to do so [65].

As implementation of the algorithm I use cluster_walktrap provided by the igraph pack-
age [27, 17]. This implementation extends the original algorithm to take edge weights into
account. Edges with higher weights are more likely to be chosen for the random walk, mak-
ing vertices with not only dense but also highly weighted edges more likely to be considered a
community.

A single discrete random walk process has a walker “sitting” on a vertex and randomly choosing
the next destination vertex among the directly connected nodes, i.e. among the neighbourhood
of the vertex. A distance between the vertices is later calculated to determine which belong in
the same community.

Infomap. Rosval et al. proposed another community detection algorithm, commonly referred
to as “infomap” [78]. It is designed to reveal community structure in weighted and directed
networks. The network is composed into various modules or communities by compressing a
description of information flow on it.

The key idea to their algorithm is to express the networks data streams as code, which is then
used to efficiently describe a random walker on the network. Finding the community structures
is then equivalent to solving a coding problem.

Fast-Greedy. Clauset et al. developed another commonly used community detection algorithm.
It is designed to wield suitable results for very large networks with acceptable computational
costs and is usually referred to as “Fastgreedy”. It starts with a division of the network based
on subnets of vertices that are already highly connected and iteratively improves the subnets by
adding edges [24].

Walktrap Clustering Louvain Clustering

Figure 2: The same graph with coloured communities detected by four different clustering algorithms.
It uses the Zachary Karate Club network example from igraph [28, 101].

It relies on a quantity of networks commonly referred to as modularity [63], which measures
how easily a graph can be divided into numerous communities.

Louvain. Another community detection algorithm was proposed by Blondel et al. [17]. It uses
modularity optimization to achieve high modularity and therefore a good clustering solution.

3.2. Normalised Compression Distance

Normalised Compression Distance (NCD) is a method to measure similarity between data points
based on a data compressor. It is a non-negative number 0 < r < 1 4 € representing how
different two data points are. The smaller, the more similar. The e accounts for imperfections
in compression techniques, though these are very unlikely [23].

It is known for its general applicability, noise resistance and was shown to be theoretically
optimal. It can, free of parameters, compute distances between arbitrary data vectors.

The NDC approximizes the Normalised Information Distance which relies on the notion of
the Kolmogorov Complexity. The underlying idea for NDC is as follows: by using a compression
algorithm on individual data vectors and their concatenated results, I can measure how distant
they are [11].

3.3. Repository Mining

Code repositories or mailing lists are examples of publically available archives of software projects
and software development. The research field for mining software repositories (MSR) analyses the
data of these data treasure groves to unveil interesting new insights into development processes
or the software systems themselves [43].

In this work, I will make use of a repository mining tool to quantify and analyse projects.

3.4. Cluster Similarity

We have employed multiple algorithms to detect clusters in a network, which I all discussed and
presented before. However, the choice of the “true” algorithm remains subjective. Any clustering
that results from any algorithm can be prone to errors and misclassifications and if the right way
to cluster a network could be decided in an objective manner, it would not remain such a heavily
discussed research topic.

To verify the suitability of my method and show that my results wields stable outputs across
all clustering algorithms, I made use of two different measures to evaluate cluster similarity:
Purity [102] and V-measure [77]. The measures effectively express how well an existing clustering
compares to the “true” clustering, a ground-truth. Since I do not have a ground-truth in my
method, I simply compare the clusterings against each other to view how similar they are.

3.4.1. Purity

Purity measure expresses to which extent clusters contain primarily elements from one single
class. Given a singular cluster S, of size n,., the purity of the cluster is defined as:

1 A
P(S;) = — max(n;)
ny 1
This is the fraction of the overall cluster size to number of the largest singular class in that
cluster. The overall purity measure of a clustering is given by a weighted sum of all cluster
purities as follows:

k
n
Purity = —P(S,)
r=1 n
The larger the purity value, the better the clustering solution. However, it is biased against
large clusters for which it intrinsically produces good results.

3.4.2. V-Measure

Along with purity, entropy is also a commonly used measure for assessing clustering quality.
However, similar as to purity, entropy only measures how only data points of a single class are
assigned to a single cluster. This property is also commonly referred to as homogeneity [77].
While homogeneity is a desireable property of good clustering quality and states how well a
clustering contains only elements of a single class, it does not touch on whether the clustering
also contains all elements of a class, commonly referred to as completeness. V-Measure combines
both completeness and homogeneity by measuring if a clustering solution contains all and only
data points of a single class.

4. Technical Preliminaries and Definitions

In this chapter, I will explain the core technical preliminaries for open-source software and its
development processes. We will also introduce the open-source projects that were analysed in
this context.

4.1. Open Source Software

The definition of Open-Source Software (OSS) oftentimes varies in common literature and is
subject to numerous discussions [36]. In the words of Wang et al., "we do not have a universally
accepted definition of OSS” [96].

According to Fuggetta [36] the obvious meaning for OSS is that the source code is published
and can be viewed by anyone. The author argues that this is a very simple definition and not
the meaning that its advocates intend, which is more in the sense of "free software”. Fuggetta
describes free software as "the users’ freedom to run, copy, distribute, study, change and improve
software.”

Another, more verbose, definition is provided by the Open Source Initiative [90]. They state
that access to the source code is not enough to qualify as OSS. The distribution of OSS has to
comply with the following criteria.

Free Redistribution The software can be sold and given away as a component of aggregated
software. No royalty or fee is required for this type of redistribution.

Source Code The source code must be freely available and in a readable format. Deliberately
obscure source code, which hinders understanding, is not allowed. The distribution must be
allowed in source code as well as compiled form. If the compiled form is distributed for whatever
reason, the obtainment of the source code must be made accessible with little to no extra charge,
for example by downloading the source code from a link.

Derived Works Derived works and modifications must be allowed under the same distribution
terms as the original software.

Integrity of The Author’s Source Code Restriction of the distribution of the modified software
may be allowed only if the distribution of the software with patches, modifying the software at
build time, is allowed.

No Discrimination Against Persons or Groups No single person or group of persons can be
discriminated against for using the software.

No Discrimination Against Fields of Endeavor The software can be used in any field, for
example in businesses or in research.

Distribution of License The restriction of only letting the software be distributed as a part of
particular software distribution. The software itself

License Must Not Restrict Other Software Restrictions on other software distributed along-
side can not be paced.

Table 1: Quantitative characteristics of the subject projects. It compares both the projects’ amount
of maintainers and the total Lines of Code, measured in units of thousand, from start to
end of the analyses’' time window.

ty —tg #Maintainers kLoC
Project to ty to t1
LiNux 11 years 712 1618 14533 32233
QEMU 10 years 32 157 801 3090
U-Boor 8years 38 94 1890 3768
XEN 11 years 28 34 877 886

Licence Must Be Technology-Neutral The provision of the software can not depend on specific
technology.

Software Licenses which comply with these criteria qualify for OSS.

Despite often relying on volunteer contributions, openly developed software has a reputation
for exceptionally high quality and various other benefits, such as:

e Public Code: Since the code of OSS is public, anyone interested can view the code. This
often results in volunteers reviewing, extending and enhancing the code.

e Higher Security: Despite the open accesibility of OSS, it has been proven to be more
secure. This is a result of the volunteering community and experts who are detecting
exploits and contributing fixes to the Software [79)].

o Fewer Costs: The free contributions by volunteering developers lower the overall devel-
opment and long-term maintenance of software [79].

o Higher Reliability: As cited by Raymond: ”Given enough eyeballs, all bugs are shal-
low” [75], meaning that the exposure of code to a large community of reviewers will even-
tually detect all flaws, making them known and opening the door to fixing them.

4.2. Analysed Open Source Projects

I applied my methods to the four open-source subject projects as listed in Table 1, in which I
present their essential characteristics. These analyses start at the point in time for which there
is the first valid revision of a MAINTAINERS file. This allows me to consider around ten years
of historical evolution. Since my use case deals with safety scenarios, I deliberately preferred
analysing a smaller number of projects that have found initial use in safety-critical appliances to
using a larger selection of projects that might never share such strong requirements. Thereby, I
accept a small loss in statistical power. I also chose my subject projects such that they impact
the low-level aspects of systems; the higher up an application is in the software stack, the more
methods to ascertain safe operation become available (e.g., virtualisation, containers, sandboxes,
redundant computation, ..), and the influence of software quality decreases. The projects will
be introduced and briefly explained in the following sections.

4.2.1. Linux

The LINUX Kernel is the largest and most well-known project. It is “a clone of the operating
system Unix, written from scratch by Linus Torvalds with assistance from a loosely-knit team of
hackers across the Net” [2].

10

LINUX is used essentially everywhere, ranging from phone devices to spacecraft on-board soft-
ware, and is widely known for its reliance and security. As an operating system, it is the interface
software between software and hardware, managing things such as peripheral devices, CPU and
memory. It has been developed with Git as the main revision control system since 2005. The
current source code can be found in Linus Torvalds’ git repositry 2. Maintenance and devel-
opment is done through an open development process. With millions of users the number of
contributions has greatly increased [88, 55].

Due to its broad usage, an ongoing and successful development process that ensures and
maintains its high standard of quality is in the best interest of many major companies that
utilise its code. This resulted in a strong cooperation, by which companies such as IBM and
Oracle actively contribute to the project 3.

Since LINUX is known for its high standards of quality and reliance, there is interest in enabling
it safety-critical systems. This interest sparked the launch of the project Enabling Linux in Safety
Applications (ELISA) [87]. LINUX was chosen and analysed due to its high demand in the safety-
critical community and to contribute valuable information to ELISA.

4.2.2. QEMU

According to the official QEMU Wiki, "QEMU is a generic and open-source machine emulator
and virtualizer” [69]. It can run operating systems or programs for one machine on different ma-
chines, such as a ordinary user PC, while achieving very good, or even near native, performance.
It was developed by Fabrice Bellard in 2005 [14] and has since grown in size and influence. Its
use cases vary from cloud testing to IoT development [89].

4.2.3. U-Boot

U-BoorT is a boot loader for Embedded boards for processors like PowerPC, ARM, MIPS and
several others. Its development and development process is closely related to that of LINUX,
going so far as to add extra support for LINUX images [93].

It is the most common bootloader for LINUX systems and supports many other embedded
development boards and can be modified for specific hardware. It has lots of drivers, different
filesystems and support for device trees. These features makes U-BOOT a comfortable option
for embedded systems.

4.2.4. Xen

According to the XEN-wiki, XEN is an open-source bare metal hypervisor, which is ”a form of
virtualisation in which the hypervisor runs directly on the underlying hardware” [38]. It can run
various instances of the same or different operating systems in parallel on the same machine [99].

From the start of its development, it was designed for cloud computing and has since grown,
having over 10 million users. Its community focuses on advancing virtualisation in both commer-
cial and OSS applications. Its use cases range from server and desktop virtualisation to security,
embedded and hardware appliances [98].

4.3. The Development Process

As all projects have an open development process, anyone is free to contribute code and patches
to the repository. All projects use git as source code management tool, which offers built-in

2 Available as OSS on https://git.kernel.org/pub/scm/linux/kernel/git /torvalds/linux.git /tree/
3Patches from IBM and Oracle

11

https://lore.kernel.org/patchwork/patch/531075/
https://lore.kernel.org/patchwork/patch/984204/

functionality to format ones patches and commits to send it as an email.

To avoid the chaos of many developers formatting their patches and sending pull requests
to the people in charge of the projects, creating a massive influx of unclear and complex code
contributions for different purposes, each using their own unique coding style, it is necessary to
put guidelines into place. This is especially important for projects as large as LINUX.

All four projects use near identical requirements to their development process as LINUX, with
little to no variation. QEMU and U-BoOT both reference the LINUX conventions in their
guides [68, 92], with U-BOOT even going as far as to guide new users to LINUX guidelines at the
start of their own guidelines.

Since the development processes are extremely similar, I will provide a rough overview to
convey the necessary concepts and technical preliminaries for this work.

4.3.1. Patch Implementation and Design

The guidelines on patch submission start as early as the design of the patch. For example,
the LINUX guidelines suggest involving the community as much as possible to prevent later
redesigning [86] and the U-BoOT guidelines recommend discussing ideas before implementing
them [92]. If the entire community comes together to think of the proposed change, if it really
is necessary and what consequences it could have, futile or duplicate work can be avoided early
on. This holds especially true for new developers joining the community, since they might still
lack the comprehension of large code bases and its multifaceted usages.

If the community deems a code change sensible, the developer can start implementing. Ac-
cording to all guidelines, the overall change is to be partitioned into singular logical changes,
whereas one patch symbolises one independent modification. These patches are represented by
git commits. Their commit messages need to follow specific formatting and with comprehensive
descriptions. This is supposed to make reviewing easier and help people in the future who are
trying to understand what the patch does and why it was necessary, e.g. for debugging purposes.
Furthermore, the commits needs to be signed by the author. QEMU and LINUX guidelines state
that this is to legally express that the author agrees with this patch being contributed to the
repository [68].

4.3.2. Peer Review and Patch Acceptance

If the implementation is finished and the patch coheres to the general submission guidelines, it
is ready to be peer-reviewed, which is a highly valued practice in OSS development [52, 104,
29]. All projects are split into several thematical subsystems [16, 76], e.g. Networking for LINUX.
These split the code base into various manageable areas of responsibility which are maintained by
so called maintainers. These are special developers who possess expert-level domain knowledge
for their area of responsibility. They are in charge of reviewing and integrating proposed code
changes by volunteering developers [32].

Mailing lists are widely used in OSS development and is also common practice for my analysed
projects [73, 92, 83, 68]. For every large subsystem, there usually also exists a relevant mailing
list where code changes for the subsystem are discussed, e.g. the networking support mailing
list netdev@vger.kernel.org for all networking related patches. All projects also have a general
mailing list where all patches - no matter its affected subsystem - are to be sent to.

The patch is then sent to all relevant mailing lists as well as the responsible maintainers for the
affected areas of responsibility. Developers and maintainers can then discuss and comment on the
change, suggesting modifications and giving general feedback. This can prevent major problems
and bugs early on by having the author of the patch rework it through multiple revisions, if
necessary.

12

In the end, the responsible maintainer has to accept the patch, which kicks off the integration
into the repository. If the patch can withstand various rounds of testing and reviewing, the
change is accepted into the official repository.

4.4. Maintainers Usage

As stated in the before, the code bases are usually split into various areas of responsibility -
further called sections - which are maintained by developers with domain knowledge. Which
maintainer is in charge of which files exactly is documented in a file called MAINTAINERS. If
someone needs qualified input to specific code artefacts, the MAINTAINERS file directly assigns
experts to the artefacts in question. This conveys a sense of ownership to code snippets and is
helpful to finding the responsible people to send patches to.

In this section, I will introduce and elaborate on the MAINTAINERS file, its structure and
its usage.

4.4.1. MAINTAINERS

MAINTAINERS is a file that is (by convention) located in the root directory of every considered
project. It consists of a list of sections that provide a micro-level view on the repository. A
section contains an informative description that sketches its content (e.g., BUILDSYSTEM or
LOGGING, c¢f. Figure 3), a list of assigned files and/or directories and the section’s responsible
maintainers. Additionally, a section contains information on public mailing lists where patches
that affect the section should be sent to for discussion. In many OSS projects, especially the
ones at the more fundamental layers of a software stack, code contributions are submitted to
and discussed on mailing lists [73, 86, 49], which effectively implements public peer-review.
Eventually, a patch is rejected, or integrated by a maintainer.

There is no formal standard for the structure of MAINTAINERS, yet most projects follow
the LINUX kernel conventions: starting with a short preamble of the project’s development
process, and followed by a so-called schema definition. I call an area of responsibility a section
(also referred to as subsystem [25]). Beside other project-specific specifiers that only play a
subordinate role for my analysis (e.g., references to IRC chats, web pages, ...), the relevant core
components of a section are:

M: Maintainers (name, e-mail) responsible for this section,

L: Mailing list(s) that patches should be sent to,
F: Associated files and directories (with regex support), and

X: Wildcard pattern excluding files/directories.

Section overlap. A file or directory of the project may be assigned to multiple sections. Hence,
sections may overlap in terms of shared source code. The overlap can be measured in standard
metrics, such as file size or Lines of Code (LoC). Given the source code of a project, I can
determine the pairwise overlap across sections. In Figure 3, sections BUILDSYSTEM and LOGGING
share the file scripts/debug. sh.

In practice, MAINTAINERS files typically declare a section that always covers all files in the
project (F: *), and which therefore fully overlaps with all other sections. Common names for such
sections are “THE REST” for Linux, U-BooT, and XEN, or “General Project Administration”
in QEMU. I refer to these sections as catch-all section, since their scope is the entire project. I
will largely ignore them in laying out my methodology (Section 6), but they will play a role in
presenting my use case (Section 7).

13

BUILDSYSTEM
Q Maintainer: Alice (alice@foo.com)
List: buildsystem@lists.project.org
Files: Makefile, scripts/
LOGGING
Maintainers: Bob (bob@doe.com)
Eve (eve@bar.org)
List: logging@lists.project.org
Files: srcs/logging/*, scripts/debug.sh

MAINTAINERS file /

SOTH[Iq
-isuodsaux

5,001y

o I

Figure 3: Structure of a MAINTAINERS file with different areas of responsibility (sketched).

Example 1. Figure 8 shows a schematic MAINTAINERS file with two sections. The section
titled LOGGING is maintained by Bob and Eve, whose e-mail addresses are are also listed. The
relevant mailing list is also stated, and the files in the section scope are declared.

Alice, Bob and Eve share responsibility for file scripts/debug. sh. To restrict the responsibility
of the file to the LOGGING section, a X:-entry would have to be added to BUILDSYSTEM, showing
that Alice is not in charge of scripts/debug. sh, despite maintaining everything else in directory
scripts.

We can measure the overlap of the two sections through the LoC or the file size of scripts/debug. sh.

4.4.2. The get_maintainer.pl Script

A new patch usually affects one or more sections, depending on which and how many files were
changed. The people who are in charge of these files should then be notified. In the example of
Figure 3, a change suggestion to scripts/debug.sh should be sent to all three maintainers in
charge and the relevant lists for their sections.

Knowing where to send the patch is easy to determine in this very simplified example, but
MAINTAINERS in practice can get very large, with projects like LINUX spanning multiple
thousand sections. Manually scanning the file and finding all relevent addressees would not
be feasible for a productive development process. The various wildcard approaches on how to
fine-tune relevance of a section for files further complicate this task.

The projects which use a MAINTAINERS file usually have their own script used for parsing
the file to conveniently output the necessary data, such as get_maintainer.pl from LINUX.
They are put in place to provide assistance to developers who are seeking information. These
usually take a file or a patch as input and output the relevant sections, maintainers and mailing
lists, maybe some additional information depending on data from MAINTAINERS, therefore
providing a convenient way to find out all addressees and additional necessary information for
developers.

14

5. PaStA

Ramsauer et al. [72, 73] developed a tool to detect resembling patches: PaStA, the Patch Stack
Analysis (PaStA) tool, which is available as open-source project, written in Python3 and pub-
lished under GPL v2. The method was implemented as an extension to PaStA while using its
core functionality. This chapter will introduce the tool and explain how its infrastructure is
beneficial to my use case.

5.1. PaStA Related Work

PaStA has been used for various other research topics. These have solidified the tool and its
practices as valuable for research, all while establishing an infrastructure to analyse patches and
development processes. We will give a short overview over some notable publications and results
that have been achieved through PaStA.

Patch Stacks PaStA was initially developed to maintain sets of patches, often called “patch
stacks”. The tool can track the temporal evolution of patch stacks by mining git and determines
patch similarity to measure integratibility for the core project. Its use was demonstrated as a
use case on Preempt-RT [67], a real time extension of LINUX [72].

Tracking of Commits As discussed before in Section 4, development for OSS projects is often
done on public mailing lists. The patches are discussed, reviewed and reworked multiple times
until the final version is committed and enters the repository. Keeping track of the multiple
patch revisions is hard and not feasible to do manually.

PaStA is able to automatically and reliably link the mails on public mailing lists to their final
version as a commit in the repository. The method was extensively tested and verified against a
ground-truth [73].

Ignored Patches 1In the ideal case scenario, a patch is sent to a mailing list, reviewed, reworked
and eventually integrated in its final version as a valuable extension to an OSS project. However,
if a patch is neither answered, nor accepted by the developers and simply vanishes among the
masses of the mailing list, it is considered ignored.

Duda et al. conducted a case study to determine how many patches were ignored in the LINUX
development, furthermore looking into the rate of ignored patches over time. To better under-
stand the phenomon, they characterised the ignored patches to research possible discrimination
overall or on certain subsystems or mailing lists taking place.

The characterisation of patch mails and their analyses was implemented as an extension to
PaStA, creating an additional infrastructure to classify patch mails. We can later make use of
this pre-existing infrastructure to further extend the characterisation of patches to determine
patch conformance.

Mining Security Vulnerabilities While general development is done publically on mailing lists,
LINUX manages fixes to security issues - usually sensitive information which should not be broad-
casted to a large audience - by having them notified to a small group of trusted maintainers.
There, they are discussed and the fix is integrated without public involvement. The commit,
despite being public, usually vanishes among the thousands of other commits for each release.
There are many projects that are based on LINUX. The patches implemented in LINUX are not
always immediately pulled and integrated into these projects and security fixes are no exception.

15

https://github.com/lfd/PaStA

This means that there is a significant time window between the moment security fixes appear as
commits in the LINUX repository and when they are integrated into dependent projects.

As earlier mentioned, PaStA is able to map patch mails to their eventual commit in the
repository. By having these patches not appear on public mailing lists, PaStA can not map
preceeding mails to the commit, making the commit without matching mails on public mailing
lists.

With this knowledge, PaStA can mine exploits in LINUX by searching for patches that did not
appear on lists prior to integration. Ramsauer et al. detected 12 vulnerabilities in LINUX within
a time window of seven months with this method [74].

5.2. MAINTAINERS Parsing

To answer my research questions I require data that is generated by parsing the MAINTAINERS
file. T need to produce a large data set containing information on responsible maintainers for
every single patch integrated within my time window and affected sections for every single file
in the repository. This would require running the script for a very large set of files and patches.
Generating the necessary data for my analysis would require running the script for a very large
set of files and patches.

While projects that use a MAINTAINERS file often come with their own parsing script (e.g.,
get_maintainer.pl in the LINUX project), they were not built to run in batch mode. For that
purpose, PaStA has its own implemented MAINTAINERS parser logic. It can parse MAINTAI-
NERS files in much less time, accelerating batch analysis.

Its implementation tries to mimic the behaviour of the original projects’ scripts as accurately as
possible. Along with the projects, the scripts and the MAINTAINERS files have been maintained
and continuously changed across the different releases. Simulating the original script perfectly
according to the time of integration is very difficult.

The original parsing script is defined as the ground-truth: a file or directory belongs to a
section if the script states so and a patch was correctly integrated if the project’s script declares
this maintainer as relevant based on the corresponding version of MAINTAINERS. If we decide
to only simulate the script, we might receive distorted outputs and therefore render any research
results invalid.

In order to prove the validity of my data and results, I need to show that PaStA’s implemen-
tation simulates each projects parsing logic well enough. I implemented a test script to compare
both script outputs to address this threat to validity. This is further discussed in Section 9.

16

6. From Micro- to Macro-Level Views

This chapter outlines my methodology for socio-technical distillation.

6.1. Analysis Pipeline

Figure 1 provides a high-level overview over my analysis pipeline. For now, I focus on the part
describing my methodology (label D).

Lower left, I show the artefacts from which I first derive the micro-level, and then the macro-
level view: this concerns the code repository, including the MAINTAINERS file, along with the
entire development history. For parsing artefacts, I employ the third-party tool PaStA. I have
substantially extended this tool, and made my patches, as well as my custom code (Python and
R), openly available.

6.2. Micro-Level Views

Based on areas of responsibility (sections) declared in MAINTAINERS, I derive a micro-level
view on the project, as visualised by the Venn-Diagram in Figure 4 (a). Each region corresponds
to one section and is labelled with the section title. The region area corresponds to the lines of
code associated with a section, and therefore its size. The areas shared by overlapping regions
represent the extent of the code overlap between the respective sections. A natural assumption
is that the more sections overlap, the stronger these sections are semantically related, which is
what I base the micro-level view on.

Example 2. Recall the example from Figure 3. It showed a simplified MAINTAINERS with
two sections, overlapping with the script scripts/debug.sh. Showcasing this MAINTAINERS
example in a similar manner as the Venn-Diagram in Figure 4 (a) would result in just two
circles, labelled BUILDSYSTEM and LOGGING, both slightly overlapping. The overlap is caused by
their shared file scripts/debug.sh. Their size and overlap would correspond to their size and
the amount of shared LoC.

6.2.1. Concept

My goal is to be able to analyse a MAINTAINERS, its sections and their relations of shared
LoC among them. An intuitive way to depict entities and their relations is a graph, which leads
to my first definition of a Micro-Level View.

Definition (Micro-Level View). A Micro-Level View is an undirected graph.

Given a section s, let LoC(s) return the total lines of code of all files in the scope of this section.
We further generalise this metric to sets of sections in the natural way. Given a section s, title(s)
returns the title of that section.

Given a snapshot of the code repository including a MAINTAINERS file, let S be the set of
sections S. FEach section is represented by one vertex in the graph. The vertex corresponding to
a section s € S is labelled with title(s). The size of the vertex is defined as LoC(s).

There is an edge between two vertices vi and vo if there are sections sy, sy that share LoC
responsibilities in MAINTAINERS. Then, the edge is weighted by the total lines of code of all
files within the overlap of s1 and ss.

Figure 4(b) shows an exemplary micro-level view graph. Given the sections on the left in
(a) and their overlap, the corresponding micro-level view graph can be seen in (b). “Stronger”
edges, i.e. edges with high weights, are displayed thicker than “weaker” edges. By doing this, I

17

3 E
/X H F~ \
7—Y. A D
- A *.
R AP
.’ B C ‘s
(a) Venn diagram of section (b) Abstracted network view, (c) Interpretable macro-level
overlap (micro-level view). with sections partitioned into view.
cells.

Figure 4: (a) The MAINTAINERS file declares sections A, B, .., F, and X,Y,Z. Given the code
repository, we quantify section size and overlap in lines of code (b) Recasting the micro-
level view as a socio-technical network: Overlaps are translated into edge weights (visualised
by edge thickness); community detection partitions the sections into cells. The macro-level
view (c) provides an interpretable visualisation, where node size and edge thickness indicate
the extent of the scope and overlap, both quantified in lines of code. Vertices are labelled
with the title of the largest section within the cell, fostering the interpretability.

can display how closely two sections are related. An exemplary micro-level view for XEN can be
seen in Figure 5. Only the largest sections have their name displayed as a node label. Colour
indicates, to which community the node belongs.

6.2.2. Validity

Under the assumption that MAINTAINERS approximately reflects a system’s architecture based
on shared code, the micro-level view accurately depicts these shared LoC relations, given my
definition for the graph. The provided definition is very slim and intuitive and does not leave any
room for interpretation or human involvement, since the entire view is automatically generated
from MAINTAINERS.

A possible threat to the semantic validity of my graph is the choice of the ground-truth, the
MAINTAINERS file, which I will address in Section 9. Another threat could be that while
MAINTAINERS as ground-truth is a correct assumption, my choice of architecture, depicted by
shared responsibilities, is wrong and creates misleading results.

MAINTAINERS is, by definition, a file for responsibility assignments. The responsibility is
assigned to code artefacts, which can be measured. A threat that claims that responsibility
assignments in MAINTAINERS are the wrong way to measure and depict MAINTAINERS
accurately effectively claims that the file has a different purpose entirely, which contradicts its
intended usage.

I deem these threats invalid to my micro-level view definition due to its simple structure which
stays true to the principle of MAINTAINERS or ownership files in general.

6.3. Network View

In large projects, micro-level views exceed human cognitive capacities: Projects such as LINUX
comprise over 2,000 sections, which makes the micro-level view extremely overloaded and not
readable. However, the composition of the resulting micro-level view wields interesting insights,
especially when further inquired into even smaller scale substructures consisting of a subset of
the total vertices. The network view is supposed to shine a light on particular substructures to
analyse them.

18

XENGRACE °
STUB I@MAINS
oM A@PI (6}
° °
] o °
XSM/@LASK TU(.\CK o
(<}
TIBXIEICHT
X86 AR(.BCTURR)
° °
o ° .
° °
(& © ° ¢
X86 MEMORY@ANAGEMENT ARM (W/ VIRTUALISATION @TENSIONS) ARCHITECTRE
°
(0}
° °

Figure 5: XEN version RELEASE-4.15.0 as micro-level view. Isolated nodes were removed to prevent
visual clutter.

As a first abstraction to achieve a view for easier inspection, I recast the micro-level view
as a (social) network. Figure 4(b) shows the corresponding undirected, weighted graph, with
the sections as vertices. When two sections overlap, the graph represents this as an edge be-
tween the corresponding vertices, with edges weighted by the lines of code in the overlap. This
representation enables us to apply social network analysis.

After any arbitrary social network analysis, I have a partition of the vertices in the graph,
each split into their own respective category. These are the substructures of interest that need
to be further inquired into. The network view is designed to permit this.

6.3.1. Concept

I can easily derive a formal definition of the network view from the micro-level view.

Following standard set theory nomenclature [41], a partition P of a set S is a set of non-empty
subsets of S such that every element s in S is in exactly one subset. Thus, S is a disjoint union
of the subsets. We use the term cell to refer to an element of P. Given a section s € S, denote
the cell containing s by [s].

Definition (Network View). Given a micro-level view, let P be a partition of all sections S. Let
the cell p € P be a non-empty subset of S. A network view of this cell is given by the graph of
the micro-level view, but every vertex s & p, along with its edges, is removed.

Figure 4(b) portrays an exemplary partition with the dashed red lines in a micro-level view.
While a partition could be arbitrary, I sketched the figure to represent a partition with maximised
shared responsibilities within cells. E.g. sections A, B and C show a strong overlap in (a)
compared to A and F. The partition then places the three sections in one cell.

A network view on A, B and C would delete all other vertices, along with their edges, except
these three to highlight its structure and erradicate outside noise. On this simplified example,
the micro-level view is small enough to offer a clear view on the entirety of its graph as well as

19

its partition. With growing size, however, the micro-level view easily clutters, necessitating the
network view for easier analysis.

Network views showcase a strongly shared theme. An example of a security themed and
isolated network view can be seen in Figure 6. It showcases a network view on the security
subsystem of LINUX. The hierarchical structure of these views and of MAINTAINERS is clearly
visible, with SECURITY SUBSYSTEM being at the center of the network, connecting to all nodes.
Almost all nodes share only one connection, the one to SECURITY SUBSYSTEM, but a community-
like substructure can be observed among some KEY-themed sections, such as KEYS-ENCRYPTED
and KEYS-TRUSTED.

6.3.2. Validity

Next, I explain the various methods to establish the validity of my methodology.

Since I distil a macro-level view from micro-level base data, I need to ascertain that it is
performed (a) on correct base data, and that (b) the automated decomposition leads to valid
and interpretable results. In the following, I focus on the latter, as the correctness of base data
will be discussed in Section 9.2.

The intention of partitioning cells in the network view is to find, as with every clustering
approach, sensible groups [47]. In this case, they represent macro-architectural features of the
software system. I need to ensure that the resulting decomposition is valid, which comprises
internal aspects (influence of clustering technique) and external aspects (semantic validity and
interpretability of the resulting cells). Both of these aspects in regard to the validity of the
network views will be addressed in the following paragraphs.

Algorithmic Validation Applying a walktrap algorithm which is sensitive to edge weights on
the network view is a key step in my methodology. However, the choice of algorithm is subjective.
Other clustering algorithms could lead to vastly different, yet valid solutions. Consequently, I
need to ensure that the influence of the actual choice is limited.

OCAPABILITIES SAFESETID SECURITY MODULE

APPARMOR SECURITY MS?)ULE LOADPIN SECURITY MODULE ®

SMACK SECUR,IT? MOBULE

@ Extended Verification Module (EVM) YAMA SECURIT\? MODULE

SECURITY SUQ[STEM
KEYS;ENCRYPTED

TOMOYO SECURITY MODULE@

INTEGRITY MEASUREMENT ARCHITECTURE (IMA)O

o
KEYS-TRUSTED-TEE

H KEYS-TRUSTED
KEYS/KEYRINGS o

Figure 6: The network view (derived as in Figure 4(b)) for the macro-level view cell “Security Sub-
system” from LINUX version v5.15.

20

Table 2: Comparing the walktrap clustering algorithms against the Louvain, Infomap and Fastgreedy
algorithm, measuring similarity: P: Purity [102], V: V-Measure [77]. Each value denotes
the average value obtained across all analysed versions of the project. For all metrics and
projects, o < 0.049.

‘ Louvain Infomap Fastgreedy
Project ‘ P \% P \% P \%

LiNUx 96.0% 83.0% 92.0% 91.8% 96.0% 93.0%
QEMU | 96.9% 93.0% 93.9% 96.6% 96.9% 93.1%
U-Boort | 98.5% 95.0% 95.5% 94.9% 98.3% 95.0%
XEN 97.5% 97.0% 99.5% 96.4% 97.3% 96.8%

To assess external validity of clustering results by only relying on properties intrinsic to the
data, the literature proposes countless measures [102, 77, 81, 35, 95], of which I use the commonly
chosen purity [102] (the extent to which two clusterings classify nodes the same way) and V-
measure [77] (a combination of homogeneity and completeness of classifications). I compare
results obtained with walktrap against results of louvain [17], infomap [78] and fastgreedy [24],
as they are commonly employed and readily available in my statistical software of choice [70].

The right side of Table 2 shows the observed similarities between the approaches. Each value is
based on computing the average similarity value between walktrap clusters and their counterparts
across all versions, averaging over the results for all versions of each subject project.

Since the similarity across algorithms is near-perfect for all combinations, I conclude that
the does data contain meaningful structure, and the actual choice of algorithm is therefore
inconsequential for the computed results.

Semantic Validation In distilling a macro-level view, I rely on a clustering algorithm. This
will, regardless of the algorithmic details, always result in a partitioning of sections into cells.
Unfortunately, I cannot rely on any reference decomposition, which makes it impossible to as-
sess result quality using common cluster similarity measures, and thereby to ascertain external
validity.

To verify that the computed partition is meaningful from the perspective of developers, I
follow a two-stage approach and conduct a quality validation test following the recommended
methods of Reyes et al. [21]: (1) I used the well-established rewiring procedure [37, 45] on
the derived cells, to create randomised versions of the cells that share the essential structural
characteristics. All cells containing more than two nodes are retained in the evaluation set, but
labels (the section titles) are randomly permuted across cells. (2) I presented matching pairs of
original and randomised cells to some of the authors of the pre-printed paper that this thesis is
based on? as expert verifiers (some are intimately acquainted with the subject projects in various
roles, and most enjoy senior experience as professional software developers). They performed
a binary categorisation of the visual representation of the computed cells, classifying them as
either “random” or “real” (each evaluator covered the same graph pairs: 16 for LINUX v5.14, 15
for QEMU v6.1.0, 7 for U-BooT 2021-07, 4 for XEN RELEASE-4.15.0). All cases in which the
evaluators disagreed (19%), were then jointly discussed without knowledge of the actual result,
and a community consensus was formed in each case. Finally, the participants compared the

40ne of the participants selected the example cells and prepared the comparison software package (see the
supplementary website for details). Since this resulted in detailed knowledge about the subject cells, s/he did
not participate in the assessment, which was performed by four of the other authors of the paper.

21

https://totally-anonymous.github.io/

evaluation consensus with the actual results, and achieved an agreement in 97.7% of all cases.’

Assuming that no interpretable semantics is obtained from the clustering algorithm, it would
not be possible for human verifiers to distinguish actual results from randomised versions. Since
a distinction was possible with high accuracy, I could ascertain that the employed clustering
algorithm yields meaningful structures.

6.4. Macro-Level Views

Computing a partition of the sections, I ultimately derive the macro-level view, as sketched in
Figure 4(c) (also shown in Figure 7 based on real data, to be discussed later): Each vertex
represents a set of sections (the individual cells of the partition), labelled with the titles of the
largest sections (in terms of lines of code) within that cell. In practice, there is always a single
largest section.® Edges are weighted by the extent of the overlap, measured in lines of code of
the involved files.

6.4.1. Concept

Having motivated my methodology, I next provide a formal definition and show the temporal
evolution of LINUX.

Definition (Macro-Level View). Given a snapshot of the code repository including a MAINTAINERS
file, let S be the set of sections S. Given a partition P of S, the macro-level view based on par-
tition P is the labelled, undirected graph where each vertex corresponds to one cell in P.

The vertex corresponding to a cell p € P is labelled with the set of tuples (title(s), LoC([s])),
where s is a section in p such that LoC(s) = max{LoC(s') | s € [s]}. There is an edge between
two vertices p1 and po if there are sections s1 € p1, So € pa such that s1 and so overlap. Then,
the edge is weighted by the total lines of code of all files within the overlap of s1 and so.

To exemplify that the approach scales to ultra-large software systems like the LINUX kernel, and
provides intuitively interpretable information, refer to Figure 7: It shows the temporal evolution

5Since I presented evaluators with matching pairs of random/non-random graphs, the often employed notion
of true/false positive/negative results is not applicable, and summaries like precision, recall or related values
cannot be inferred.

6For sections of equal size, ties can be broken by precedence in lexicographic order.

v4.16 v5.15 N
e o]) I DRM DRIVERS *
A) S ®
B . " g .
'DDCUN[ENTATION DRM D;{IVERE. . D!)CUMENTATION GPEN FIRMWARE
S DN 79 NE’I‘VW)RKH‘} [GENEhAL o .
NETWQRKIM: [GENm&L] OPEN FIRMWARE A N ﬁ L."'N? 7'}
ahsS— M --'..'_-,.r_-..'r
- . . oo \
. N g SOEND. e L\ scst sugsyﬁ‘EM S o 7
scst SUBSYSTE]VI &’ - MIPS . Y 'sos SUBSYSTEM, . NN - '. 0o e
hd ARN.ORT <

MEDIA INPUT II@‘RASERUC«I‘URE
el
LINU;(tO.POWERPC
NETWORK@G DRIVERS

MEDIA INPUT 1NFRA§TRUQTURE @ ME'DIA INPUT Il@’RASTRUCTURE e
o b
STACING SWBSYSTEM

NETWORKING DRIVERS : ' . ..'..NETWORK®G DRIVERS
Figure 7: Temporal evolution of macro-level architectural view of LINUX kernel, an interpretable
macro-level view as in Figure 4(c); node labels correspond to representatives of macro-level
view clusters, and coloured consistently throughout, by matching cells over time, from
v3.18 (Dec. 2014) to v5.15 (Aug. 2021). Left: A magnifying glass zooms in on the visual
details (varying nodes size/edges width). Isolated nodes not shown (<130 per version), to
prevent visual clutter.

22

(over roughly seven years) of the macro-level architecture view for LINUX. The macro-level view
is able to represent very large systems without overburdening viewers.

6.4.2. Temporal Evolution

An example of three macro-level views can be seen in Figure 7. It portrays the temporal evolution
of LINUX across three different versions, covering 7 years of evolution. The largest nodes are
coloured with the colour staying consistent across releases for easier tracking.

23

7. Use Case: Conformance

I now present a specific use case where I can employ and extend the introduced methodology. I
illustratively align my considerations on the requirements of safety-critical software development,
studying the four projects characterised in Table 2; albeit, the overall approach is nonetheless
generic.

7.1. Motivation

The technical aspects of software quality can be quantified by countless metrics (maintainability,
reliability, issue handling performance...) [100], but they are not the only aspects of quality: Ad-
herence to development processes and architectural specifications is widely accepted in software
architecture and engineering as an important contribution to software quality [13], for which it
is seen as proxy measure. It is particularly deeply ingrained in safety-critical software develop-
ment (4.e., software for which failures can lead to catastrophic consequences). Safety standards
and norms, e.g., ISO-26262 [46] or IEC-61508 [44] prescribe guidelines to discover and eliminate
design and implementation errors as early as possible, which includes suggestions for develop-
ment and review processes. Establishing trust in processes and architecture requires defined
reference processes or measurable properties. Relative to these, a degree of adherence can then
be determined, which allows me to judge if a given project/process satisfies the conditions well
enough. This leads to two consequences: (a) A formal definition, or measurable properties, of
a process/architecture must be available as reference, and (b) even if a defined reference exists,
it can only be consistently enforced when development for a project starts from scratch, and
when no external components developed by other means are integrated. Given the importance
of re-use and component-based development, these conditions are rarely satisfied, particularly in
decentral and self-organised OSS development.

Yet large OSS components such as the LINUX kernel, are known for their high software qual-
ity [42] as well as consistently enforced processes, and have started to see adoption in use cases
such as autonomous driving and medical equipment [51], spacecraft [55], and extra-planetary
exploratory vehicles [82]. Similar observations can be made for other low-level base components
like QEMU, XEN-Project, and U-BOOT. This raises the question of how to objectively ensure
(or at least quantify) trust in process and architecture adherence. Based on my automatically
derived macro-level view, I propose one possible means in the following. Essentially, I determine
to what degree the defined and inferred responsibilities for micro- and macro-level clusters match
which maintainers show actual responsibility for code contributions by merging them into the
project. Thus, I define a degree of adherence to process and architecture (in other words: a mea-
sure of self-consistency) of a project that is based on time-resolved, self-contained, and without
the need of relying on external, subjective assessment.

7.2. Technical Integration Process

In the subject projects, code changes are represented by patches. In those projects, patches
are sent to, discussed and reviewed on mailing lists. Before final integration (or rejection),
patches may undergo several rounds of revision before they are merged by maintainers. In large
projects, author and committer are usually different. What is relevant to my method is which
maintainer initially picked up a proposed change from mailing list discussions. While I only
consider mailing-list based patch discussion and distribution, my approach is independent of this
technicality, and only requires (in addition to a responsibility specification) information on the
author-committer-relationship, where these two roles are tracked by all current revision control
system.

24

7.3. Notions of Conformance

I introduce two notions of conformance. The first follows directly from MAINTAINERS files.
The second is a relaxation, leveraging the macro-level architecture views introduced in this work.

Definition (Micro-Level Conformance). Given a code repository with a MAINTAINERS file,
and a patch integrated by a given maintainer, the integration is micro-level conform if the patch
targets a file that is in the scope of a section for which the maintainer is responsible.

Example 3. For the scenario given in Figure 3, if either Bob or Fve integrate a patch for a file
in srcs/logging, the integration is micro-level conform. This is not the case if they integrate a
patch for a file in directory scripts (other than debug.sh).

In practice, I do observe integrations that are not micro-level conform, but close in the following
sense: The maintainer M; integrating the patch and the maintainer(s) My responsible for the
integration as per micro-level conformance are linked by responsibility for semantically related
sections (e.g., drivers for closely related devices in LINUX). When M integrates a patch for
which one of M, is responsible, this process violation may not constitute the same threat as an
integration by a completely unrelated maintainer.

This motivates me to relax the notion of conformance. As in my derivation of the macro-level
architecture view, I again assume that the sections in a MAINTAINERS file are partitioned in
a meaningful way. For the following definition, it suffices that some partition is provided, yet
naturally, I will ultimately leverage the partition underlying my concept of macro-level views.

Definition (Macro-Level Conformance). Given (1) a code repository including a MAINTAI-
NERS file declaring a set of sections S without the catch-all section, (2) a partition P of S,
and (8) a patch integrated by a maintainer, as identified by the committer information in the
patch. The integration is macro-level conform for partition P if one of the following conditions
is satisfied:

e the integration is micro-level conform, or

e the target of the patch is a file in the scope of section s, and there is some section s’ € [s]

for which the maintainer is responsible.

By construction, micro-level conformance implies macro-level conformance. The latter is in-
deed a strict relaxation of the former. Let me point out that micro- and macro-level conformance
combine aspects of adherence to a development process—ultimately, entries in MAINTAINERS
files specify who to send a patch to—and a software architecture—the derived macro-level view is
an abstract architecture view, and macro-level conformance implies adherence to an architecture.
Therefore, my proposed measures provide a combined view that unites aspects of process and
architecture.

7.4. Analysis Pipeline

The upper part of Figure 1 shows the analysis pipeline for my use case. Based on the source tree
and the developer mailing lists as input artefacts, I employ the third-party tool PaStA for artefact
parsing. Specifically, my analysis leverages historic archives of 270 publicly available mailing
lists for my subject projects, where mailing lists are primary communication resources [53, 49].
I integrate this data with the macro-level view, distilled by my methodology, and then analyse
whether patches have been conformingly integrated.

25

7.5. Verification: Maintainer Survey

To complement the semantic validation of the derived macro-level architecture views, I conducted
a survey among maintainers of the LINUX kernel. Based on my own knowledge of the project, I
selected nine senior maintainers from different areas of responsibility, six of which responded (a
response rate of 67%).7 1 deliberately focused on a narrow, but judicious selection of maintain-
ers, and avoided a wider distribution of the survey that would refer to personal data on general
mailing lists (a) out of research-ethical considerations, and (b) to respect the wishes of the LINUX
community which “welcomes developers who wish to help and enhance LINUX”, but “does not
appreciate being experimented on”.® The exact survey formulation is documented on the supple-
mentary website, together with the verbatim responses. Since the statements share considerable
overlap, I present here a selection that covers the common tone. Prior to distributing the survey
eMail that references two maintainers by name, I obtained their consent.

7.5.1. Survey Design

To avoid introducing interpretation bias, I did not disclose any technical details of how I distil
the macro-level architectural view, but only asked to judge correctness of the results. To not
place undue (from their point-of-view: unproductive) load on the maintainers, I restricted the
questions to two carefully selected scenarios that represent important cases. Since the validity
of the macro-level decomposition has already been well established in Section 6.3.2, I designed
the survey so that I could infer information relevant for the use case discussed in this chapter.

I selected two commits that were both not integrated by the directly responsible person as
specified in MAINTAINERS. In one case (referred to as case A), the integration was performed
by another maintainer from within the macro-level view cell identified by my approach, the other
(case B) by a maintainer outside the macro-level view. This difference was not communicated to
the respondents. Assuming that my architectural view is accurate, I expected that the integration
in case A would be seen as correct, whereas case B would be identified as incorrect, or that an
explanation why an exception is justified would be provided. The survey provided sufficient detail
for interviewees to easily reference all associated commits, related discussions on the project-
specific channels, and the relevant portions of the MAINTAINERS specification.

7.5.2. Responses for Case A — macro-level view conforming

Commit 4499d488f violates the specification in MAINTAINERS, but matches the cell in the ar-
chitecture macro-level view (the conformity time series of the corresponding feature is illustrated
in the bottom right part of Figure 8). Therefore, it represents a case where having additional
context information provided by my methodology is preferable to strict micro-level conformance.

The patch committer, Jani Nikula, pointed out that the portion of LINUX kernel addressed
by the patch is group-maintained, which means that “the maintainers listed in MAINTAINERS
oversee development, send pull requests [...]”, and there are “dozens of people with commit
access/...], with documented merge criteria”. The specific, albeit slightly outdated documentation
is available online.

"I presented an earlier version of my results at the Linux Conference Australia for LINUX, which triggered interest
of maintainers that requested information to learn about how “their” subsystem compared to other subsystems
in terms of conformance.Additionally, the average response time of maintainers was slightly below two hours,
which I take as an indication of considerable community interest in the topic.

8This was communicated unmistakably in a statement issued by LINUX Foundation fellow Greg Kroah-Hartman,
one of the most senior kernel maintainers, in response to academic actions perceived as inappropriate by the
kernel community.

26

https://totally-anonymous.github.io/
https://totally-anonymous.github.io/
https://lore.kernel.org/all/20201216053121.18819-3-ankit.k.nautiyal@intel.com/
https://drm.pages.freedesktop.org/maintainer-tools/index.html
https://lore.kernel.org/linux-nfs/YH%2FfM%2FTsbmcZzwnX@kroah.com/

The group-maintenance structure was pointed out by all respondents, for instance Jonathan
Corbet (“This one is easy; DRM is group-maintained, and they are all empowered to accept
patches throughout the subsystem.”) or Lee Jones (“DRM is a tricky one as it’s group main-
tained.”), albeit they varied in their assessment on how hard it is even for kernel maintainers to
recognise the circumstances.

The respondents agreed that the integration was performed correctly, despite formally violating
the verbatim MAINTAINERS specification. We take this as confirmation of the utility of my
macro-level view that was compatible with the (implicit) group maintenance structure inferred
from the micro-level view data.

7.5.3. Responses for Case B — invalid integration

Commit 5dc33592e was integrated by a maintainer outside the macro-level view cell, thus violat-
ing the maintainer specification provided by the project and my architecture decomposition. The
patch author, Tetsuo Handa®, pointed us to a discussion of the change, and explained that he
sent the irregular pull request because the responsible maintainer, who “did not like the patch”,
was not responsive. Since the patch fixes a pressing issue, the pull request submitted to the
top-level maintainer, Linus Torvalds, included a detailed explanation of the situation, and was
eventually merged out-of-band. We take this as confirmation that the derived macro-level view
was violated by the integration, and that this violation was correctly detected by my analysis.
Yet this is it based on a rationale that could not be reconstructed without human involvement.

This perception was shared by others: Jan Kiszka remarked that “[.] there can be side-
band agreement between maintainers/...], specifically when a patch touches multiple subsystems”,
adding that this “[...] is documented in the pull request message sent to Linus or another
maintainer”. Paolo Bonzini confirmed out-of-band integrations are justified when necessary; in
his view, the commit follows a “/...] relatively common way to handle patches that for some reason
were dropped by the directly relevant maintainers”. Jonathan Corbet underlined that “/[...] it has
always been possible for developers to touch any part of the kernel tree when justified”, albeit
in this case that he deems “a bit questionable”, he would have preferred to “/[...] find a way to
convince the lockdep maintainers to take it”.

Overall, all respondents agreed that the integration was out-of-band, but the exception was
properly justified. We conclude that the violation of the derived macro-level view can not be
attributed to a weakness of the method, but instead highlights the need for some flexibility in
validating decomposition results.

7.6. Conformance Observations & Evolution: Linux Overall and Linux
Features

The fraction of micro-level and macro-level conform integrations (relative to all integrated changes)
is shown as a time series for LINUX (and some feature-resolved plots that I address later) in Fig-
ure 8.

While the measurements are affected by varying amounts of noise that cause local variations
at the scale of weeks, any changes in the longer-term trend curve—illustrated by the solid lines
computed using penalised regression splines in a generalised additive model—agree well with the
time scales of years that evaluators would typically be interested in for judging project maturity.

9T. Handa maintains section “Tomoyo Security” (visible as a node in the network view in Figure 6). The commit
touches section “Locking Primitives”, not present in the “Security Subsystem” cell and therefore considered
an invalid integration.

27

https://lore.kernel.org/all/20210208102551.5256-1-penguin-kernel@I-love.SAKURA.ne.jp/
https://lkml.kernel.org/r/ec57ed59-7498-312c-4fdb-10cd924c5b87@i-love.sakura.ne.jp

Micro-Level Conform Macro-Level Conform

Linux (Overall System) ARM Architecture Support
100% A
75%
50% 4 100% 100%
% e e B % T
. 50% 50%
25% 25% 25%
0% 0%
O(%; - 2013 2016 2019 2013 2016 2019
Networking Support Direct Rendering Infrastructure
100% -
75% A
50% A 100% 100%
50% 732,?:‘ ———— 73:,?:‘ /w
50% 50%
25% 25% 25%
0% 0%
0% - 2(IJ13 2016 2019 2013 2016 2019

2012 2014 2016 2018 2020 2022 2012 2014 2016 2018 2020 2022

Figure 8: Process-conform integration over time for the overall LINUX kernel mailing list (top left),
and selected components/features of the kernel (as represented by a feature-specific mailing
list). Dots represent observed measured values as provided by my method, solid lines a
smoothed trend. The insets show how similar the time series are, resolved over time (see
the main text for a detailed explanation).

Notably, micro-level and macro-level measures describe highly similar trends, which is partly
evident from visual inspection of Figure 8. To quantify the similarity of the micro-level and
macro-level time series in Figure 8, I use the normalised compression distance [22]. This measure
enjoys a sound theoretical foundation, based on Kolmogorov complexity, but can be readily
computed numerically [61]. An excellent agreement of typically more than 85% (100% implies
point-wise identical curves) in yearly granularity is shown in the insets of Figure 8, and ascertains
that both views agree in their trends.

Since the macro-level view is based on substantially fewer artefacts (tens to hundreds of cells)
than the micro-level view (hundreds to thousands of sections), the goal of faithful abstraction is
satisfied by the macro-level. The same observations hold for all other subjects projects seen in
Figure 9.

The goal of this work is to provide a quantitative, objective basis to assess properties and
evolution of conform code integration, but not to perform a specific judgement of a project, since
this requires criteria defined for the given context (e.g., a safety architecture or development
process certification).

Nonetheless, let me sketch one idea of how the available information could be leveraged: All
subject projects increase in code volume and number of contributors over time, and Figure 7
shows a clear growth in complexity of the LINUX project over time in this respect. Yet I can also
observe that conformance improves in the same time range, which indicates that the involved
processes have not yet reached their limits, or that the capabilities of maintainers have improved
over time. In particular, LINUX and XEN show a large fraction of conforming integrations, which
matches their reputation of projects with a high degree of process maturity.

28

Linux. The top left plot in Figure 8 shows the overall LINUX system. It consists of the con-
form integration ratio on all LINUX lists. It shows a clear upward trend, with the macro-level
conformity consistently leading as a notable improvement in conformity. This shows us that
integrations at macro-level conformity play a significant role in the general conformity of the
project.

While other observations on the generic behaviour of the subject project could be made,
let us assume a different point-of-view. Software is often structured in the form of product
lines [8], where low-level components in general, and LINUX in particular, expose substantial
feature variability [80]. Therefore, it is appropriate to apply my method to assess qualities
of the implementation of specific features. Safety-critical systems, for instance, are typically
built around embedded computing components, which in turn usually employ a strongly tailored
configuration that only activates necessary features. Consequently, their quality properties are
of interest, whereas properties of unused features can be neglected since they do not impact
the resulting system. The top right and the bottom graphs in Figure 8 show the evolution of
conform integration for three exemplary LINUX features. Clearly, observe different trends for
specific features are observable that do not match the observations of the overall project, and
require consideration and interpretation.

ARM Architecture Support. The trend for ARM architecture support (top right in Figure 8)
is different than for the overall kernel. For one, the conformity has improved at a higher rate
compared to the overall system; additionally, the difference between micro-level and macro-
level view conform integration ratios is more pronounced than for LINUX in general. Especially
during the first years captured in the measurement, this may lead to a more negative assessment
of (local) quality than is actually merited. The overall increase in macro-level conformity, on
the other hand, is less pronounced, and reaches levels comparable to the overall system from
about 2014 onward. The ARM architecture needs to address many closely intertwined technical
aspects [59], e.g., following from vendor-specific implementations of the same generic standard.
This creates many opportunities for merging related patches among domain experts, a scenario
that is better reflected by the macro-level architecture view.

Networking Support. For network devices (bottom left in Figure 8), we observe a very close
relationship between micro-level and macro-level conformance. Until 2018, conformance in both
views is inferior compared to the overall system, but only to rise to superior conformity af-
terwards, with a near-perfect ratio. The close agreement of both measures suggests that the
marked change in trend is not caused by an issue related to collaboration. Manual inspection of
the change history shows that a maintainer addition is documented for April 2018, when David
S. Miller was added to the NETWORKING DRIVERS section in the MAINTAINERS file. As one of
the most senior LINUX network engineers (and one of the earliest contributors to the project), the
change corrects a factual omission in the responsibility specification, and adapts the specification
to actual reality. Such context knowledge is, obviously, crucial to obtain an informed conformity
appraisal.

Direct Rendering Infrastructure. Finally, consider the behaviour of “Direct Rendering Infras-
tructure” (bottom right in Figure 8), a feature that enables application access to 3D accelerator
hardware. Not only are there very pronounced differences between the macro-level and micro-
level conformity trend, but the code also starts out with a seemingly catastrophic conformance
that never catches up with the overall system. This is explainable, as one of the feature develop-
ers communicated to us: The feature is “[...] maintained using a committer/maintainer model

29

https://lore.kernel.org/all/20180427.150323.1018656244013606101.davem@davemloft.net/

Micro-Level Conform Macro-Level Conform

Linux QEMU
100%
75% 7
509% 4100% 100%
50% 7 ——— % i
‘ 50% 50%
25% 1 25% 25%
0% 0%
0% - 2013 2016 2019 2013 2016 2019
U-Boot Xen-Project
100%
75%
50% —100% 100%
50% £ S . 21 75%
50% 50%
25% 1 25% 25% 47N
0% 0%
0% - 2014 2016 2018 2020 2013 2016 2019
T T T T

2012 2014 2016 2018 2020 2022 2012 2014 2016 2018 2020 2022

Figure 9: Process-conform integration over time for all projects. Dots represent observed measured
values as provided by my method, solid lines a smoothed trend. The insets show how similar
the time series are, resolved over time (see the main text for a detailed explanation).

with shared tooling. There are literally dozens of people with commit access to each, with doc-
umented merge criteria. The maintainers listed in MAINTAINERS oversee development [...]"
While responsible persons are listed in the file, the actual responsibility is shared, thus favouring
macro-level conformity over micro-level conformity.

7.7. Project Conformance

Not only did I analyse LINUX and its features, I also researched the general conformity behaviour
of QEMU, U-BooT and XEN. Since these projects do not compare to LINUX in size, I conducted
a general conformity analysis, not on feature level. The results can be seen in Figure 9. LINUX
as an overall system is listed again top left for comparison.

QEMU. For QEMU, we observe a relatively low ratio at the beginning of the analysis, rising to
almost LINUX like conformance levels at the end. Noteworthy is the strong relationship between
micro-level and macro-level conformance, with macro-level improving even more over micro-level
over time.

U-Boot. U-BoOT has the worst overall micro-level and macro-level conformance ratio, stag-
nating around 50% since the beginning of my analyses. U-BOOT is the second smallest of all
analysed projects in this work. Perfect adherence to the development process does not seem
to be a primary concern in this particular case. Nevertheless is the project known for its high
quality of code, so despite the fact that the de-facto implemented development process does not
fit MAINTAINERS situation, it still works out well in this case.

30

https://drm.pages.freedesktop.org/maintainer-tools/index.html
https://drm.pages.freedesktop.org/maintainer-tools/index.html

Xen. XEN has an exceptionally high micro-level conformance. With the macro-level confor-
mance being a relaxation of micro-level conformance, it does not have room for notably more
conformance improvement, so both measures maintain a consistently high conformance. Part
of the reason for this exceptionally high conformance ratio could be due to the small size of
XEN, being the smallest of the four analysed projects with significantly less integrations than
the others.

31

8. Reproduction

Science strives to gain new insights and publish them to further human knowledge and broaden its
horizon. To battle forgery, sloppy research practice or faulty test results, all publications should
be reproducible to enable reproduction experiments and confirm their validity. The Association
for Computing Machinery (ACM) states that “an experimental result is not fully established
unless it can be independently reproduced” [10]. It considers an experiment fully reproducible
when a different research team can achieve the same results with the same experimental setup.
If, additionally to the different team, a different experimental setup also wields the same results,
the experiment is considered replicable.
The precise definition given by the ACM is as follows:

Definition (Replicability). “The measurement can be obtained with stated precision by a different
team, a different measuring system, in a different location on multiple trials. For computational
experiments, this means that an independent group can obtain the same result using artifacts
which they develop completely independently.”

Reproducible and replicable experiments are without a doubt extremely important for science.
They are, however, often neglected. A study from 2016 shows that around 70% of scientists have
failed to replicate work from other scientists and more than 50% had problems reproducing their
own results [12].

To ensure the replicability of the results from this work, I will deliver a fully automated
reproduction package. This section will guide through its composition, components and usage.

8.1. Docker

Container-based virtualisiation is a virtualisation approach that offers virtualisation at operating
system level. It uses the host kernel to run multiple virtual environments, often referred to as
containers [20]. By virtualising on operating system level, only one operating system kernel
needs to run and can manage the containers. It does not need to have multiple kernels employed
redundantly. The containers run like normal processes on the host machine, managed by the
main operating system, in its own isolated environment.

Docker containers are built through Docker images. A docker image stacks multiple data layers
onto a base image to create a specialised environment. E.g., if the user uses a Ubuntu base image
and clones a git repo, an additional data layer containing the repo is added to the image.

An own docker image can be created through Dockerfiles, which provide a simple script,
similar to a Makefile, that defines how the image is built [18]. T will make use of this “recipe-
like” description of a script build my experimental setup onto my base image and then run the
experiment to reproduce the results.

8.2. Reproduction Package

Since the purpose of the reproduction package is to reproduce the results from scratch, I need to
reproduce the data from scratch as well. These reproduction pipelines does this by first cloning
the PaStA repository and initialising the projects LINUX, U-BooT, QEMU and XEN as sub-
modules and updating them to the most recent release, to get the necessary base infrastructure.

The projects are then analysed to produce the project characteristics. This step prepares the
mailing list data and then analyses them in various aspects, including conformance and recreates
all graphs, including the randomised ones for the GUI’s from my validation process from 9.

32

All this can be achieved by simply running the docker/build.sh script in the PaStA repos-
itory. The docker image uses the user pasta. All results can be found in a directory called
results in this user’s home directory from this docker image.

33

9. Discussion

9.1. Threats to Validity: Internal Validity

Parsing. PaStA provides a custom parser for MAINTAINERS specifications across subject
projects. However, for all subject projects, the script get_maintainer.pl that parses the MAIN-
TAINERS file, and the content of the file itself, have changed over time. Both may contain
project-specific adaptations, and use project-specific conventions. Since I do not simulate the
exact semantics for each project and point in time, this could lead to mis-parsing entries.

To boost performance, I employ the MAINTAINERS parser by PaStA, rather than the project-
provided parsers. To ensure correctness, I carefully compared parser outputs on a randomly
sampled subset of 600-5,000 patches (depending on the project). This produced identical results
in about 90% for all projects, rendering this a minor threat.

Commits. In my use case analysis, I rely on the tool PaStA, and therefore only consider com-
mits that were discussed on mailing lists prior to integration. This allows for quantifying and
comparing mailing list-specific conform integration ratios (cf. the supplementary website), but
also misses commits that cannot be mapped to an artefact on a list. Nevertheless, the vast
majority of commits in repositories can indeed be mapped: For U-BooTt, QEMU, LINUX and
XEN, I quantified the commit coverage!'® to 96.7%, 94.6%, 90% and 78% respectively. Hence,
able to to group results by mailing lists (as in Figure 8) outweighs incomplete commit coverage.

9.2. Threats to Validity: External Validity

Stale MAINTAINERS. Large open-source projects with a self-organised community and active
development contributions need to establish processes to split the code base and delegate work.
The MAINTAINERS-approach has established itself as good practice for submission guidelines,
proven by its long-term usage for LINUX and its adaptation by numerous other projects.

To keep development in large projects running fluently and minimise organisational arrange-
ments between maintainers, it is within the community’s best interest to encourage usage of and
ensure maintenance for the MAINTAINERS file. Patches are supposed to reach the right people
actively acting in the role as maintainer or developer for the affected sections.

As such, the structure of MAINTAINERS is kept simple and easy to maintain and regularly
updated for all analysed projects. There is a strong incentive for developers to keep MAIN-
TAINERS up-to-date: I find that LINUX provide updates around 12 times per week, QEMU
and U-BooOT around 2-3 times, and XEN, as the smallest, roughly every third week. This
differentiates the file from other project documentation artefacts, which often suffer from low
maintenance and outdated descriptions.

My methodology relies on areas of declared responsibility, as exemplified by MAINTAINERS
files. One threat to validity is that these files may be stale. Yet I deem this threat minor, as this
claim is easy to refute by determining the update frequency of the MAINTAINERS file.

I am therefore confident that my approach to use MAINTAINERS as a ground-truth to depict
an accurate depiction of the project’s structures is grounded in sound assumptions.

Generalisability. A further concern is the generalisability of my methodology beyond MAIN-
TAINERS. I see no reason why the approach could not be extended to related artefacts, such
as the Google OWNERS or GitHub CODEOWNERS files (discussed in related work). I am confident
that my methodology can be generalised to projects with other means for specifying areas of

10Ratio of the number of commits that can be mapped to mailing list artefacts vs. number of total commits.

34

https://totally-anonymous.github.io/

responsibility. While I rely on mailing list analysis, the pipeline could easily be adapted to other
means of identifying relevant patches.

T am therefore confident that my approach to use MAINTAINERS as a ground-truth to depict
an accurate depiction of the project’s structures is grounded in sound assumptions.

9.3. Threats to Validity: Data/Construct Validity

Impartial participants. In semantic validation (Section 6.3.2), a common threat is an insufficient
impartiality of the participants. To counter this threat, I designed the rewriting experiment such
that the participants got to choose between a partition produced by the walktrap algorithm,
against a randomised partition. Thus, the experiment was set up such that the participants
could not anticipate an answer that complies with a gold standard, such as the question which
macro-level view seems more meaningful. As a consequence to this design, I cannot provide
metrics like precision or recall.

In validating my use case (Section 7.5), one threat is that the number of open-source developers
is too small, or the focus on a single project too narrow. Yet as laid out, I am constrained by the
codes of conduct, as unsolicited surveys among developers are neither ethical nor appreciated.

Projects studied. I base this analysis on four projects, which raises the threat of generalisability.
Yet as long as new projects provide a parseable declaration of areas of responsibilities, I could
adapt my methodology accordingly. Via my detailed mixed-method verification, I further weaken
the threat of a small sample size.

35

10. Conclusion

Software reverse engineering and component detection has been a researched problem for more
than 20 years, but still requires heavily time consuming work and attention from developers.
It has long been suggested that ownership information provides extremely valuable help when
trying to understand a system, since it contains implicit domain information. Furthermore, the
practice has proven its benefit for maintenance and development processes and continues to be
implemented in more and more projects.

In my multi-stepped approach, I presented a method to turn socio-technical information from
ownership artefacts into semantically meaningful and stable micro-level and macro-level archi-
tecture views. Especially, the method is independent from the implementation languages, and
therefore widely applicable.

By discussing concrete use cases, I have shown that it can assist in solving ongoing and long-
standing challenge in the industrial deployment of OSS. Finally, using a thorough mixed-method
validation, I systematically assessed my results.

Future work will focus on improving and refining the method, such as extending it to formats
beyond MAINTAINERS, and to design concrete tools can provide utility to OSS projects.

Acknowledgements. I want to thank Ralf Ramsauer, Stefanie Scherzinger and Wolfgang Mauerer
for the extensive support and fruitful discussions. I furthermore want to thank Thomas Kirz for
his vast support with TIKZ-Visualisations.

36

A. Appendix

Here we present a few selected network views from all four projects.

A.1l. Linux

These are network views from LINUX v5.15.

Q
TUN/TAP driver

USER-MODE LINUX (UML
s () EXTENSIBLE FIRMWARE INTERFACE (EFI)
X86 PLATFORM DR S - ARC:

CPUID/MSR DRIVER
°

FPU EMULATOR
o

&) o
PARAVIRT__OPS INTERFACE TECHNOLOGIC SYSTEMS TS-5500 PLATEORM SUPPORT

° X86 MICROCODE UPDATE SUPPORT XEN SWIOTLB SUgSYSTEM

AW, . TS
VMWARE HYPERY ISOg INTERFACE XEN-HYPERVISOR INTERFACE

HYGON PROC

OR SUPPORT g6 ARCHITECTURE (32’,\;\113 BT e SUBSYSTgM

o
KERNEL SRTUAL MACHINE FOR X86 (KVM/x86)
X86 VDSO ;
o ALM DRIVER: TRACING MMIO ACCESSES (MMIOTRACE)
o
- . IS) °
@ X80 ENTRY CODE X86 MCE INFRASTRUCTURE ~RDT - RESOURCE AELOCATION HPET: x86

, ©]
@ SVGA HANDLING X86 MM

INTEL SGX
INTEL(R) TRUSTED EXECUTION TECHNOLOGY’TXT)

Figure 10: A network view for X86 and XEN themed sections.

RCH
X86 PLAOTF()R,M UV HPE SUPERDOME FLEX

XEN PVSCSI DRIVERS
()

37

38

ACPI COMPOMENT ARCHITECTUR& (ACPICA)
ACPI THERMAL DRIVER

ACPI FAN DRIVER
ACPI FOR ARM64 (ACPI/arm64)

AcHP

ACPI VIOT DRIVER-e
ePSTORE FILESYSTEM ¢ ©

) ACPI PMIC DRIVERS
ACPI APEI °

ACPI VIODEO DRIVER

Figure 11: An ACPI themed network view.

AMD IOMMU (AMD-VI)
VIRTIO_ IOMMU DRIVER

©QUALCOMM IOMMU
$390 IOMMU (PCI) e

IOMW DRIVERS
OARM "SMMU DRIVERS

INTEL IOMMU (VT-a)®
oTEGRA IOMMU DRIVERS

APPLE DART IOMMU DRIVER
EXYNOS SYSMMU (IOMM®) driver

Figure 12: A IOMMU themed network view.

EDAC-FSL_DDR

EDAC-MPC85XX. EDAC-15400 EDAC-R82600

3 ’ EDAC-15000
EDAC-IE31200 EDAC-AMDG4 ARM/SOCFPGA EDAC SUPPORT 5

EDAC-SKYLAKE

T o
RASNFRASTRUCTURE HOACSITTNE
EDAC-17300 — EDAC-E7XXX
EDAC-SBRIDGE
© —_— EDAC-TIONM
EDAC-IGENG o
o DAC-ITCORE
© AMAZON ANNAPURNA LABS EDAC-DMC520
o / DAC-13000
EDAC-182443B //
o / APPLIED MICRO (APM) X-GENE SOC EDAC
/
EDAC-PASEMI EDAC-QCOM
° EDAC-CALXEDA
EDAC-CAVIUM OCTEON DACIS297EX
EDACCARMADA
EDAC-GHES EDA 'AVIUM THUNDERX
EDAC-E752X
EDAC-PND2

Figure 13: An EDAC themed network view.

PER-CPU MEMORY/ALLOCATOR
MEMBLOCK

Memory M

HUGETLB FILESYSTEM

K]
KFENCE ZBUD ¢OMPRESSED PAGE ALLOCATOR

ZPOOL COMPRESSED PAGE,STQR.AQV}?;A?I KMEMLEAK

@ FMPFS-(SHMEM-FILESYSTEM)

e
ZSWAP COMPRESSED FRONTSWAP API

ATA ACCESS MONITOR

CONT] ROUP - MEMORY RESOURCE CONTROLLER (MEMCG)
HWPOISON MEMORY FAILURE HANDLING
ZSMALLOC COMPRESSED SLAB|MEMORY ALLOCATO!

SLAB ALLOCATOR

Figure 14: A network view for general memory management.

39

40

ARM/Amlogic Meson SoC Crypto Drivers

QUALCOMM CRYPTO DRIVERS | CAVIUM OCTEON-TX CRYPTO DRIVER
° SAMSUNG S5P Security SubSystem (SSS) DRIVER
MICROCHIP ECC DRIVER, | INTEL KEEM BAY OCS AES/SM4 CRYPTO DRIVER -
[o
GEMINI C

RYPTO DRIVER
ASYMMETRIC KEYS __HISILICON QM™AND ZIP Controller DRIVER

/

INTEL KEEM BAY O€S-HCU CRYPTO DRIVER

CCREE ARM TRUSTZONE CRYPTOCEEE-REE-DRIVER | -
. = S S °
@-ALLWINNER-CRYPFO-DRIVERS =7 o PCRYPT PARALLEL CRYPTO ENGINE
7 o
e /
FREESCALE CAAM (Cryptographic Acceleration-anid Assurance Mofule) DRIVER ~ ASYNCHRONOUS FRANSFERS/TRANSFORMS (IOAT) API
o ,
_ /
AMD CRYPTOGRAPHIC COPRO@ESSOR (CCP) DRIVER / ISILICON SEGURITY ENGINE V2 DRIVER 2)
2 /
MARVELL CRYPTQ DRIVER
- HISIBICON HIGH PERFORMANCE RSA ENGINE DRIVER (HPRE)
P /
— / CXGB4 CRYPTO\DRIVER (cher
AMD CRYPTOGIRAPHIC COPROCESSOR (CCP) DRIVER - SEV SUPPORT QAT DRIVER

CRYPTOGRAPHIC RANDOM NUMBER GENERATOR
o

INSIDE SECURE CRYPTO DRIVER

Figure 15: The network view for cryptographic sections.

SYNOPSYS DESIGNWARE APB GPIO DRIVER
XRA1403 GPIO EXPANDER PXA GPIO DRIVER
[}

ACCES PCle-IDIO-24'GPIO DRIVER
BROADCOM KONA GPIO DRIVER OMAP GPIO DRIVER

@
VIRTIO GPTO DRIVER
GPIO"ACPI SUPPORT
GPIO REGMAP -
—— SI0X
ACCES 104-DIO-48E GPIO DRIV == -

INTEL GPIO DRIVERS
GPIO MOCKUP DRIVER

/ " ICH LPC-AND GPIO DRIVER

TT DAVINCI SERIES-GPIO DRIVER
WINSYSTEMS WS16C48 GPIO DRIVER SYNOPSYS CREGGPIO DRIVER
°
/ THUNDERX GPIO DRIVER GPIO AGGREGATOR

[
ATHEROS 71XX/9XXX GPIO DRIVER

BROADCOM BRCMSTB GPIO DRIVER XILINX GPIO DRIVER

Figure 16: A GPIO themed network view.

BOADCON BICuSTE USE f":

° [y — .

. ; oviar s supronr
scrocHuP stz Doy) s ey Laven
usn e .

St MASS SRQRAGE DRIVER_ |

BROADCOM BCMGSXX/BCMISXX UDC DRIVER

USP PRINTER DRIVER (1bip)

"\ FREESCALE USH PIY DRIVER|

UsB 15¥ 1760 DRIV
USB CYPRESS COrun DRIVER. h

TG0 USD T e
— o

CNARE USD3 DRD 1P DIIVER
USB WEBCAM GADGET

I}
USH CHAOSKEY DRIVER USB OTG FSM (Finite State Machine)

. USBISP1IGX DRIVER
e

sn canor PR U
X
N

AN

GCESSRUNNER USB DRIVER
\
MICROCHIP USEA UDC DRIVER

I CONTROLLER DRIVERS
MEDIATERACSHS DD 1P DRIVER

CADENCE USIS DRD P DRIVER (CHIPIDEA USI HIGH SPEED DUAL ROLE CONTROLLER
USB XHCI DRIVER & v RIS

an Ty pYFEL PC MU DRIVER

Figure 17: A network view for the USB subsystem.

MICROSOFT SURFACE BATTERY AND AC DRIVERS
TI BQ27XXX POWER SUPPLY DRIVER

ANALOG DEVICES INC ADP5061 DRIVER-@

N900 POWER SUPPLY DRIVERS

POWER SUPPLY

S3C ADC BATTERY DRIVER ©

OHM BD99954 CHARGER IC

MAXIM MUIC CHARGER DRIVERS FOR EXYNOS BASED BOARDS

CELLWISE CW2015 BATTERY DRIVER

Figure 18: A network view for power supply sections.

41

SAMSUNG SSFWRNS NFC DRIVER

NETWORKING [IPet/1Pse] NEXTHOP.

NXPNCI NFEDRIVER

xrC sUSYSTEM I TRETOTOA NFC DRIVER

NPIWORKING (MPTCE|

e G DS X5 ot
LDy
NETWORKING

{ SOCKETS (AF_VSOCK)

ETHERNET DRIDGE

———qumi®nre nouten qrm pve

NFS, SUNRPC, AND LOCKDCHEN f—
(CAIF NETWORK LAYER

NCSILIBRARY

KERNEL NFSD, SUNRPC, AND
TIPC NETWORK LAYER

\ NETWORKING TrEs
o

14 SEAVE for AX.25
(<3

RXRPC S0 RXRPC)

CHS/ETE/TAPRIO QDISCS SU211 (ncluding CEGR211/¥L30211)

sk

NETWORK DROP NIQNITOR.

BLOWPAN GENERIC (BTLE/IEEE 30775.4) AX25 NETWORK LAYER

L)

WORK LAYER UETOOTH SUBSYSTEM.

° Ny
e xpflvonkTLATOR SHARED MENORY COMMUNICATIONS (35€) SOCKETS |

IRr— serP proTOCOL
ISDN/CAITP OVER BLUETOOTH

Figure 19: The general networking network view. This is a very large and central cluster for LINUX.

RENESAS R-CAR THE]
BROADCOM STB TMON DRIVER
INTEL MENLOW THERMAL DRIVER

THERMAL/CPU_COOLING

MARVELL MVEBU THERMAL D!

ALLWINNER THERMAL DRIVER @

AL/POWER_ALLOCATOR

N ANNAPURNA LABS THERMAL MMIO DRIVER

[
KHADAS MCU MFD DRIVER
SAMSUNG THERMAL DRIVER

QUALCOMM TSENS THERMAL DRIVER
THERMAL DRIVER FOR AMLOGIC SOCS

Figure 20: A thermal themed network view.

42

°
BLOCK2MTD DRIVER

SPI NOR SUBSYSTEM | HYPE:*BUS SUPPORT

°
MSYSTEMS DISKONCHIP G3 MTD DRIVER UNSORTED BLOCK IMAGES

MEMORY TECHNOL
._BBQADCOM STB NAND FLASH DRIVER o
MICROCHIP NAND DRIVER
MARVELL NAND_CONTROLLER DRiVER
°

| \
o IEDIATEK NAND CONTROLLER DRIVER
INGENIC JZ4780 NAND DRIVER ° .

. o b \ X< @
FREESCALE GPMI'NAND DRIVER{ ARASAN NANDCONTROLLER DRIVER

0
_RICOH SMARTMEDIA /XD DRIVER

o -
TEGRA NAND DRIVER :
- NAND FLASH S _ DENALI NAND DRIVER

DERALI

-———
VF610 NAND DRIVER

CADéNgE NAND DRIVER

Figure 21: A memory technology and nand themed network view.

SOCIONEXT (SNI) Synquacer SPI DRIVER
ARM PRIMECELL SSPAPL022 SPI DRIVER
ST STM32 SPI DRIVER

MICROCHIP AT91 USART SPI DRIVER
o

o QUAD SPI DRIVER
FSI-ATTACHED SPIDRIVER

MICROCHIP SPI DRIVER

BROADCOM SP NXP FSPI DRIVER

o
HISILICON V3XX SPI NOR FLASH REESCALE DSPI DRIVER

SYNOPSYS DESIGNWARE APB SS

TEGRA QUAD SPI DRIVER SAMSUNG SPI DRIVERS

SPI DRIVER

Figure 22: A SPI themed network view.

44

FREESCALE DMA DRIVER

SIFIVE PDMA DRIVER
]

o
HISILICON DMA DRIVER MEDIATEK DMA DRIVER
o ~ \
PLX DMA DRIVER INTEL IADX DERER

© ANALOG DEVICES INC DMA DRIVERS
e ~— DMA GENERIC OE@KOA

XILINX ZYNQMP DPDMA DRIVER 7 SYNOPSYS DESIGNWARE DMAC DRIVER

TEGRA DMA-PRIVERS /
TEXA SERUMENTS DMA DRIVERS

/
/
ALTERA MSG})MA IP CORE DRIVER INTEL IOP-ADMA DMA DRIVER

SYNOPSYS DESIGNWARE AXI DMAC DRIVER AMD PTDMA DRIVER

Figure 23: A DMA themed network view.

OMAP 126 DIIVER

OMAP HWAIOD DATA

10N LAYER SUPPORT

ARk Dove VT30 Grion SOC sapport

a0 (1 \!-

ARA/INTEL RESEARCH IMOTE /STARGATE 2 MACHINE SUPPORT

INTEL IXPAXX CRYPTO SUPPORT /PXAsc SUPPORT

{PALM TREO SUPPORT

ARM/VFP SUPPORT XEN JIYPERVISOR ARM ARM/MIOATON MACHINE SUPPORT

ARM/EZX SMARTPHONES (T80 ADIO, A1200, 0. ROKR £2 ot ROKTL 6]

Figure 24: An ARM themed network view.

DOMAINS

GENERIC ARCHITECTURE TOPOLOGY
()

DRIVER COMPONENT FRAMEWORK @

DRIVER CORE, KOBJECTS, BBBUGFS AND SYSFS

o
SOFTWARE NODES
ISA

REGISTER MAP AB,

FIRMWARE LOADER (request_firmware)

Figure 25: A network view for power management.

MARDUK (CREATOR CI40) DEVICE TREE SUPPORT

MIPS/LOONGSON1 AR(

MIPS/LOONGSON64 ARCHITECTURE

.
BROADCOM PMB (POWER MANAGEMENT BUS) DRIVER

/
RANCHU VIRTUAL BOAl}ﬁ FOR MIP
e ° .
- ONION OMEGA2+ BOARD MIPS BOSTON DEVELOPMENT BOARD
o

MIPS GENERIC PLATFORM

MICROSEMI MIPS SOCS

Figure 26: A MIPS themed network view.

45

46

PICOLCD HID PRIVER LOGITESH HID GAMING KEYBOARDS

o
£T260 FTDI USB-HID TO I2C BRIDGE DRIVER
UHID USERSPACE HID 10 DRIVER °
USB HID/@&HIDBP DRIVERS (USB KEYBOARDS, MICE, REMOTE CONTROLS, ...)

o UDRAW TABLET ANE@S/ENSOR FUSION HUB DRIVER o
HID CORE ER
o MCP2221A MICROCHIP USB-HID TO I2C BRIDGE DRIVER ROCCAT DRIVERS °

o
°
INTEL INTEGRATED SENSOR HUB DRIVER HID PLAYSTATION DRIVER

MICROSOFT SURFACE HID OTRANSPORT DRIVER
O WIIMOTE HID DRIVER

Figure 27: A HID themed network view.

05390 VFIO-CCW DRIVER
5390 COMMON I?O LAYER

S390 NETVVORK%RIVERS

o
o
§390 ZORYPT DRIVER, $390 ITUCV NETWORK LAYER

[}
S390 PCI SUBSYSTEM

$390 VEIO AP DRIVER S39’ o
$390 ZFCP DRIVER

BPF JIT for.SBQU

O
5390 DASD D?{IVER KERNEL VIRTUAL MACHINE for s390 (KVM/s390)
VIRTIO DELIVERS FOR 8390

Figure 28: A 5360 themed network view.

A.2. QEMU

Here we present a few selected network views for QEMU 6.1.0.

- Nuvoton NPCM7xx

Devices - Firmware configuration (fw_cfg)-@

Subsgstems - TPM

Devices - SD (Secure Card) @

ARM Machines -

Subsystexs - Device Fuzzing

Figure 29: A network view with the subsystems for gtest.

47

48

o
Subsystems - Yank feature
Subsyﬂtema— User authorization

”iccs -Pel

~QAPI Schema

Subsystems - Sockets ©

.i\bsystems - Cryptography

Subsystems - APT, monitor, command line

jfies - Machine core

Figure 30: A network view for QAPI themed sections.

ARM Machines - Raspberry Pi

ARM Machines - Integrator CP ARM Machines - Versatile PB
o °

; “ARM Machines - Sharp SL-5500 (Collic) PDA
~ ARM Machines - Stellaris

ARM Machines - Palm
Xilinx ZyngMP and Versal .

ARM Machines -

S
ARM Machines - MCIMX7D-SABRE / i

e
ARM Machines - STM32F405

Devices - OMAP

- SBSA-REF

o
ARM Mochs achines - Musca

~ Tiny Code

erator (TCG) - ARM TCG target

ICIMX6UL EVK / i,]\\fXGul
. N
ARM Machines - MPS2 N

. . o
ARM Machines - Real View. ARM Machines - Gumstix

“e
ARM Machines - i.MX25 PDK
Guest CPU cores (TCG) - ARM SMMU

Figure 31: A network view for guest CPU's.

Guest CPU cor G) - LM32 TCG CPUs

Devices - IPack RISC-V Machines - OpenTitan

ARM Machines - Canon DIGIC @

@ Devices - virtio-serial
ARM Machines - NRF51

ARM Machines =
X86 Machines - PC Chipset

Figure 32: A network view for character devices.

Block drivers - cloop
° °
Block drivers - Network Block Device (NBD) MG8K Machines - q800 Hosts - W32, W64

Block drivers - SSH - -
® Block drivers - blkverify
(yzk rivers /ve}afy

Block,drivers/Replication/// K
[2% Bloek“drivers - raw

Block drivers - qeow

Subsystems - QObject
o

Block-drivers - blkdebug / e
Devices - Parallel NOR.%@V;C- \ |/ —_~ © Block drivers - FUSE block device exports
\ " Blodkdrivers - SCSI .
Qbsystems - Throttling infrastricture e o . . Block drivers - qcow2
S o Block di D

Devices - Floppy @

o
Block drivers—= bl

Block drivers -
o

Subsystems 5:15 _Jobs - lock drivers - h{(o_wring @
Block drivers ¢ Block drifers|- ding)
- /e N Didek deivers - VHDX - plock drivers - qed

o /
Block drivers - VDU 3101 drivefs - GLUSTER \%lock drivers~ RBD | Subsystems - Dirty Bitmaps

Block drivers - NFS Block drivers - VMDK |

Block drivers - NVMe Block Driver &) Bijel drivers - parallels o
~Devices - nvihe Hosts - POSIX

Block drivers - Sheepdog

Block drivers - vvfat

Figure 33: A network view for block drivers.

49

50

SPARC Machines - Sundu

Tiny Code Generatgr (TCG) - SPARC TCG target

RC TCG CPUs

SPARC Machines - Sundy ©

@ SPARC Machines - Leon3

Jachines - Sundm

Figure 34: A SPARC themed network view.

Subsystems -

systems - Main loop ython scripts

Subsystems - Tracing@)
Guest CPU cores (TCG) -

Usermode Emulation - Overall usermode emulation

Figure 35: A network view for general TCG guest CPU'’s.

ARM Machines - Allwi

ARM Machines - Allwinner-al0

Devices - Network pagket abstractions

PowerPC Machines - €500
Devices - tulip

MG68K Machines - mef5208

4]30%:05 - Rocker
Devices - Xilinx-CA> Devices - e1000x \ARM
Doy \

bsystem and hardware) \ . Devices - SST

ARM Machines - Xilinx Zynq ARM Machines - STI\/%ZF?OS

Devices - eeprol00

Figure 36: A network view for network devices.

Devices - megasas

Devices - virtio-gpu

Devices - virtio-input 5 - virtio-mem

o
Devices - virtio-rng

Devices - virtio-crypto
ices - virtio-balloon

Devices - virtio-iommu

Figure 37: A network view for virtio devices.

ol

52

Guest CPU Cores (HAXM) - X86 HAXM CPUs

- virtio-blk

Guest CPU Cores

Guest CPU Cores (dther accelerators) - X86 HVF CPUs

Subsystems = Stubs
(e

Devices = ACPI/
Devices - VM Generation ID
o

°
Devices - ACPI/HEST/GHES

Devices - NVDIMM

Figure 38: A network view for X86 specific sections.

Tiny Code Generator (TCG

)T PPC TCG target

)
PowerPC Machines - mpe8544ds

@
° PowerPC Machines - s&i’ﬁdﬁo\@
PowerPC Machines =405

G - PowerPC TCG CPUs

Devices - ppedxx- PowerPC Machines —virtex_ml507
(o}

PowerPC Machines - PowerNY. (Non-Virtualized)

PowerPC Machines - PReP

Devices - XIVE

PowerPC Machines - Bamboo
o

Figure 39: A network view for PowerPC specific sections.

Hosts - LINUX

Guest CPU copes{(I'CG) - $390 TCG CPUs

Figure 40: A network view for S390 specific sections.

Devices - PTIX4 South Bridge (i82371AB). @

MIPS Machines - Malta

Guest CPU Cores (KVM) - M KVM CPUs

ines - Loongson-3 virtual platforms

-MIPSTCGCPUs MIPS Machines —Mipssim ®

MIPS Machines - Fuloong 2E

MIPS Machines - Jazz

Figure 41: A network view for MIPS themed sections.

53

A.3. U-Boot

Here we present a few selected network views for U-BooT v2022.01.

- ROCKUSB

C)DFU
US].

(@]
FASTBOOT

USB xHCI ®

Figure 42: A USB themed network view.

54

Qo
ARM STT

MIPS MSCC

@ MIPS MEDIATEK

SPI

ARM BROADCOM BCMSTB °©

Figure 43: A network view for network themed sections.

MIPS Oct

11PS

Figure 44: A network view for MIPS themed sections.

ARM IPQ40XX

MIPS JZ4780

95

56

OWERPC MPC83XX

POWERP

POWERPC MPC8XX °

Figure 45: A network view for PowerPC themed sections.

° ARM ZYNQMP R5

MICROBESZE Sy

NAND FLA;SH.

Figure 46: A network view for ARM themed sections.

ARM OWE °

Figure 47: A network view for ARM and clock themed sections.

57

A.4. Xen
Here we present a few selected network views for XEN RELEASE-4.15.0.

< TEE MEDIATORS

ARM (W/ VIRTUALISATION EX'@IOVS) ARCHITECTURE Q@
LIVEPATCH

© ARM SMMUv3

Figure 48: A network view for ARM virtualisation architecture.

98

ARINC653 SCHEDULER ©

Figure 49: A network view for scheduling themed sections.

<]
XSM/FLASK

o}
KDD DEBUGGER

XENTRACE

GDBSX DEBUGGER
e

GOLANG BINDINGS 0

XENSTORE
@ PYTHON BINDINGS /

LIBXENLIGHT

Figure 50: A network view for the general toolstack.

99

B. References

60

1]

Mark Aberdour. “Achieving quality in open-source software.” In: IEEE software 24.1
(2007).

About Linux Kernel. URL: https://www.kernel.org/linux.html (visited on 05/19/2022).
Emad Aghajani et al. “Software Documentation Issues Unveiled.” In: 2019.

Adam Alami, Marisa Leavitt Cohn, and Andrzej Wasowski. “Why Does Code Review
Work for Open Source Software Communities?” In: 2019.

Periklis Andritsos and Vassilios Tzerpos. “Information-theoretic software clustering.” In:
IEEFE Transactions on Software Engineering 31.2 (2005).

Nicolas Anquetil and Timothy C Lethbridge. “Experiments with clustering as a software
remodularization method.” In: IEEE. 1999.

Nicolas Anquetil and Timothy C Lethbridge. “Recovering software architecture from the
names of source files.” In: Journal of Software Maintenance: Research and Practice 11.3

(1999).

Sven Apel et al. Feature-Oriented Software Product Lines: Concepts and Implementation.
Springer Publishing Company, Incorporated, 2013. 1SBN: 3642375200.

Usman Ashraf et al. “Do Communities in Developer Interaction Networks align with
Subsystem Developer Teams? An Empirical Study of Open Source Systems.” In: arXiv
preprint arXi:2104.03648 (2021).

Association for Computing Machinery. Artifact review and badging (version 1.1). URL:
https://www.acm.org/publications/policies/artifact-review-and-badging-
current (visited on 05/19/2022).

Stefan Axelsson. “The Normalised Compression Distance as a file fragment classifier.” In:
digital investigation 7 (2010), S24-S31.

Monya Baker. “Reproducibility crisis.” In: Nature 533.26 (2016), pp. 353-66.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. 3rd.
Addison-Wesley Professional, 2012.

Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX annual
technical conference, FREENIX Track. Vol. 41. 46. Califor-nia, USA. 2005, pp. 10-5555.

Dirk Beyer and Andreas Noack. “Clustering software artifacts based on frequent common
changes.” In: IEEE. 2005.

Christian Bird et al. “Don’t touch my code! Examining the effects of ownership on software
quality.” In: 2011.

Vincent D Blondel et al. “Fast unfolding of communities in large networks.” In: Journal
of statistical mechanics: theory and experiment 2008.10 (2008).

Carl Boettiger. “An introduction to Docker for reproducible research.” In: ACM SIGOPS
Operating Systems Review 49.1 (2015), pp. 71-79.

Ivan T Bowman and Richard C Holt. “Reconstructing ownership architectures to help
understand software systems.” In: IEEE. 1999.

Thanh Bui. “Analysis of docker security.” In: arXiv preprint arXiv:1501.02967 (2015).

Rolando P Reyes Ch, Oscar Dieste, Natalia Juristo, et al. “Statistical errors in software
engineering experiments: A preliminary literature review.” In: IEEE. 2018.

https://www.kernel.org/linux.html
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

R. Cilibrasi and P. M.B. Vitanyi. “Clustering by Compression.” In: IEEE Trans. Inf.
Theor. 51.4 (2005).

Rudi Cilibrasi. Statistical inference through data compression. University of Amsterdam,
2006.

Aaron Clauset, Mark EJ Newman, and Cristopher Moore. “Finding community structure
in very large networks.” In: Physical review E 70 (2004).

Jonathan Corbet. MAINTAINERS truth and fiction. https://1lwn .net/Articles/
842415/. Published at lwn.net. 2021.

A. Courouble. On History-aware Multi-activity Fxpertise Models. Mémoire de maitrise.
Ecole polytechnique de Montréal, 2018.

Gabor Csardi. Community structure via short random walks. URL: https://igraph.org/
r/doc/cluster_walktrap.html (visited on 09/06/2020).

Gabor Csardi and Tamas Nepusz. “The igraph software package for complex network
research.” In: InterJournal Complex Systems (2006).

Edson Dias et al. “What Makes a Great Maintainer of Open Source Projects?” In: IEEE.
2021.

Steve Easterbrook et al. “Selecting empirical methods for software engineering research.”
In: Springer, 2008.

Carolyn D. Egelman et al. “Predicting Developers’ Negative Feelings about Code Review.”
In: 2020.

Isabella Ferreira et al. “A Longitudinal Study on the Maintainers’ Sentiment of a Large
Scale Open Source Ecosystem.” In: 2019.

Santo Fortunato. “Community detection in graphs.” In: Physics reports (2010).

Andrew Forward and Timothy C Lethbridge. “The relevance of software documentation,
tools and technologies: a survey.” In: 2002.

Edward B Fowlkes and Colin L. Mallows. “A method for comparing two hierarchical clus-
terings.” In: Journal of the American statistical association 78.383 (1983).

Alfonso Fuggetta. “Open source software—-an evaluation.” In: Journal of Systems and
software 66.1 (2003).

Andrea Gobbi et al. “Fast randomization of large genomic datasets while preserving al-
teration counts.” In: Bioinformatics 30.17 (2014).

Kevin Gudeth et al. “Delivering secure applications on commercial mobile devices: the
case for bare metal hypervisors.” In: Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices. 2011, pp. 33-38.

S. Guthals and P. Haack. GitHub For Dummies. Wiley, 2019.

Mathew Hall, Neil Walkinshaw, and Phil McMinn. “Effectively Incorporating Expert
Knowledge in Automated Software Remodularisation.” In: IEEE Trans. Software Eng.
44.7 (2018).

Paul Halmos. Naive Set Theory. Van Nostrand, 1960.

Nikolay Harutyunyan. “Corporate open source governance of software supply chains.”
PhD thesis. Friedrich-Alexander-Universitat Erlangen-Niirnberg (FAU), 2019.

Ahmed E. Hassan. “The road ahead for Mining Software Repositories.” In: 2008 Frontiers
of Software Maintenance. 2008, pp. 48-57. DOI: 10.1109/F0SM. 2008 .4659248.

61

https://lwn.net/Articles/842415/
https://lwn.net/Articles/842415/
https://igraph.org/r/doc/cluster_walktrap.html
https://igraph.org/r/doc/cluster_walktrap.html
https://doi.org/10.1109/FOSM.2008.4659248

62

IEC 61508: Functional Safety of FElectrical/Electronic/Programmable Electronic Safety-
related Systems. International Electrotechnical Commission.

Francesco Iorio et al. “Efficient randomization of biological networks while preserving
functional characterization of individual nodes.” In: BMC' bioinformatics 17.1 (2016).

ISO 26262: Road vehicles — Functional safety. International Organization for Standard-
ization.

Anil K. Jain. “Data Clustering: 50 Years beyond K-Means.” In: Pattern Recogn. Lett. 31.8
(2010).

Yujuan Jiang, Bram Adams, and Daniel M German. “Will my patch make it? and how
fast? case study on the linux kernel.” In: IEEE. 2013.

Yujuan Jiang et al. “Tracing back the history of commits in low-tech reviewing environ-
ments: a case study of the linux kernel.” In: 2014.

Mira Kajko-Mattsson. “A survey of documentation practice within corrective mainte-
nance.” In: Empirical Software Engineering 10.1 (2005).

Shuah Khan. Advancing Open Source Safety-Critical Systems. 2021.

Timo Koponen and Virpi Hotti. “Open source software maintenance process framework.”
In: 2005.

Greg Kroah-Hartman. “Why kernel development still uses email.” In: Linux Weekly News
(LWN) (2016). URL: https://1lwn.net/Articles/702177/.

Julia Lawall and Gilles Muller. “Coccinelle: 10 Years of Automated Evolution in the Linux
Kernel” In: USENIX Association, 2018.

Hannu Leppinen. “Current use of Linux in spacecraft flight software.” In: IEEE Aerospace
and Electronic Systems Magazine 32.10 (2017).

Christian Lindig. “Mining Patterns and Violations Using Concept Analysis.” In: Morgan
Kaufmann / Elsevier, 2015.

Rudi Lutz. “Recovering high-level structure of software systems using a minimum descrip-
tion length principle.” In: Springer. 2002.

Spiros Mancoridis et al. “Bunch: A clustering tool for the recovery and maintenance of
software system structures.” In: IEEE. 1999.

Wolfgang Mauerer. Professional Linux Kernel Architecture. John Wiley & Sons, 2010.

Brian S Mitchell and Spiros Mancoridis. “On the automatic modularization of software
systems using the bunch tool” In: IFEE Transactions on Software Engineering 32.3
(2006).

Pablo Montero and José A. Vilar. “T'Sclust: An R Package for Time Series Clustering.”
In: Journal of Statistical Software 62.1 (2014).

Hausi A. Miller et al. “A reverse-engineering approach to subsystem structure identifica-
tion.” In: Journal of Software Maintenance: Research and Practice 5.4 (1993).

Mark EJ Newman and Michelle Girvan. “Finding and evaluating community structure in
networks.” In: Physical review E 69.2 (2004), p. 026113.

Pierre Pluye and Quan Nha Hong. “Combining the power of stories and the power of
numbers: mixed methods research and mixed studies reviews.” In: Annual review of public
health 35 (2014).

https://lwn.net/Articles/702177/

Pascal Pons and Matthieu Latapy. “Computing communities in large networks using ran-
dom walks.” In: Springer. 2005.

Rachel Potvin and Josh Levenberg. “Why Google Stores Billions of Lines of Code in a
Single Repository.” In: Commun. ACM 59.7 (2016).

Preempt-RT Wiki. URL: https://rt.wiki.kernel.org/ (visited on 05/19/2022).

QEMU Docs - Submitting a Patch. URL: https://www.qemu.org/docs/master/devel/
submitting-a-patch.html (visited on 05/19/2022).

QEMU Wiki - Main Page. URL: https://wiki . gemu . org/Main _Page (visited on
05/19/2022).

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing. Vienna, Austria, 2020.

Md Tajmilur Rahman and Peter C Rigby. “Contrasting development and release stabi-
lization work on the Linux kernel.” In: vol. 2014. 2014.

Ralf Ramsauer, Daniel Lohmann, and Wolfgang Mauerer. “Observing custom software
modifications: A quantitative approach of tracking the evolution of patch stacks.” In:
2016.

Ralf Ramsauer, Daniel Lohmann, and Wolfgang Mauerer. “The list is the process: Reliable
pre-integration tracking of commits on mailing lists.” In: IEEE. 2019.

Ralf Ramsauer et al. “The Sound of Silence: Mining Security Vulnerabilities from Secret
Integration Channels in Open-Source Projects.” In: CCSW’20. Association for Computing
Machinery, 2020.

Eric Raymond. “The cathedral and the bazaar.” In: Knowledge, Technology € Policy
(1999).

Peter C. Rigby and Margaret-Anne Storey. “Understanding Broadcast Based Peer Review
on Open Source Software Projects.” In: ICSE ’11. New York, NY, USA: Association for
Computing Machinery, 2011.

Andrew Rosenberg and Julia Hirschberg. “V-measure: A conditional entropy-based exter-
nal cluster evaluation measure.” In: 2007.

Martin Rosvall and Carl T Bergstrom. “Maps of information flow reveal community struc-
ture in complex networks.” In: arXiv preprint physics.soc-ph/0707.0609 (2007).

Daniel Russo. “Benefits of open source software in defense environments.” In: Springer.
2016.

Julio Sincero et al. “Is The Linux Kernel a Software Product Line?” In: Proceedings of
the International Workshop on Open Source Software and Product Lines (SPLC-OSSPL
2007). Ed. by Frank van der Linden and Bjorn Lundell. Kyoto, Japan, 2007. URL: http:
//fame-dbms.org/publications/SPLC-0SSPL2007-Sincero.pdf.

Robert R Sokal. “The principles and practice of numerical taxonomy.” In: Tazon (1963).

Conrad Spiteri et al. “Real-time visual sinkage detection for planetary rovers.” In: Robotics
and Autonomous Systems 72 (2015).

Submitting Xen Project Patches. URL: https://wiki.xenproject.org/wiki/Submitting_
Xen_Project_Patches (visited on 05/19/2022).

Xin Tan. “Reducing the Workload of the Linux Kernel Maintainers: Multiple-Committer
Model” In: ESEC/FSE 2019. Association for Computing Machinery, 2019.

63

https://rt.wiki.kernel.org/
https://www.qemu.org/docs/master/devel/submitting-a-patch.html
https://www.qemu.org/docs/master/devel/submitting-a-patch.html
https://wiki.qemu.org/Main_Page
http://fame-dbms.org/publications/SPLC-OSSPL2007-Sincero.pdf
http://fame-dbms.org/publications/SPLC-OSSPL2007-Sincero.pdf
https://wiki.xenproject.org/wiki/Submitting_Xen_Project_Patches
https://wiki.xenproject.org/wiki/Submitting_Xen_Project_Patches

[85]

[36]

[87]

64

Xin Tan, Minghui Zhou, and Brian Fitzgerald. “Scaling Open Source Communities: An
Empirical Study of the Linux Kernel.” In: 2020.

The Kernel Community. Submitting patches: the essential guide to getting your code into
the kernmel. https ://www . kernel . org/doc/html /latest /process/submitting-
patches.html. 2020.

The Linux Foundation. The Linux Foundation Launches ELISA Project Enabling Linux
In Safety-Critical Systems. URL: https://www.linuxfoundation.org/press-release/
the-linux-foundation-launches-elisa-project-enabling-linux-in-safety-
critical-systems/ (visited on 05/19/2022).

The Linux Foundation. What Is Linuz? URL: https://www.linux.com/what-is-1linux/
(visited on 05/19/2022).

The many and varied uses of QEMU. URL: https://www.linaro.org/blog/many-uses-
of-qgemu/ (visited on 05/19/2022).

The Open Source Definition (Annotated). URL: https://opensource.org/docs/definition.

php (visited on 05/19/2022).

Paolo Tonella. “Concept analysis for module restructuring.” In: IEEFE Transactions on
software engineering 27.4 (2001).

U-Boot Docs - Patches and Feature Requests. URL: https://www.denx.de/wiki/U-
Boot/Patches (visited on 05/19/2022).

U-Boot Documentation: README. URL: https://source.denx.de/u-boot/u-boot/
raw/HEAD/README (visited on 05/19/2022).

Arie Van Deursen and Tobias Kuipers. “Identifying objects using cluster and concept
analysis.” In: 1999.

Nguyen Xuan Vinh, Julien Epps, and James Bailey. “Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction for chance.” In:
The Journal of Machine Learning Research 11 (2010).

Huaiqing Wang and Chen Wang. “Open source software adoption: a status report.” In:
IEEE Software 18.2 (2001). DOI: 10.1109/52.914753.

Titus Winters, Tom Manshreck, and Hyrum Wright. Software Engineering at Google.
O’Reilly Media, Inc, 2020.

Xen Project Hypervisor 4.15 now Available. URL: https://xenproject.org/2021/04/
08/xen-project-hypervisor-4-15/ (visited on 05/19/2022).

Xen Wiki - Xen Project Software Qverview. URL: https://wiki.xenproject.org/wiki/
Xen_Project_Software_0verview (visited on 05/19/2022).

Meng Yan et al. “Software quality assessment model: A systematic mapping study.” In:
Science China Information Sciences 62.9 (2019).

Wayne W Zachary. “An information flow model for conflict and fission in small groups.”
In: Journal of anthropological research 33.4 (1977), pp. 452-473.

Ying Zhao and George Karypis. “Criterion functions for document clustering: Experiments
and analysis.” In: (2001).

Junji Zhi et al. “Cost, benefits and quality of software development documentation: A
systematic mapping.” In: Journal of Systems and Software 99 (2015).

Minghui Zhou et al. “On the Scalability of Linux Kernel Maintainers’ Work.” In: ES-
EC/FSE 2017. New York, NY, USA: Association for Computing Machinery, 2017.

https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.linuxfoundation.org/press-release/the-linux-foundation-launches-elisa-project-enabling-linux-in-safety-critical-systems/
https://www.linuxfoundation.org/press-release/the-linux-foundation-launches-elisa-project-enabling-linux-in-safety-critical-systems/
https://www.linuxfoundation.org/press-release/the-linux-foundation-launches-elisa-project-enabling-linux-in-safety-critical-systems/
https://www.linux.com/what-is-linux/
https://www.linaro.org/blog/many-uses-of-qemu/
https://www.linaro.org/blog/many-uses-of-qemu/
https://opensource.org/docs/definition.php
https://opensource.org/docs/definition.php
https://www.denx.de/wiki/U-Boot/Patches
https://www.denx.de/wiki/U-Boot/Patches
https://source.denx.de/u-boot/u-boot/raw/HEAD/README
https://source.denx.de/u-boot/u-boot/raw/HEAD/README
https://doi.org/10.1109/52.914753
https://xenproject.org/2021/04/08/xen-project-hypervisor-4-15/
https://xenproject.org/2021/04/08/xen-project-hypervisor-4-15/
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview

List of Figures

@O NSO W=

== = = e = = e = ©
© 0N TR WD = o

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

Analysis Pipeline L 2
Clustering Algorithm Comparison 7
MAINTAINERS Structure e e e 14
Graph Transformations 18
XEN Micro-Level View e 19
Security Network View 20
LiNnUX Temporal Evolution 22
LINUX Process Conformance 28
Project Process Conformance, 30
A network view for X86 and XEN themed sections. 37
An ACPI themed network view., 38
A IOMMU themed network view. 38
An EDAC themed network view. 39
A network view for general memory management. 39
The network view for cryptographic sections. 40
A GPIO themed network view. 40
A network view for the USB subsystem. 41
A network view for power supply sections. L. 41
The general networking network view. This is a very large and central cluster for

LINUX. . . o e e 42
A thermal themed network view. 42
A memory technology and nand themed network view. 43
A SPI themed network view. 43
A DMA themed network view. 44
An ARM themed network view. 44
A network view for power management. Lo 45
A MIPS themed network view. 45
A HID themed network view. 46
A S360 themed network view. 46
A network view with the subsystems for qtest. 47
A network view for QAPI themed sections. 48
A network view for guest CPU’s. o 48
A network view for character devices. 49
A network view for block drivers. oo 49
A SPARC themed network view. 50
A network view for general TCG guest CPU’s. 50
A network view for network devices. L. 51
A network view for virtio devices. 51
A network view for X86 specific sections., 52
A network view for PowerPC specific sections. 52
A network view for S390 specific sections. 53
A network view for MIPS themed sections. 53
A USB themed network view. 54
A network view for network themed sections. 55
A network view for MIPS themed sections. 55
A network view for PowerPC themed sections. 56
A network view for ARM themed sections. 56

47.
48.
49.
50.

A network view for ARM and clock themed sections. 57
A network view for ARM virtualisation architecture. 58
A network view for scheduling themed sections. 59
A network view for the general toolstack. 59

List of Tables

66

1.
2.

Project Characteristics 10
Clustering Algorithm Similarity 21

Selbststandigkeitserklarung

Ich habe die Arbeit selbststandig verfasst, keine anderen als die angegebenen Quellen und Hilf-
smittel benutzt und bisher keiner anderen Priifungsbehérde vorgelegt. Auflerdem bestétige ich
hiermit, dass die vorgelegten Druckexemplare und die vorgelegte elektronische Version der Arbeit
identisch sind und dass ich von den in § 27 Abs. 6 vorgesehenen Rechtsfolgen Kenntnis habe.

Unterschrift:

67

	Introduction and Contributions
	Related Work
	Mathematical Background
	Community Detection in Graphs
	Normalised Compression Distance
	Repository Mining
	Cluster Similarity
	Purity
	V-Measure

	Technical Preliminaries and Definitions
	Open Source Software
	Analysed Open Source Projects
	Linux
	QEMU
	U-Boot
	Xen

	The Development Process
	Patch Implementation and Design
	Peer Review and Patch Acceptance

	Maintainers Usage
	MAINTAINERS
	The get_maintainer.pl Script

	PaStA
	PaStA Related Work
	MAINTAINERS Parsing

	From Micro- to Macro-Level Views
	Analysis Pipeline
	Micro-Level Views
	Concept
	Validity

	Network View
	Concept
	Validity

	Macro-Level Views
	Concept
	Temporal Evolution

	Use Case: Conformance
	Motivation
	Technical Integration Process
	Notions of Conformance
	Analysis Pipeline
	Verification: Maintainer Survey
	Survey Design
	Responses for Case A – macro-level view conforming
	Responses for Case B – invalid integration

	Conformance Observations & Evolution: Linux Overall and Linux Features
	Project Conformance

	Reproduction
	Docker
	Reproduction Package

	Discussion
	Threats to Validity: Internal Validity
	Threats to Validity: External Validity
	Threats to Validity: Data/Construct Validity

	Conclusion
	Appendix
	Linux
	QEMU
	U-Boot
	Xen

	References

