
Effects of Imperfections on Quantum Algorithms:
A Software Engineering Perspective

Felix Greiwe
Technical University of

Applied Sciences Regensburg
Regensburg, Germany

felix.greiwe@oth-regensburg.de

Tom Krüger
Technical University of

Applied Sciences Regensburg
Regensburg, Germany

tom.krueger@oth-regensburg.de

Wolfgang Mauerer
Technical University of

Applied Sciences Regensburg
Siemens AG, Technology

Regensburg/Munich, Germany
wolfgang.mauerer@othr.de

Abstract—Quantum computers promise considerable speedups
over classical approaches, which has raised interest from many
disciplines. Since any currently available implementations suffer
from noise and imperfections, achieving concrete speedups for
meaningful problem sizes remains a major challenge. Yet, imper-
fections and noise may remain present in quantum computing
for a long while. Such limitations play no role in classical
software computing, and software engineers are typically not
well accustomed to considering such imperfections, albeit they
substantially influence core properties of software and systems.

In this paper, we show how to model imperfections with an
approach tailored to (quantum) software engineers. We intuitively
illustrate, using numerical simulations, how imperfections influ-
ence core properties of quantum algorithms on NISQ systems,
and show possible options for tailoring future NISQ machines
to improve system performance in a co-design approach. Our
results are obtained from a software framework that we provide
in form of an easy-to-use reproduction package. It does not
require computer scientists to acquire deep physical knowledge
on noise, yet provide tangible and intuitively accessible means of
interpreting the influence of noise on common software quality
and performance indicators.

Index Terms—noisy quantum computing, NISQ systems, quan-
tum software engineering, HW-SW co-design

I. INTRODUCTION

Quantum computing promises improvements and compu-
tational speedups over classical approaches for many tasks
and problems, which include cryptography [1], machine learn-
ing [2], optimisation [3], [4], or simulating chemical and
physical systems [5]. This has raised considerable interest
across scientific communities, including (quantum) software
engineering—programmable quantum computers and appli-
ances will, eventually, involve software in one form or another.

Given the current state of available noisy intermediate scale
quantum (NISQ) hardware [6], actual quantum advantages
are rarely seen (except for specially crafted problems [7],
[8]). While error correction techniques for quantum computers
exist, the required hardware resources exceed current system
dimensions by many orders of magnitude [9]. Therefore,
imperfections in quantum computers will be present in the
forseeable future, and it is important for SW engineers and
researchers to be aware how low level effects like noise in-
fluence software qualities. Given these conditions, evaluating,
characterising and predicting functional and non-functional

properties of quantum software is a complex, multi-facetted
endeavour that requires catering for many details, many of
them are unaccustomed from classical software engineering.
It is becoming increasingly clear that possible performance
benefits of quantum systems will be available only under
particular circumstance that concern both, algorithms and
hardware. Seemingly straightforward approaches (or naive
analogies with classical systems and software) can quickly
lead to bogus, unreliable or downright wrong statements that
mis-characterise potential benefits of quantum approaches.
Our paper is intended to help software engineers develop a
realistic expectation regarding the performance of quantum
algorithms under noise, on different types of hardware. We
provide illustrative examples that show impacts on a number
of seminal (classes of) algorithms—Grover search, quantum
Fourier transform, and variational quantum circuits. Our main
contributions are as follows:

• We provide a self-contained exposition on modelling
noise and imperfections tailored at computer scientists
and software engineers to create a tangible bridge be-
tween fundamental physics and non-functional properties
conventionally employed in software engineering.

• Using numerical simulations, we show the influence of
typical imperfections on multiple seminal algorithms for
different hardware classes, and provide an intuitive under-
standing on potentials of hardware-software co-design for
future quantum computing systems.

• We provide a reproduction package [10] on the supple-
mentary website (link in PDF)1 that allows software en-
gineers to quickly evaluate how noise and imperfections
influence their designs, without having to acquire a deeper
understanding of low-level physical details.

Our contribution intends to increase awareness in the
quantum software community on the impact of noise and
imperfections on algorithmic performance, but also on the
opportunities of co-designing future (NISQ) systems whose
properties are favourable for specific classes of applications.
In contrast to existing work, our paper places stronger focus
on providing self-contained instructions on how to understand
and model imperfections, and how to judge their influence

1DOI-compliant version: https://doi.org/10.5281/zenodo.8001512

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

mailto:felix.greiwe@othr.de
mailto:tom.krueger@othr.de
mailto:wolfgang.mauerer@othr.de
https://github.com/QSW2023NoiseModeling/QSW2023Noise_Modeling
https://github.com/QSW2023NoiseModeling/QSW2023Noise_Modeling
https://doi.org/10.5281/zenodo.8001512

on key qualities or requirements of software and software
architectures. This is, for instance, required to support a well-
informed discussion on finding proper levels of abstraction
needed to decouple peculiarities of QPUs as good as possible,
yet should not stand in the way of utilising the computational
power provided by QPUs. Likewise, knowledge of imper-
fections at a reasonable level of detail can help researchers
to avoid placing inflated expectations on the capabilities of
quantum approaches.

The code in the reproduction package is based on the open
source framework Qiskit [11], and does not depend on any real
quantum hardware or proprietary compilers, which makes it
accessible to a wide audience. It not only enables researchers
to easily re-create our results, but has, instead, especially
been designed to enable researchers and software engineers to
extend it with own algorithms (and test/benchmarking cases),
and study them under the influence of various types of noise
and gate sets, without having to manually implement the
required physics-centric evaluation mechanisms.

The remainder of this paper is structured as follows: After
reviewing related work in quantum software engineering and
quantum noise in Sec. II, we discuss important characteristics
of current QPUs, as well as particularly relevant open hardware
challenges, in Sec. III. We provide a gentle introduction to
modelling noise and imperfections tailored towards software
engineers in Section IV, and illustrate these considerations by
discussing their impact on several seminal quantum algorithms
in Sec. V, followed by a discussion of the implications for
software engineering in Sec. VI. We conclude in Sec. VII.

II. RELATED WORK

Since quantum software engineering is in its initial stages
(yet, Piattini et al. [12] go as far as to proclaim a new “golden
age” of software engineering), the available literature still is
sparse, and noise and imperfections are ignored in (or deemed
irrelevant for) many expositions that concentrate on possible
future higher-level abstractions to quantum software engineer-
ing and quantum programming. For instance, Perez-Castillo et
al. [13] discuss how to extend the unified modeling language
to quantum circuits. Similarly, Gemeinhardt et al. [14] suggest
model-driven quantum software engineering as an abstraction
that extends established SWE methods. Differences between
quantum and classical engineering in terms of bug patterns
are studied by Campos and Souto [15], as well as Zhao [16].
Zhao [17] provides a detailed review of the available liter-
ature. Piattini et al. [18] suggest principles for the future
development of quantum software engineering, and highlight
hybrid algorithms and the desirable independence of specific
quantum software frameworks. Leymann et al. [19] focus on
often ignored aspects of imperfections in quantum computing.
Structured approaches for benchmarking software on quantum
computers are considered by Becker et al. [20] and Tomesh et
al. [21]; in particular, the approach by Resch et al. [22]
especially highlights the importance of choosing appropriate
noise models. Salas et al. [23] consider noise effects on
Grover’s algorithm and state error thresholds.

The performance of NISQ-era variational quantum algo-
rithms, particularly in the QAOA family, has been subject
to intensive research; recent results include Refs. [24], [25].
Other application fields like machine learning (see, e.g., Refs.
[26], [27]) have received similar consideration from an al-
gorithmic benchmarking and performance analysis point of
view. Interestingly, it is known that noise need not neces-
sarily be detrimental, but can also contribute improvements,
as recent research (e.g., Refs. [28], [29]) demonstrates. The
physics-centric literature on quantum noise is extensive, and
reaches considerably further back; the seminal exposition by
Gardiner and Zoller [30] contains many of the fundamental
results. Noise and imperfections in all possible implementation
platforms for quantum computers from a physical point of
view have likewise been considered in substantial depth and
breadth, for which Bharti et al. [31] provide a review.

Characterising the capabilities of quantum computers is,
in general, an active field of research: Considerations based
on cross entropy [32] and quantum volume [33] consider
properties of random circuits, and aim at a generically usable
comparison metric that is applicable across implementation
techniques, but does not allow for deriving concrete statements
on algorithms or use-case scenarios. Application oriented
benchmarks (e.g., Refs. [34]–[36]), and other domain-specific
(e.g., [37], [38]) or generic (e.g., Refs. [39]–[41]) approaches,
consider more concrete perspectives, but often use techniques
that are unaccustomed for software engineers. We aim, in con-
trast, at a correct, yet tangible and algorithm-oriented approach
that is accessible and useful for the software engineering
community.

III. QUANTUM HARDWARE AND HW CHALLENGES

One major challenge in quantum computing is to provide
an isolation between the fragile quantum bits that carry
quantum information, and are used to perform computations
on, and the surrounding environment. Interactions between
qubits and the environment lead to the loss of quantum
information (decoherence), and therefore degrade the quality
of computational processes. Likewise, operations on one or
more of the qubits that perform the actual computation may
be imperfect, and usually implement a transformation that
is only “close to” the actual specification, including random
variations. Both aspects do not occur in classical systems (or
can be very well countered), and correspondingly, software
engineers (outside, probably, highly specialised domains like
safety-critical engineering) need not be concerned with the
corresponding phenomena.

It is still unclear which basic physical concepts will provide
the basis of future quantum computers. A multitude of possible
approaches are currently developed and investigated, including
systems based on trapped ions, neutral atoms, superconducting
semiconductor-based implementations, or photonic systems.

We chose two common architectures of commercial interest
to highlight the essential, far-reaching differences in their
physical implementation that, as we will argue in this paper

based on numerical simulations, substantially impact many
properties of systems that are relevant to software engineering.

A. Physical Foundations

1) Trapped Ions: By using an electromagnetic field to hold
ions together in a trap, they serve as building blocks to realise
qubits by using stable (internal) electronic states of the ions
together with so-called (external) collective quantised motion
states of all ions assembled in the trap. Laser pulses are used
to control and couple the internal and motion states, realise
single- and multi-qubit gates, and cool (slow down) the ions to
motional lowest-energy states (see. e.g., Ref. [42] for details).

A salient characteristic of the motional coupling that affects
all quantum bits is that two-qubit operations can be executed
between any two qubits, which means that the system provides
a fully-meshed coupling graph. Likewise, very high gate
fidelities and coherence times can be achieved, as summarised
in Table I. Despite laser cooling of the involved ions, the
overall system operates at room temperature [43].

In contrast to these advantages, gate execution times are
comparatively large; operations require microseconds of pro-
cessing time. Additionally, it is not straightforward to scale
trapped ion systems to more than, say, 100 qubits, while
maintaining the motional coupling between ions. Noise in gate
application arises from variations of intensities and phases of
of the lasers involved, but also from external electromagnetic
fields that cannot be completely shielded off.

2) Superconducting Transmons: Superconducting quantum
computing exploits quantum mechanical properties of macro-
scopic structures that stem from Cooper electron pairs that
form at very low temperatures in superconductors.

The need for such low temperatures is a disadvantage
compared to trapped ion systems. Also qubits are coupled to
qubits in their direct neighbourhood, and achievable coherence
times are orders of magnitudes lower. However, gate times
in superconducting devices are in the nanosecond range, and
larger systems (in terms of qubits count) can be built compared
to trapped ion system. Finally, the manufacturing process can
benefit from established industrial semiconductor know-how.

B. Challenges

Several limitations of current quantum computers extend
across physical realisations and need to be considered when
designing quantum software components, or when planning
experiments to judge feasibility or scalability of proposed
quantum architectures. Some of the limitations are specific to
NISQ systems, others concern intrinsic limitations of quantum
computers and algorithms that need to be taken into account
for any consideration relating to quantum software engineering
or architecture. Noise (i.e., effects of imperfect quantum infor-
mation representation and manipulation), limited connectivity
between qubits, and gate timing characteristics offer substan-
tial potential for future engineering improvements; they can be
seen as hardware “parameters” to a certain extent from a SWE
point of view. We study the respective potentials in detail the
next section.

1) Noise: Quantum states are fragile, and operations on
such states require involved physical manipulation techniques
that are hard to implement perfectly—any real-world im-
plementation slightly deviates from a theoretically desired
perfect operation. Likewise, information in quantum states is
perturbed by interaction with an outside environment, which
is unavoidable because of the need to interact with and ma-
nipulate the states to perform computations. The (in)stability
of quantum states and quantum operations is characterised
by established measures that we discuss below; representative
measures for three different commercially accessible platforms
are shown in Table I.

The coherence times T1 and T2 indicate how resilient the
information stored in qubits is against perturbations (longer
times are better). T1 gives the average time it takes a qubit to
“relax” from |1⟩ to state |0⟩ (bit flip).

The stability of the relative phase in a superposition state
|+⟩ = 1/

√
2(|0⟩ + |1⟩) is quantified by T2, providing the

average time after which |+⟩ has evolved into an equal-
probability classical mixture of |+⟩ and |−⟩ = 1/

√
2(|0⟩−|1⟩)

(phase flip).
The quantities e1 = 1 − F1 and e2 = 1 − F2 describe

error rates for one- and two qubit gates, and relate to the
average gate fidelities F1/2, which measures gate quality (an
exact definition follows later). Similarly, TG1 and TG2 denote
average gate times of one and two qubit gates, whereas n
specifies the number of available qubits, and C is coupling
density (i.e., the average fraction of degree of connections
between qubits; 100% for a fully meshed graph that represents
physical all-to-all connectivity).

The systems characterised in Table I, albeit they only
represent a fraction of the current variation in implementa-
tion technologies,2 exhibit widely varying characteristics that
are not straightforward to translate into established quality,
performance, or scalability indicators, as they are typically
considered in software engineering. Therefore, empirical char-
acterisation and a generic understanding of the impact of
imperfections on software qualities, as we address it in this
paper, seems indispensable.

We obtained the low level metrics for IBM-Q system from
so called FakeBackends which are embedded in Qiskit and
are based on snapshots of their systems. For the special
case of the Z and Rz gate, we set the respective gate time
and error in our noise model to zero, since these gates are
implemented virtually by all represented vendors. For circuit
depth estimation, these gates are not considered either. For
IonQ the low level metrics were taken from [44]. Since the
data for T1 coherence has a wide range we decided on a value

2It would have been desirable to include additional vendors and approaches
in our simulations. Yet at the time of writing, public availability of the
corresponding low-level data is scarce, and many vendors are reluctant to
publish specific values. While we rely on vendor-reported error rates for
the available data, it needs to be kept in mind that details of how these
numbers were obtained are not always clearly specified. Since (commercial)
vendors might be interested in a favourable representation of their products,
any simulations based on these numbers should be used as indicators, not as
absolute and scientifically verified performance measures.

Implementation Technology Vendor System T1 T2 F1 F2 TG1 TG2 n C

Superconducting Qubits IBM-Q Kolkata 109.90µs 96.80µs 99.968% 98.909% 35.56ns 415.37ns 27 7.98%
Trapped Ions IonQ Aria 10s− 100s 1s 99.95% 99.6% 135µs 600µs 21 100%
Superconducting Qubits Rigetti Aspen M3 24.98µs 28.04µs 99.614% 90.588% 40ns 240ns 80 3.35%

TABLE I: Low level hardware metrics for three commercially available QC platforms (see the text for details).

1-Qubit Gates X
√
X Rx Rz GPi1 GPi2

IBM-Q Kolkata ✓ ✓ ✗ ✓ ✗ ✗
IonQ Aria ✗ ✗ ✗ ✓ ✓ ✓
Rigetti AspenM3 (✓) (✓) (✓) ✓ ✗ ✗

2-Qubit Gates C–X C–Z C–p XY MS

IBM-Q Kolkata ✓ ✗ ✗ ✗ ✗
IonQ Aria ✗ ✗ ✗ ✗ (✓)
Rigetti AspenM3 ✗ ✓ ✓ ✓ ✗

TABLE II: Native gate sets for the investigated hardware
architectures. Check marks (✓) denote supported; crosses (✗)
denote unsupported gates. The parenthesised gates emphasise
differences in the matrix formulation to more commonly used
definitions. While we cannot discuss peculiarities of gates
specific to different architectures, the reproduction package
supports comparative experiments based on all gate sets.

of 50s in our simulations for IonQ. Vendor Rigetti provides
error data obtained via randomised benchmarking as an online
resource [45]. IonQ and Rigetti, to the best of our knowledge,
do not state exactly whether their Rz gates are considered in
calculation of average error rates for one qubit gates. Thus,
the average error rates might be slight overestimations when
compared to IBM-Q. This is negligible since the two qubit
gates introduce errors with higher impact.

Table I shows error rates for quantum gates on different
contemporary hardware approaches. All architectures are af-
fected by noise, which limits the achievable depth of quantum
circuits, and thus the computational power. Yet, there is no
common noise pattern across systems, which makes most
statements about performance and behaviour of quantum algo-
rithms impossible without taking very specific hardware details
into consideration, in stark contrast to classical machines. As
mentioned in section I, for quantum error correction to work
the requirement for thousands of qubits [46] arises which will
most likely not be possible on a larger scale in the near future.

2) Connectivity: Logical quantum algorithms usually make
arbitrary (pairs of) qubits interact when multi-qubit operations
are applied. Most physical implementations of quantum sys-
tems place restrictions on the possible interactions between
pairs of qubits. One important step in translating a logical
into a physical quantum circuit is to (a) map interacting logical
qubits to interconnected physical qubits, and (b) ensure that
operations performed on unconnected qubits (if placement
alone cannot guarantee this) are enabled by “moving” qubits
into proximity prior to gate execution. While qubits cannot
(for most implementation technologies) be moved physically,
applying SWAP gates allows us to change to logical state
between two connected qubits. This allows, at the expense

of increasing circuit depths, to bring two unconnected qubits
into connected positions, and then apply a joint gate operation.
For architectures that do also not natively support logical swap
gates, a replacement can be provided by three C–X gates, at
the expense of an even larger increase in circuit depth.

(a) Rigetti Aspen M3

(b) IBM-Q Kolkata

(c) IonQ Aria

Fig. 1: Hardware connectivity graphs from various commercial
vendors considered in the numerical simulations. The imple-
mentations of vendors Rigetti and IBM-Q both have a grid like
structure, and differ slightly in their connectivity structure. The
IonQ architecture (and other trapped ion systems) features full
connectivity between qubits.

Fig. 1 compares topologies for some of the major available
quantum architectures. We illustrate their influence on algo-
rithms in Section V-C.

3) Gate Sets: The set of elementary quantum gates varies
considerably with implementation technology. Universal quan-
tum computation can be achieved with many different choices.
While the theoretical capabilities of each set are identical,
the practical behaviour of gates under the influence of noise
may vary distinctly. Executing identical algorithms on different
hardware does therefore not only influence computation times
(as is familiar from classical computing), but is also affected
by different influence of noise. Table II illustrates elementary
gate sets for the subject architectures.

C. Subject Algorithms

We have chosen three canonical, yet substantially different
algorithms to study the impact of noise and imperfections:
Grover search, quantum Fourier transform, and variational
quantum circuits. It is possible to prove speedups over their

q[0]

q[1]

q[2]

H

H

H

X

X

X

X

H

H

H

X

X

X

X

X

X

H

H

H

X

X
R

π
4
z

R
π
4
z X R

−π
4

z X R
π
4
z

X R
−π

4
z X

X

X

X R
π
4
z X R

−π
4

z

X R
π
4
z

X R
−π

4
z X

transpile

Fig. 2: Effect of transpiling a gate in a logical Grover circuit (left) to IBM-Q Kolkata hardware (right, dotted frame). Even a
seemingly small component like a (multi-) controlled Z (C–Z) gate can introduce significant increase in circuit depth.

classical counterparts for the first two algorithms, albeit these
only materialise for perfect, error-corrected quantum systems.
Their scalability in terms of circuit depth growth with increas-
ing input size is distinctly different.

The third class, variational quantum circuits, is speculated
to exhibit speedups over classical approaches under some
credible assumptions, and are particularly well suited for NISQ
hardware and empirical experiments, as they allow for very
shallow circuits. Yet, practically relevant speedups have still
failed to materialise on a wider front in current systems.

1) Grover Search: Grover’s algorithms allows for finding
specific elements in an unstructured search space. Simply
put, the algorithm iteratively repeats two sub-circuits: An
oracle to mark the desired element in a search space, and
a rotation in a two dimensional plane. For inputs of n qubits,
the required number of iterations scales with O(

√
2n) [47],

which provides a quadratic speedup compared to the best
classical search algorithms—yet, this speedup is relative to
exponential growth. Since the algorithm matches a wide class
of application problems, it can seem tantalizing to seek “free”
quantum improvements by deploying the algorithm as drop-
in search replacement in existing scenarios. However, there
are some pitfalls to consider: Grover search does usually
not, despite common perception, query an actual “physical”
database encoded in quantum states,3 but evaluates an effi-
ciently computable function f that acts as predicate to identify
one or more optimal elements in a search space. This implies
costs (especially in terms of circuit depth) to implement this
target function using quantum operators, which may be non-
trivial [52].

Many practical applications are either interested in average
case complexity, or enjoy some structure in their search space
that can be (also heuristically) used to speed up processing,
which places considerable limitations on practical utility. Re-
placing classical primitives with Grover search is a commonly

3While it would be possible in principle to apply Grover search on top of
quantum random access memory (QRAM), this would result in a quadratic
speedup for a search task on an exponentially growing search space, which is
usually irrelevant industrial settings. Other data loading alternatives exhibit
similar difficulties. Approximate encoding techniques [48], together with
shallow variants of Grover [49], [50], or improvements in the amplitude
amplification process [51] might lead to fruition, but underline that judging
non-functional software characteristics is impossible without accounting for
technical and physical details that can be ignored in classical approaches.
Given that QRAM is invariably harder to manufacture than classical RAM, a
scenario where the former can fully replace the latter seems hardly credible.

used pattern (e.g. in database research [53], [54]) in efforts
to utilise quantum computing, and is sometimes backed up
by evaluations on small-scale NISQ machine. We study the
limited utility of this approach in Sec. V.

By determining the probability of measuring the desired ele-
ment of the search space as output, we can associate a success
probability with runs of Grover search. Our implementation is
inspired by [52], [55].

2) Quantum Fourier Transform: The quantum Fourier
transform is as a building block for many quantum algorithms,
most notably Shor’s factoring algorithm. It is a computational
analogue of the (discrete) classical Fourier transformation,
albeit there are pronounced differences in obtaining the results,
as the probability of reading a Fourier coefficient is related to
its magnitude, and applications that require access to the full
transformation do not benefit from quantum advantage. Yet,
QFT requires exponentially fewer operations than FFT.

3) Variational Quantum Circuits: The algorithmic family
of variational quantum algorithms comprises circuits that
contain gates whose properties are controlled by a tunable
parameter. After feeding an input state through a circuit and
measuring the output, the parameter settings are adjusted in
a training process—not unlike classical machine learning—,
and the process is repeated, until some desired target function
is approximated with sufficient quality. The approach is ver-
satile and well suited for experimentation on NISQ machines,
particularly because of controllable circuit depth.

An example for a variational circuit (as we employ it
in the below experiments) is shown in Fig. 5. For data
encoding, which comprises the left part of our circuit, we use
a similar construction as in Ref. [56]. The parameterized part
of our quantum circuit is one of several building blocks for
variational quantum circuits, the authors of [57] investigate in
their work. While the variational part of our circuit could be
repeated several times, we stick to one single parameterized
layer in our experiments.

For our simulations we train the variational circuit to mimic
the behaviour of the function f(x) = x2, extending an
example of [56] for different noise levels. We will now quickly
summarize the procedure: We call the parameters of the circuit
θi ∈ θ, all of which start at θi = 0 as initial parameter values.
For simplicity we choose to measure only the qubit |q1⟩ in
the Z basis and subsequently extract the expectation value
of the observable ⟨Mj⟩θ ∈ [−1, 1] for the training input xj

and the current parameters. For sample based approaches the
approximation of ⟨Mj⟩θ requires a reasonable choice of circuit
estimations, that is, the sample number. Based on the quadratic
loss function for iteration k,

L
(
xj ,θ

(k)
)
=

1

2
(⟨Mj⟩θ(k) − f(xj))

2
, (1)

we update θ in every iteration using gradient descent

θ(k+1) = θ(k) − η
∂L

∂θ
. (2)

We calculate the derivative of the loss function using the
parameter shift rule [56]

∂L

∂θi
=

1

2
(⟨Mj⟩θ(k) − f(xj))

(
⟨Mj⟩θ(k)+e⃗i

π
2
− ⟨M⟩θ(k)−e⃗i

π
2

)
,

(3)

where e⃗i is the a unit vector for component i. After carrying
out the partial gradient calculation for every parameter, the
accumulated gradient ∂L

∂θ is used in the parameter update.
Our simulations fix the number of training iterations at 100,

and take uniformly spaced samples xj ∈ [−1, 1], which are
permuted with a (fixed) random seed. Results are therefore
comparable between architectures and noise variants.

IV. MODELLING NOISE AND IMPERFECTIONS

In the following, we outline the theoretical concepts neces-
sary to describe and understand how noise (i.e., the influence
of uncontrollable external factors) impacts quantum calcula-
tions. We aim at an exposition that is accessible to software
engineers without deeper involvement in quantum physics, yet
sufficiently accurate to paint a realistic picture that allows for
drawing reliable conclusions.

A. Mixed States and Density Operators

The notion of quantum states in software engineering usu-
ally refers to pure states |ϕ⟩ ∈ C2n , that is, states represented
by a unit vector in a 2n dimensional complex vector (Hilbert)
space. Sometimes, however, it is not possible to obtain full
knowledge of the state of a system. Consider, for example, the
case where we take an (educated) guess whether some external
influence that is not under our control (in other words, noise)
flipped qubit xi or not. In this scenario, the system is in state
|xi⟩ with probability p or in state |¬xi⟩ with probability 1−p.
Generalising this concept delivers a probability distribution(|ϕ1⟩ |ϕ2⟩ ...

p1 p2 ...

)
of different possible system states. If a system

follows such a distribution it is said to be in a mixed state.
Mixed states contain two probabilistic aspects: (a) Stochas-

tic outcomes resulting from measurements have their origin
in the very properties of quantum theory. (b) Purely classical
uncertainty about the state that arises from a lack of knowledge
of external confounding factors (noise).

When influences beyond our active control modify a quan-
tum state, we need to express the (classical) uncertainty
arising from the scenario with classical probabilities pi. One
convenient way to express mixed states is the density matrix

formalism [47], which describes a “collection” of quantum
states |ϕi⟩ mixed up with classical probabilities pi as

ϱ =
∑
i

pi |ϕi⟩ ⟨ϕi| , (4)

where ⟨ϕ| denotes, for finite-dimensional systems, the con-
jugate transpose of |ϕ⟩, turning the object |ϕ⟩ ⟨ϕ| into a
matrix. Application of a unitary operator U , which represents
a computational step, to a mixed state ϱ is described by
ϱ → UϱU†. In the following, transformations of the density
matrix will be used to describe evolution of quantum states
suspect to noise.

B. Dynamics of Noisy Quantum Programs

The evolution of a closed quantum system is described by
unitary operations. A noisy system on the contrary is open to
an external environment (source of noise). The trick to model
open noisy systems is to include the environment, such that
one ends up with a bigger but closed quantum system. Let ϱ
be the state of an open quantum system of interest, which we
will call the principal system. Now, we combine ϱ with the
state of its environment ϱenv. The new system ϱ⊗ϱenv is closed
and its evolution U(ϱ⊗ϱenv)U

† can be described by a unitary
operator U . Tracing out the environment reveals the evolution
of ϱ under noise: E(ϱ) = trenv(U(ϱ ⊗ ϱenv)U

†). The partial
trace is a tool in the density matrix formalism to discard certain
parts of a quantum mechanical systems, for more information
we refer to [47]. Note that the quantum operator E(ϱ) is not
necessarily unitary anymore. Let Be = {|ek⟩}k be a basis
of the environment. Now, if the environment is measured
in Be after the time evolution, then the outcome determines
the state of the principal system. We end up with a random
distribution of states for the principal system depending on the
measurement. The effect the environment had on ϱ when the
outcome k occurred can be described by an operator Ek [47],
[58], leading to a mixed state description

ϱ 7→
∑
i

EiϱE
†
i ,

∑
i

E†
iEi = 1 (5)

C. Fidelity

In this work we mainly focus on the effect of noise
when performing computations, that is gate errors. Consider
a quantum operation E(ϱ) describing the noise impact on ϱ.
Under the influence of noise, a pure state ϱ = |ψ⟩⟨ψ| evolves to
E(ϱ) =

∑
i pi |ψi⟩⟨ψi|. We can now calculate ⟨ψ|E(ϱ)|ψ⟩ =∑

i pi ⟨ψ|ψi⟩ ⟨ψi|ψ⟩ =
∑

i pi|⟨ψ|ψi⟩|2, which measures the
overlap between |ψ⟩ and E(ϱ). This can be seen as a measure
of how much information is preserved under noise. In a perfect
noiseless environment E(ϱ) = |ψ⟩⟨ψ| = ϱ, preserving all the
information, respectively ⟨ψ|E(ϱ)|ψ⟩ = |⟨ψ|ψ⟩|2 = 1. On
the other hand, the more E(ϱ) turns |ψ⟩ in the direction of
an orthogonal state

∣∣ψ⊥〉 the more information gets lost and
⟨ψ|E(ϱ)|ψ⟩ approaches 0, as E(ϱ) goes to

∣∣ψ⊥〉〈ψ⊥
∣∣.

The measure F = ⟨ψ|E(ϱ)|ψ⟩ is commonly denoted as
the fidelity;4 it is useful to judge how much the result of a
noisy quantum computer deviates form the result of a perfect
machine.

The deviation of imperfect quantum gates (or other compo-
nents) from a perfect implementation is not directly captured
by fidelity: Gates do not operate on a fixed input state. Their
degree of deviation from a perfect gate is state-dependent, so
determining gate fidelity for a single state is insufficient to
characterise quality. Instead, the average fidelity describes the
mean over individual gate fidelities for all quantum states.5

The values shown in Table I represent average fidelities.

D. Noise Models

Having introduced the general modelling principles for
noisy quantum systems, we can now describe specific types
of noise that represent typical physical imperfections.

1) Bit Flips: A probabilistic qubit flip [47] is given by

ϱ 7→ (1− p)1ϱ1† + pXϱX†. (6)

The operation applies the Pauli X gate (bit flip) to the one
qubit system ϱ with probability p, and else leaves the state
as is. Note how the above equation is one way to choose
the operators Ek in (5). Similarly, the phase flip error (Pauli
Z gate) and the bit-phase flip error (Pauli Y gate) can be
constructed by replacing X by Z or Y in Eq. (6).

2) Depolarisation: One commonly used error in simulation
is the completely depolarising operator on one qubit which
randomly applies the Pauli operators X,Y, Z [47], [61]

ϱ 7→ (1− p)1ϱ1†+

p
1

4

(
1ϱ1† +XϱX† + Y ϱY † + ZϱZ†) , (7)

with a certain probability, and else leaves the qubit as is. A
quick calculation reveals that (7) equals ϱ 7→ (1− p)ϱ+ p 1

21,
where 1

21 is the density representing the state of a system
being in every basis state with equal probability. Hence, the
system either stays intact or all information gets destroyed
with probability p. For a n qubit system we get [47]:

ϱ 7→ (1− p)ϱ+ p
1

2n
1 (8)

3) Thermal Relaxation: The thermal-relaxation error mod-
els the decoherence of quantum system over time. The deriva-
tion of the associated quantum operator is significantly less
straight forward, so we refer to Refs. [62], [63] for a derivation.

4) Hardware-Matched Composite Noise: We close by in-
corporating hardware metrics into a noise model (limited to
stochastic gate noise, and ignoring measurements, state prepa-
ration, idle noise and coherent error models). We construct
three noise models from the data in Table I.6

4Different definitions of fidelity are given in the literature; as the general
characteristics are identical, we only consider one variant in this paper..

5How to compute the average of a desired quantity over all possible
quantum states of a system is an interesting problem on its own that we cannot
discuss in detail; see, for instance, Ref. [59], [60] for more information.

6Our approach is a simplified version of the integrated error models for
IBM-Q “FakeBackends” provided by Qiskit [11].

The idea is to use a composite error consisting of thermal
relaxation depolarisation for every gate, such that average
gate fidelities of the real hardware match the model [64].
For our simplified version we only distinguish between one
and two qubit gates, but do not introduce per-gate errors,
or errors depending on individual qubit quality. While this
renders the model less accurate than, for instance, IBM-Q
“FakeBackends”, it allows us to apply it to hardware for
which detailed quality data are not publicly available. The
construction goes as follows: We define an error operator
E = ED ◦ ER, combining both the depolarising error ED (7)
and the thermal relaxation error ER. The fidelity of ED is given
by [65]

FD = 1− p(1− 2−n), (9)

and the fidelity for thermal relaxation channel ER can be cal-
culated using its parameters, namely T1, T2 and the gate time
TG. We tune our model to match target fidelities Ftarg found in
the literature. Using (8), the composition of depolarizing and
thermal relaxation channel is ED ◦ER = (1−p)ER(ϱ)+p 1

2n1.
The fidelity denotes the overlap with a pure reference state |ψ⟩,

F (ED ◦ ER) = ⟨ψ|(1− p)ER(ϱ) + p
1

2n
|ψ⟩

= (1− p) ⟨ψ|ER(ϱ)|ψ⟩+ p ⟨ψ| 1
2n

|ψ⟩ ,
(10)

where we use the linearity of the inner product in the second
argument. The left hand side of Eq. (10) is (1−p)F (ER), while
the right hand side is pF (ED|p=1) = p2−n, which corresponds
to the fidelity of the depolarising channel evaluated at p = 1.

We can express the target fidelity dependent on p, and solve

Farg = F (ED ◦ ER) = (1− p)FR + p2−n

⇔ p =
FR − Ftarg

FR − 2−n
.

(11)

This ensures the composition matches the vendor target fidelity
Ftarg given in Table I.

E. Measurement and Sampling

It is textbook knowledge that measuring quantum states
results in probabilistic outcomes; a natural question that needs
to be addressed to characterise algorithmic performance is
how many samples are required to achieve acceptable trust
in outcomes. Given an error margin ϵ that we are willing to
accept, and a desired confidence δ for the sampled probabilities
to fall within this margin of error, a lower bound on the
required number of samples s can be determined by invoking
the variant s ≥ 1

2ϵ2 log(2/δ) of the Höffding inequality (see,
e.g., [66]), to arrive at meaningful statements. Note that the
numerical experiments considered in Sec. V simulate the com-
plete density matrix, from which exact measurement statistics
can be deterministically extracted. Therefore, no sampling
noise as it would arise for real hardware is contained in the
plots. Accessing the density matrix on real hardware is pos-
sible, but requires an (experimentally involved) quantum state
tomography that measures a complete set of observables whose
expectation values determine the density operator (a number of

measurements exponential in the system size is required, albeit
less costly approximations are possible [67]). Consequently,
sampling is unavoidable to characterise quantum algorithms
on real systems, and the above considerations guide software
engineers on what temporal overheads to expect.

V. NUMERICAL SIMULATIONS

We now commence with illustrating the concrete effects of
the various modes of imperfection on the subject algorithms,
and show how they crucially affect many algorithmic prop-
erties that are directly relevant for software engineering. We
deliberately base our considerations on two seminal, very well
understood algorithms despite their known non-usefulness on
NISQ hardware, as it allows us to focus on the influence of
noise instead of having to consider peculiarities of the subject
algorithms. This is important to approach the topic from a
tangible, concrete software engineering perspective that links
the influence of noise with what computer scientists are well
acquainted with: The performance analysis of algorithms.

Simulation Parameters

Circuit GenerationNoise Generation

Density Matrix Simulator Translation & Mapping

Data Extraction

Classical Optimiser

θ(k+1) = θ(k) − η ∂L
∂θ

⟲

Repeat for
Variational Circuits

Fig. 3: Simulation procedure. Gray parts only apply to varia-
tional circuits with iterative parameter optimisation.

Fig. 3 summarises the simulation procedure as implemented
in the reproduction package (available on the supplementary
website). First, a quantum circuit is generated, together with
a noise model characterised by type of noise and strength,
as specified by the input parameters. Then, the logical cir-
cuit is translated into a physical representation for one of
the supported hardware platforms, which comprises a user-
customisable topology and gate set, and does not necessarily
correspond to a real physical platform, albeit we focus on
the platforms characterised in Table I. This allows users to
consider tailored designs that match the requirements of prob-
lems of interest, and can guide (co-)development of quantum
hardware. The reproduction package extends standard means
provided by Qiskit with gate sets for IonQ and Rigetti, as well
as methods for mapping base circuits onto these.7

7Our results are obtained from the Qiskit density matrix backend, which
provides complete and accurate results, and is not restricted with respect to
simulating noise. We use a standard gradient descent optimiser to iteratively
improve parameters for variational algorithms.

A. Noise and Scalability

We start by considering scalability with respect to input size
and noise strength. While it is well known that Grover Search
and QFT can not be realistically deployed on NISQ machines,
it is instructive to see how detrimental effects of noise on their
performance are. Fig. 4 simulates success probabilities using
the inherent native machine noise for both algorithms.

For all hardware architectures, the success probability
quickly drops; Grover search does not produce valid solutions
for more than six qubits on any architecture. This clearly
indicates that experimental evaluations that are intended to
show the practical functionality Grover-based approaches carry
little merit; the principal functioning of Grover’s algorithm is
very well understood, but it is hardly possible to extrapolate
any meaningful statements from such measurements. It is also
instructive to consider how the slight differences in fidelity
(recall Table II) lead to comparatively large differences in
success probabilities for the different vendor platforms.

As Fig. 4 shows, success probability and state fidelity are
essentially identical. While it is possible to define a “success-
ful” target state in the computational basis for Grover and
QFT, this does not necessarily hold for other approaches, and
does also not extend to approximation cases where closeness
to an ideal state is sought. Fidelity (as a continuous measure
of closeness) is a useful replacement for success probability.

G
rover

Q
FT

5 10

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Qubits

Fi
de

lit
y/

Su
cc

es
s

Pr
ob

ab
ili

ty

Measure
Fidelity

Probability
Vendor

IBM-Q IonQ

Rigetti

0
10
20
30

2 4 6 8
C

ir
cu

it
D

ep
th

[k
]

Fig. 4: Success probability and fidelity (relative to a noise-free
perfect execution) for Grover Search and QFT.

The inset in the top part of Fig. 4 illustrates the increase
in circuit depth with increasing input size; Fig. 7 further
below provides the same information for QFT (for now,
only consider the elements for native connectivity). Circuit
depths for Grover increase exponentially, and exceed values
of 1000 for more than 6 qubits, resulting in zero success
probability. The increase for QFT is more relaxed, with depths
of around 150 for all architectures at 11 qubits of input. The
differences in success probability highlight circuit depth as key

https://github.com/QSW2023NoiseModeling/QSW2023Noise_Modeling
https://github.com/QSW2023NoiseModeling/QSW2023Noise_Modeling

performance (and feasibility) indicator, which should therefore
be at the core interest of software engineers.

B. Noise Variants

The previous examples are based on noise (inspired by
the characteristics of real hardware), which combines effects
of different physical processes, as we have outlined above.
We now evaluate individual contributions of elementary noise
types that may provide guidance in designing future quantum
systems. We apply these to a shallow variational quantum
circuit, which is shown in Fig. 5. Parameters are trained using
the procedure described in Sec. III-C3.8

|q0⟩

|q1⟩

|q2⟩

|q3⟩

Rξ
y

Rξ
y

Rξ
y

Rξ
y

R0
y

R1
y

R2
y

R3
y

R4
z

R5
z

R6
z

R7
z

X

X

R8
y

R9
y

R10
z

R11
z

X

xj θ(k+1) = θ(k) − η ∂L
∂θ

Fig. 5: Variational quantum circuit. The left part encodes
input data, while the right part holds operators with trainable
parameters. We abbreviate ξ := asinx, and set Rk

σ := Rσ(θk).
The quantum register is set to |q⟩ = |0000⟩

The training loss for Pauli-X, Y, and Z, as well as a
depolarising channel, is shown in Fig. 6 for different levels
of noise over 100 training iterations. The loss converges to
zero once parameters have been satisfactorily learned; the
simulations show that increasing noise strength impedes this
process differently depending on the noise type. While bit flips
(Pauli-X) are particularly obstructive, platform like trapped ion
systems are particularly resilient against this type of noise [68],
[69], which might be a relevant criterion for choosing an
underlying quantum platform for a software system.

The right hand side of Fig. 6 illustrates how predictions
obtained from the trained models degrade with increasing
amounts of noise, providing tangible means of judging the
effects of different types and strengths of noise. Both influence
result quality in different ways, and software engineers will
need to decide (by choice of hardware) which variants are
best tolerable for particular use-cases considering domain
knowledge and requirements.

C. Connectivity and Gate-Sets

Finally, let us elaborate on effects of connectivity structure
and gate sets under the influence of noise. For given architec-
tures, the combination is fixed, but co-designing systems that
optimise either for specific algorithms is seen as one possible

8Note that the choice of hyper-parameters (e.g., step size), as well as the
classical optimiser influence algorithmic performance. While different hyper-
parameters might be beneficial for different noise levels or noise methods, we
did not consider such an optimisation in the scope of this paper.

path towards quantum advantage [70]–[73]. Software engi-
neers should be aware of possible future design opportunities.

The top part of Fig. 7 fixes the gate sets for each vendor, but
shows circuit depth scaling for both, the native connectivity
structure and a fully connected architecture (hypothetical for
IBM-Q and Rigetti, standard for IonQ). Owing to the need to
insert swap gates for IBM-Q and Rigetti, depth grows super-
linearly with native connectivity, but increases linearly with a
full mesh, substantially reducing circuit depth.9

For IonQ, circuit depth increases quicker than for the
other architectures. This can be attributed (based on manual
inspection of the generated circuits) to weaknesses of the
circuit translator that maps logical to physical circuits,10 which
stresses the importance for software engineers to place greater
emphasis on low-level details like compiler performance that
is only of marginal interest for many classical SE tasks.

The bottom part of Fig. 7 illustrates some additional effects:
A fully coupled connectivity structure combined with fixed
per-gate error rates for all vendors isolates the effects of vendor
specific base gates, and in particular, of compiling to them.
Here, the performance of IonQ base gates is mostly due to
our sub-optimal transpiler, as the resulting larger circuit depth
gives more opportunity to “pick up noise”. Software engineers
must be aware of a possibly complex interplay of factors when
evaluating algorithmic quantum performance.

VI. IMPLICATIONS FOR SOFTWARE ENGINEERING

We have illustrated how noise and imperfections impact
NISQ performance, and that a certain amount of knowledge of
the underlying mechanisms is necessary for proper interpreta-
tion. From the (quantum) software engineering point of view,
imperfections influence if and how non-functional require-
ments can be satisfied. In particular, they affect scalability,
performance, testability, and cost. The relation to the first two
qualities has already been intensively discussed above.

Testing outcomes of quantum algorithms needs to deal
with two aspects of uncertainty: Measurements leading to
stochastic outcome distributions, and imperfections in gates
and components. While probabilistic behaviour is well es-
tablished in classical computing [75], physical imperfections
have found little consideration in SW testing to the best
of our knowledge. To appropriately design noise-aware tests
and judge test results, software engineers need to be able to
understand quantum noise at a sufficient level of detail.

The impact of noise and imperfections on quantum soft-
ware could be ignored if perfect, large-scale QPUs with
error correction were available. No physical reasons prevent
designing the required systems, but many engineering chal-
lenges make specifying concrete roadmaps towards this goal
challenging. Even if such systems can eventually be built,

9Manufacturing a fully meshed connectivity graph is extremely challenging
for semiconductor-based approaches. However, as Refs. [70], [74] show,
even small additions to existing connectivity structures can result in major
improvements in circuit depth.

10Native IonQ compilers might improve results, yet do not satisfy our goal
of providing open and reproducible means of obtaining simulation results.

0% 1% 2% 3% 4% 5%

D
epol

Pauli-X
Pauli-Y

Pauli-Z

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

0.0
0.2
0.4

0.0
0.2
0.4

0.0
0.2
0.4

0.0
0.2
0.4

Training Iteration

Tr
ai

ni
ng

L
os

s
0% 1% 2% 3% 4% 5%

D
epol

Pauli-X
Pauli-Y

Pauli-Z

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

x

y

Fig. 6: Approximation of f(x) = x2 using the variational quantum circuit shown in Fig. Fig. 5. (lhs) Comparison noise (applied
in training and inference) variants effects on training loss. (rhs) Predictions (orange dots) versus target function (black line).

IBM-Q IonQ Rigetti

0

100

200

C
ir

cu
it

D
ep

th

Connectivity Complete Native

IBM-Q IonQ Rigetti

5 10 5 10 5 10

0.4

0.6

0.8

1.0

Qubits

Fi
de

lit
y

Noise 0.1% 0.2% 0.3% 0.4% 0.5%

Fig. 7: Impact of vendor-specific gate sets for QFT on (a)
fully connected qubits versus vendor topologies (top), and (b)
on result fidelity for varying levels of depolarising noise and
full connectivity (bottom). Circuit depths vary because of the
stochastic transpilation.

practical industrial applications will not just be judged by
performance considerations, but by their overall cost-benefit
trade-off, which is among core concern of any engineering
discipline. Consequently, since imperfect error correction and
error mitigation schemes [76] will likely result in less costly
machines, it seems reasonable to assume that such machines
will co-exist with perfect quantum computers, given they can
solve certain tasks advantageously over classical computers.

For instance, Liu et al. [77] prove exponential speedups for
certain types of quantum machine learning on fault-tolerant
machines, which are believed to be extensible to NISQ ma-
chines using error-mitigation (Hubregtsen et al. [26] study
training embedding kernels on NISQ machines).

Some properties of quantum states and circuits require
explicit consideration in designing new and extending existing
test methodology: Not just the stochastic nature of quantum
measurements, but also the impact of imperfections makes
defining desirable test results hard, as it is necessary to dis-
tinguish these measurement-induced variations from variations
induced by noise and imperfections. Guidelines that eliminate
the need for individual software engineers to be aware of
statistical peculiarities could be established.

VII. CONCLUSION

Using a reproducible and extensible empirical simulation
approach, we illustrated how noise and imperfections affect
the the properties of quantum algorithms on existing and
hypothetical NISQ hardware. A solid understanding of such
effects is useful not only for researchers and engineers working
on hardware implementations, but also for software engineers.
Yet, it seems unreasonable to equip every software engineer
or SWE researcher with detailed physical knowledge on noise.
We instead provide a suitably detailed introduction to the topic,
accompanied by an easy-to-use replication package that allows
software engineers to explore the influence of noise with little
effort. We deem this a crucial aspect in the endeavour of
realising future quantum applications of practical benefits.

ACKNOWLEDGEMENTS

This work is supported by the German Federal Ministry of
Education and Research within the funding program Quan-
tentechnologien – von den Grundlagen zum Markt, contract
number 13NI6092.

REFERENCES

[1] A. K. Ekert, “Quantum cryptography and bell’s theorem,” in Quantum
Measurements in Optics. Springer, 1992, pp. 413–418. [Online].
Available: https://doi.org/10.1103/PhysRevLett.67.661

[2] J. Biamonte, P. Wittek et al., “Quantum machine learning,”
Nature, vol. 549, no. 7671, 2017. [Online]. Available: https:
//doi.org/10.1038/nature23474

[3] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.
[Online]. Available: https://doi.org/10.48550/arXiv.1411.4028

[4] A. Bayerstadler, G. Becquin et al., “Industry quantum computing
applications,” EPJ Quantum Technology, vol. 8, no. 1, 11 2021. [Online].
Available: https://epjquantumtechnology.springeropen.com/track/pdf/10.
1140/epjqt/s40507-021-00114-x.pdf

[5] E. Altman, K. R. Brown et al., “Quantum simulators: Architectures and
opportunities,” PRX Quantum, vol. 2, Feb 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PRXQuantum.2.017003

[6] J. Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum, vol. 2, p. 79, aug 2018. [Online]. Available: https:
//doi.org/10.22331%2Fq-2018-08-06-79

[7] F. Arute, K. Arya et al., “Quantum supremacy using a programmable
superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510,
2019. [Online]. Available: https://doi.org/10.1038/s41586-019-1666-5

[8] H.-S. Zhong, H. Wang et al., “Quantum computational advantage using
photons,” Science, vol. 370, no. 6523, pp. 1460–1463, 2020. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.abe8770

[9] J. Roffe, “Quantum error correction: an introductory guide,”
Contemporary Physics, vol. 60, no. 3, pp. 226–245, 2019. [Online].
Available: https://doi.org/10.1080/00107514.2019.1667078

[10] W. Mauerer and S. Scherzinger, “1-2-3 reproducibility for quantum
software experiments,” Q-SANER@IEEE International Conference on
Software Analysis, Evolution and Reengineering, 2022.

[11] A. tA v, M. S. ANIS et al., “Qiskit: An open-source framework for
quantum computing,” 2021.

[12] M. Piattini, G. Peterssen, and R. Pérez-Castillo, “Quantum computing:
A new software engineering golden age,” ACM SIGSOFT Software
Engineering Notes, vol. 45, no. 3, pp. 12–14, 2021. [Online]. Available:
https://doi.org/10.1145/3402127.3402131

[13] R. Pérez-Castillo, L. Jiménez-Navajas, and M. Piattini, “Modelling
quantum circuits with uml,” in 2021 IEEE/ACM 2nd International
Workshop on Quantum Software Engineering (Q-SE), 2021, pp. 7–12.
[Online]. Available: https://doi.org/10.1109/Q-SE52541.2021.00009

[14] F. Gemeinhardt, A. Garmendia, and M. Wimmer, “Towards model-driven
quantum software engineering,” in 2021 IEEE/ACM 2nd International
Workshop on Quantum Software Engineering (Q-SE), 2021, pp. 13–15.
[Online]. Available: https://doi.org/10.1109/Q-SE52541.2021.00010

[15] J. Campos and A. Souto, “Qbugs: A collection of reproducible
bugs in quantum algorithms and a supporting infrastructure to enable
controlled quantum software testing and debugging experiments,”
in 2021 IEEE/ACM 2nd International Workshop on Quantum
Software Engineering (Q-SE), 2021, pp. 28–32. [Online]. Available:
https://doi.org/10.1109/Q-SE52541.2021.00013

[16] P. Zhao, J. Zhao, and L. Ma, “Identifying bug patterns in quantum
programs,” in 2021 IEEE/ACM 2nd International Workshop on Quantum
Software Engineering (Q-SE), 2021, pp. 16–21. [Online]. Available:
https://doi.org/10.1109/Q-SE52541.2021.00011

[17] J. Zhao, “Quantum software engineering: Landscapes and horizons,”
CoRR, vol. abs/2007.07047, 2020. [Online]. Available: https://doi.org/
10.48550/arXiv.2007.07047

[18] M. Piattini, G. Peterssen et al., “The talavera manifesto for quantum
software engineering and programming.” in QANSWER, 2020, pp. 1–5.

[19] F. Leymann and J. Barzen, “The bitter truth about gate-based quantum
algorithms in the nisq era,” Quantum Science and Technology, vol. 5,
no. 4, 2020. [Online]. Available: https://dx.doi.org/10.1088/2058-9565/
abae7d

[20] C. Kai-Uwe Becker, N. Tcholtchev et al., “Towards a quantum
benchmark suite with standardized kpis,” in 2022 IEEE 19th
International Conference on Software Architecture Companion (ICSA-
C), 2022, pp. 160–163. [Online]. Available: https://doi.org/10.1109/
ICSA-C54293.2022.00038

[21] P. G. Teague Tomesh, “Supermarq: A scalable quantum benchmark
suite,” 28th IEEE International Symposium on High-Performance

Computer Architecture, 2022. [Online]. Available: https://par.nsf.gov/
biblio/10339323

[22] S. Resch and U. R. Karpuzcu, “Benchmarking quantum computers and
the impact of quantum noise,” ACM Comput. Surv., vol. 54, no. 7, jul
2021. [Online]. Available: https://doi.org/10.1145/3464420

[23] P. J. Salas, “Noise effect on grover algorithm,” The European Physical
Journal D, vol. 46, no. 2, pp. 365–373, 2008. [Online]. Available:
https://doi.org/10.1140/epjd/e2007-00295-1

[24] M. Alam, A. Ash-Saki, and S. Ghosh, “Design-space exploration of
quantum approximate optimization algorithm under noise,” in 2020
IEEE Custom Integrated Circuits Conference (CICC), 2020, pp. 1–4.
[Online]. Available: https://doi.org/10.1109/CICC48029.2020.9075903

[25] S. Wang, E. Fontana et al., “Noise-induced barren plateaus in variational
quantum algorithms,” Nature Communications, vol. 12, no. 1, p. 6961,
2021. [Online]. Available: https://doi.org/10.1038/s41467-021-27045-6

[26] T. Hubregtsen, D. Wierichs et al., “Training quantum embedding
kernels on near-term quantum computers,” Phys. Rev. A, vol. 106, Oct
2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.
106.042431

[27] M. Franz, L. Wolf et al., “Uncovering instabilities in variational-
quantum deep q-networks,” Journal of The Franklin Institute, 8 2022.
[Online]. Available: https://doi.org/10.1016/j.jfranklin.2022.08.021

[28] J. Liu, F. Wilde et al., “Noise can be helpful for variational quantum
algorithms,” 2022. [Online]. Available: https://doi.org/10.48550/arXiv.
2210.06723

[29] J. D. Guimarães, J. Lim et al. (2023) Noise-assisted digital
quantum simulation of open systems. [Online]. Available: https:
//doi.org/10.48550/arXiv.2302.14592

[30] C. W. Gardiner and P. Zoller, Quantum noise: a handbook of Markovian
and non-Markovian quantum stochastic methods with applications to
quantum optics, 2nd ed., H. Haken, Ed. Springer, 2000.

[31] K. Bharti, A. Cervera-Lierta et al., “Noisy intermediate-scale quantum
algorithms,” Rev. Mod. Phys., vol. 94, Feb 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.94.015004

[32] S. Boixo, S. V. Isakov et al., “Characterizing quantum supremacy in
near-term devices,” Nature Physics, vol. 14, no. 6, pp. 595–600, apr
2018. [Online]. Available: https://doi.org/10.1038/s41567-018-0124-x

[33] A. W. Cross, L. S. Bishop et al., “Validating quantum computers using
randomized model circuits,” Phys. Rev. A, vol. 100, Sep 2019. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.100.032328

[34] T. Lubinski, S. Johri et al., “Application-oriented performance
benchmarks for quantum computing,” IEEE Transactions on Quantum
Engineering, vol. 4, pp. 1–32, 2023. [Online]. Available: https:
//doi.org/10.1109/TQE.2023.3253761

[35] T. Lubinski, C. Coffrin et al., “Optimization applications as
quantum performance benchmarks,” arXiv, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2302.02278

[36] T. Krüger and W. Mauerer, “Quantum annealing-based software
components: An experimental case study with sat solving,” in
Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, ser. ICSEW’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 445–450.
[Online]. Available: https://doi.org/10.1145/3387940.3391472

[37] A. J. McCaskey, Z. P. Parks et al., “Quantum chemistry as
a benchmark for near-term quantum computers,” NPJ Quantum
Information, vol. 5, no. 1, p. 99, 2019. [Online]. Available:
https://doi.org/10.1038/s41534-019-0209-0

[38] M. Schönberger, S. Scherzinger, and W. Mauerer, “Ready to leap (by co-
design)? join order optimisation on quantum hardware,” in Proceedings
of ACM SIGMOD/PODS International Conference on Management of
Data, 2023.

[39] A. Li, S. Stein et al., “Qasmbench: A low-level quantum benchmark
suite for nisq evaluation and simulation,” ACM Transactions on
Quantum Computing, vol. 4, no. 2, feb 2023. [Online]. Available:
https://doi.org/10.1145/3550488

[40] M. M. Koen Mesman, Zaid Al-Ars, “Qpack: Quantum
approximate optimization algorithms as universal benchmark
for quantum computers,” arXiv, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2103.17193

[41] J. R. Finžgar, P. Ross et al., “Quark: A framework for quantum
computing application benchmarking,” in 2022 IEEE International
Conference on Quantum Computing and Engineering (QCE), 2022, pp.
226–237. [Online]. Available: https://doi.org/10.1109/QCE53715.2022.
00042

https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.48550/arXiv.1411.4028
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://link.aps.org/doi/10.1103/PRXQuantum.2.017003
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.22331%2Fq-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://www.science.org/doi/abs/10.1126/science.abe8770
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1109/Q-SE52541.2021.00009
https://doi.org/10.1109/Q-SE52541.2021.00010
https://doi.org/10.1109/Q-SE52541.2021.00013
https://doi.org/10.1109/Q-SE52541.2021.00011
https://doi.org/10.48550/arXiv.2007.07047
https://doi.org/10.48550/arXiv.2007.07047
https://dx.doi.org/10.1088/2058-9565/abae7d
https://dx.doi.org/10.1088/2058-9565/abae7d
https://doi.org/10.1109/ICSA-C54293.2022.00038
https://doi.org/10.1109/ICSA-C54293.2022.00038
https://par.nsf.gov/biblio/10339323
https://par.nsf.gov/biblio/10339323
https://doi.org/10.1145/3464420
https://doi.org/10.1140/epjd/e2007-00295-1
https://doi.org/10.1109/CICC48029.2020.9075903
https://doi.org/10.1038/s41467-021-27045-6
https://link.aps.org/doi/10.1103/PhysRevA.106.042431
https://link.aps.org/doi/10.1103/PhysRevA.106.042431
https://doi.org/10.1016/j.jfranklin.2022.08.021
https://doi.org/10.48550/arXiv.2210.06723
https://doi.org/10.48550/arXiv.2210.06723
https://doi.org/10.48550/arXiv.2302.14592
https://doi.org/10.48550/arXiv.2302.14592
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://doi.org/10.1038/s41567-018-0124-x
https://link.aps.org/doi/10.1103/PhysRevA.100.032328
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.1109/TQE.2023.3253761
https://doi.org/10.48550/arXiv.2302.02278
https://doi.org/10.1145/3387940.3391472
https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.1145/3550488
https://doi.org/10.48550/arXiv.2103.17193
https://doi.org/10.1109/QCE53715.2022.00042
https://doi.org/10.1109/QCE53715.2022.00042

[42] C. D. Bruzewicz, J. Chiaverini et al., “Trapped-ion quantum computing:
Progress and challenges,” Applied Physics Reviews, vol. 6, no. 2, 2019.
[Online]. Available: https://doi.org/10.1063/1.5088164

[43] I. Pogorelov, T. Feldker et al., “Compact ion-trap quantum computing
demonstrator,” PRX Quantum, vol. 2, Jun 2021. [Online]. Available:
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343

[44] “Ionq aria: Practical performance,” https://ionq.com/posts/
july-25-2022-ionq-aria-part-one-practical-performance, accessed:
2023-03-25.

[45] “Rigetti systems,” https://qcs.rigetti.com/qpus, accessed: 2023-03-25.
[46] A. G. Fowler, M. Mariantoni et al., “Surface codes: Towards practical

large-scale quantum computation,” Physical Review A, vol. 86, no. 3,
sep 2012. [Online]. Available: https://doi.org/10.1103%2Fphysreva.86.
032324

[47] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2010. [Online]. Available: https://doi.org/10.1017/CBO9780511976667

[48] K. Nakaji, S. Uno et al., “Approximate amplitude encoding in shallow
parameterized quantum circuits and its application to financial market
indicators,” Phys. Rev. Res., vol. 4, May 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevResearch.4.023136

[49] J. Liu and H. Zhou, “Hardware efficient quantum search algorithm,”
2021. [Online]. Available: https://doi.org/10.48550/arXiv.2103.14196

[50] M. Briański, J. Gwinner et al., “Introducing structure to expedite
quantum searching,” Phys. Rev. A, vol. 103, Jun 2021. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.103.062425

[51] H. Tezuka, K. Nakaji et al., “Grover search revisited: Application to
image pattern matching,” Phys. Rev. A, vol. 105, Mar 2022. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.105.032440

[52] A. Abbas, S. Andersson et al., “Learn quantum computation using
qiskit,” 2020. [Online]. Available: https://qiskit.org/textbook/

[53] M. Zajac and U. Störl, “Towards quantum-based search for industrial
data-driven services,” in 2022 IEEE International Conference on
Quantum Software (QSW), 2022, pp. 38–40. [Online]. Available:
https://doi.org/10.1109/QSW55613.2022.00021

[54] H. Amellal, A. Meslouhi, and A. E. Allati, “Processing unstructured
databases using a quantum approach,” in Innovations in Smart Cities
Applications Edition 2, M. Ben Ahmed, A. A. Boudhir, and A. Younes,
Eds. Cham: Springer International Publishing, 2019, pp. 275–285.
[Online]. Available: https://doi.org/10.1007/978-3-030-11196-0 25

[55] C. Figgatt, D. Maslov et al., “Complete 3-qubit grover search on
a programmable quantum computer,” Nature communications, vol. 8,
no. 1, pp. 1–9, 2017. [Online]. Available: https://doi.org/10.1038/
s41467-017-01904-7

[56] K. Mitarai, M. Negoro et al., “Quantum circuit learning,” Physical
Review A, vol. 98, no. 3, sep 2018. [Online]. Available: https:
//doi.org/10.1103%2Fphysreva.98.032309

[57] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, “Expressibility
and entangling capability of parameterized quantum circuits for
hybrid quantum-classical algorithms,” Advanced Quantum Technologies,
vol. 2, no. 12, 2019. [Online]. Available: https://doi.org/10.1002/qute.
201900070

[58] K. Kraus, A. Böhm et al., States, Effects, and Operations Fundamental
Notions of Quantum Theory: Lectures in Mathematical Physics at the
University of Texas at Austin. Springer, 1983. [Online]. Available:
https://doi.org/10.1007/3-540-12732-1

[59] M. A. Nielsen, “A simple formula for the average gate fidelity
of a quantum dynamical operation,” Physics Letters A, vol. 303,
no. 4, pp. 249–252, 2002. [Online]. Available: https://doi.org/10.1016/
S0375-9601(02)01272-0

[60] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to
compare real and ideal quantum processes,” Phys. Rev. A, vol. 71, Jun
2005. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.
71.062310

[61] T. H. Artur Ekert, “Introduction to quantum information science,” 2022.
[Online]. Available: https://qubit.guide/qubit guide.pdf

[62] K. Georgopoulos, C. Emary, and P. Zuliani, “Modeling and
simulating the noisy behavior of near-term quantum computers,”
Phys. Rev. A, vol. 104, Dec 2021. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.104.062432

[63] C. Blank, D. K. Park et al., “Quantum classifier with tailored
quantum kernel,” npj Quantum Information, vol. 6, no. 1, p. 41, 2020,
supplementary information. [Online]. Available: https://doi.org/10.1038/
s41534-020-0272-6

[64] Qiskit-Development-Team, “Qiskit source-code: ba-
sic device gate errors,” 2023, version 0.12.0, Accessed: 2023-06-03.
[Online]. Available: https://qiskit.org/ecosystem/aer/stubs/qiskit aer.
noise.device.basic device gate errors.html

[65] E. Magesan, “Depolarizing behavior of quantum channels in higher
dimensions,” 2010. [Online]. Available: https://doi.org/10.48550/arXiv.
1002.3455

[66] H. Pashayan, J. J. Wallman, and S. D. Bartlett, “Estimating
outcome probabilities of quantum circuits using quasiprobabilities,”
Phys. Rev. Lett., vol. 115, Aug 2015. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevLett.115.070501

[67] M. Cramer, M. B. Plenio et al., “Efficient quantum state tomography,”
Nature Communications, vol. 1, no. 1, p. 149, 2010. [Online]. Available:
https://doi.org/10.1038/ncomms1147

[68] S. Ebadi, T. T. Wang et al., “Quantum phases of matter on a
256-atom programmable quantum simulator,” Nature, vol. 595, no.
7866, pp. 227–232, 2021. [Online]. Available: https://doi.org/10.1038/
s41586-021-03582-4

[69] K.-N. Schymik, V. Lienhard et al., “Enhanced atom-by-atom assembly
of arbitrary tweezer arrays,” Phys. Rev. A, vol. 102, Dec 2020. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.102.063107

[70] K. Wintersperger, H. Safi, and W. Mauerer, “Qpu-system co-
design for quantum hpc accelerators,” in Architecture of Computing
Systems, M. Schulz, C. Trinitis et al., Eds. Cham: Springer
International Publishing, 2022, pp. 100–114. [Online]. Available:
https://doi.org/10.1007/978-3-031-21867-5 7

[71] K. R. Brown, J. Kim, and C. Monroe, “Co-designing a scalable
quantum computer with trapped atomic ions,” npj Quantum Information,
vol. 2, no. 1, p. 16034, Nov. 2016. [Online]. Available: https:
//doi.org/10.1038/npjqi.2016.34

[72] G. Li, A. Wu et al., “On the co-design of quantum software and
hardware,” in Proceedings of the Eight Annual ACM International
Conference on Nanoscale Computing and Communication, ser.
NANOCOM ’21. New York, NY, USA: Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3477206.
3477464

[73] S. Feld, C. Roch et al., “A hybrid solution method for the capacitated
vehicle routing problem using a quantum annealer,” M. S. Sarandy,
Ed., vol. 6. Frontiers Media SA, 6 2019. [Online]. Available:
https://doi.org/10.3389/fict.2019.00013

[74] H. Safi, K. Wintersperger, and W. Mauerer, “Influence of hw-sw-co-
design on quantum computing scalability,” in Proceedings of the IEEE
Quantum Software Week, 2023.

[75] M. Mitzenmacher and E. Upfal, Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, 2005. [Online]. Available: https://doi.org/10.1017/
CBO9780511813603

[76] S. Endo, S. C. Benjamin, and Y. Li, “Practical quantum error mitigation
for near-future applications,” Phys. Rev. X, vol. 8, Jul 2018. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevX.8.031027

[77] Y. Liu, S. Arunachalam, and K. Temme, “A rigorous and robust
quantum speed-up in supervised machine learning,” Nature Physics,
vol. 17, no. 9, pp. 1013–1017, 2021. [Online]. Available: https:
//doi.org/10.1038/s41567-021-01287-z

https://doi.org/10.1063/1.5088164
https://link.aps.org/doi/10.1103/PRXQuantum.2.020343
https://ionq.com/posts/july-25-2022-ionq-aria-part-one-practical-performance
https://ionq.com/posts/july-25-2022-ionq-aria-part-one-practical-performance
https://qcs.rigetti.com/qpus
https://doi.org/10.1103%2Fphysreva.86.032324
https://doi.org/10.1103%2Fphysreva.86.032324
https://doi.org/10.1017/CBO9780511976667
https://link.aps.org/doi/10.1103/PhysRevResearch.4.023136
https://doi.org/10.48550/arXiv.2103.14196
https://link.aps.org/doi/10.1103/PhysRevA.103.062425
https://link.aps.org/doi/10.1103/PhysRevA.105.032440
https://qiskit.org/textbook/
https://doi.org/10.1109/QSW55613.2022.00021
https://doi.org/10.1007/978-3-030-11196-0_25
https://doi.org/10.1038/s41467-017-01904-7
https://doi.org/10.1038/s41467-017-01904-7
https://doi.org/10.1103%2Fphysreva.98.032309
https://doi.org/10.1103%2Fphysreva.98.032309
https://doi.org/10.1002/qute.201900070
https://doi.org/10.1002/qute.201900070
https://doi.org/10.1007/3-540-12732-1
https://doi.org/10.1016/S0375-9601(02)01272-0
https://doi.org/10.1016/S0375-9601(02)01272-0
https://link.aps.org/doi/10.1103/PhysRevA.71.062310
https://link.aps.org/doi/10.1103/PhysRevA.71.062310
https://qubit.guide/qubit_guide.pdf
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://link.aps.org/doi/10.1103/PhysRevA.104.062432
https://doi.org/10.1038/s41534-020-0272-6
https://doi.org/10.1038/s41534-020-0272-6
https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.noise.device.basic_device_gate_errors.html
https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.noise.device.basic_device_gate_errors.html
https://doi.org/10.48550/arXiv.1002.3455
https://doi.org/10.48550/arXiv.1002.3455
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1038/s41586-021-03582-4
https://link.aps.org/doi/10.1103/PhysRevA.102.063107
https://doi.org/10.1007/978-3-031-21867-5_7
https://doi.org/10.1038/npjqi.2016.34
https://doi.org/10.1038/npjqi.2016.34
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.1145/3477206.3477464
https://doi.org/10.3389/fict.2019.00013
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603
https://link.aps.org/doi/10.1103/PhysRevX.8.031027
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41567-021-01287-z

	Introduction
	Related Work
	Quantum Hardware and HW Challenges
	Physical Foundations
	Trapped Ions
	Superconducting Transmons

	Challenges
	Noise
	Connectivity
	Gate Sets

	Subject Algorithms
	Grover Search
	Quantum Fourier Transform
	Variational Quantum Circuits

	Modelling Noise and Imperfections
	Mixed States and Density Operators
	Dynamics of Noisy Quantum Programs
	Fidelity
	Noise Models
	Bit Flips
	Depolarisation
	Thermal Relaxation
	Hardware-Matched Composite Noise

	Measurement and Sampling

	Numerical Simulations
	Noise and Scalability
	Noise Variants
	Connectivity and Gate-Sets

	Implications for Software Engineering
	Conclusion
	References

