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Abstract

Quantum computers have the potential to solve certain problems much more
efficiently than would be possible with conventional computers. In particular,
the Quantum Approximate Optimization Algorithm (QAOA) and its various vari-
ants have produced promising results on quantum simulators for a variety of
optimization problems. In practice, however, noise and other errors are char-
acteristic of computation on real quantum computers. This work addresses the
question of how noise affects the performance of the QAOA and three QAOA
variants: Warm-Starting QAOA (WSQAOA), WS-Init-QAOA and Recursive QAOA
(RQAOA). In particular, we will investigate which QAOA variants are particu-
larly resistant to noise and how much noise can be tolerated. To answer these
questions, a noise model simulating the effects of thermal relaxation, gate in-
fidelities and state preparation and measurement (SPAM) errors will be devel-
oped based on publicly available noise data for IBM superconducting quantum
systems. The numerical simulations performed reveal measurable differences
between the QAOA variants, with the RQAOA being especially resistant to noise
and achieving good results with only a single QAOA layer. In addition, our re-
sults show that thermal relaxation due to circuit depth caused by CNOT gates
is the largest source of noise. We can also demonstrate that for moderate noise
levels, using more than one QAOA layer can still improve the performance of
the standard QAOA, the WS-Init-QAOA and the RQAOA.
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Acronyms

AQC adiabatic quantum computation

NISQ noisy, intermediate-scale quantum

QAOA Quantum Approximate Optimization Algorithm

QPU quantum processing unit

RQAOA Recursive QAOA

SDP semidefinite program

SPAM state preparation and measurement

WSQAOA Warm-Starting QAOA
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1. Introduction

Numerous advances in computing, in both software and hardware, have made it
possible to solve complex computational problems today that were once deemed
impractical mere decades ago. However, despite recent developments in fields
such as machine learning, there still exist several limitations to our computa-
tional capabilities, whether of a practical or theoretical nature. While current
computer processors rely on traditional electronic circuitry, quantum computa-
tion aims to utilize quantum mechanical phenomena such as quantum superpo-
sitions and entanglement to gain an advantage over classical computers. Specif-
ically, gate-based quantum computers work with quantum bits called qubits that
can be in a superposition of zero and one. For multiple algorithmic problems,
there are algorithms on gate-based quantum computers with a better asymp-
totic time complexity than the best-known classical algorithm. Shor’s algorithm,
for instance, can solve the Integer factorization problem and the Discrete log-
arithm problem in polynomial time whereas no classical, polynomial-algorithm
is known [1]. For the problem of searching an unstructured database, Grover’s
algorithm achieves a asymptotic time complexity of O (

√
n), which is a quadratic

speedup compared to the best-possible classical time complexity of O(n) [2].

Both of these algorithms require fault-tolerant quantum computers with a large
number of qubits in order to provide an advantage over classical computers.
However, current quantum systems, such as those developed by IBM, are sub-
ject to quantum noise leading to errors and offer only a limited number of
qubits [3]. These kinds of quantum systems are referred to as noisy, interme-
diate-scale quantum (NISQ) devices [4]. While the computational capability of
NISQ systems is limited when compared to the best current classical computers,
there have been several efforts to develop algorithms which can take advantage
of these systems. Of particular interest in recent years has been the Quantum
Approximate Optimization Algorithm (QAOA), a hybrid algorithm that uses both
a gate-based quantum computer and a classical computer operating in an alter-
nating fashion [5]. The QAOA can be used to find approximate solutions to many
hard optimization problems, including optimization variants of all 21 of Karp’s
original NP-complete problems [6], [7]. It is considered one of the most promis-
ing algorithms of the NISQ era [8]. Still, as suggested by various studies, both
solution quality and runtime are severely affected by noise experienced on near-
term quantum devices [9]–[12]. Many variants of the QAOA have been proposed,
such as the ADAPT-QAOA [13], the Warm-Starting QAOA (WSQAOA) [14] or the
Recursive QAOA (RQAOA) [15], [16], which have the potential of overcoming at
least some of the limitations caused by noise.
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In this thesis, we will analyze the impact of noise on the performance of four
QAOA variants via numerical simulations on a Qaptiva 800 quantum simulation
platform, using two NP-complete problems,Max-cut and Partition, as examples.
We will develop a model that simulates noise caused by gate infidelities, thermal
relaxation, and state preparation and measurement (SPAM) errors using real-
istic noise parameters obtained from data of IBM superconducting quantum
systems. The QAOA variants examined are the standard QAOA, the RQAOA, the
WSQAOA and a variant of the WSQAOA [17], which we will call WS-Init-QAOA.
We will study how much noise the individual variants can handle and which
kinds of noise affects their performance the most. Furthermore, we will derive
potential lessons for hardware manufacturers and best practices for quantum
engineers and software developers.

The rest of this work is structured as follows: Chapter 2 gives a brief introduc-
tion on fundamental concepts of gate-based quantum computing. Chapter 3 in-
troduces both the two studied problems, Max-cut and Partition. It also motivates
and explains the QAOA as well as the QAOA variants WSQAOA and RQAOA. In
Chapter 4, we will explain the mathematical formalisms used to describe quan-
tum noise as well as how many typical types of noise occurring in a quantum
circuit can be modeled. Chapter 5 describes how the QAOA performance anal-
ysis was performed and discusses several aspects regarding the design of the
noisemodel and the implementation of the simulation. In Chapter 6, we evaluate
the results of the performance analysis, highlighting certain interesting findings
and discussing possible reasons for the observations. Finally, Chapter 7 sum-
marizes the main results of the analysis and talks about possible implications
and future research directions.
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2. Fundamental concepts of
quantum computation

In a classical computer, a group of n bits is in one of 2n possible states, which
in the context of quantum computing are called the computational basis states.
The qubits in a quantum circuit, however, can be in a superposition of these
states, determined by the states’ amplitudes. Quantum gates can manipulate
these amplitudes. Whenmeasuring the qubits, their superposition collapses and
we only get one of 2n possible results, depending on the amplitudes. This chap-
ter introduces fundamental mathematical concepts (Section 2.1) as well as the
key components of quantum circuits: qubits (Sections 2.2 and 2.3), gates (Sec-
tion 2.4) and measurements (Section 2.5).

2.1. Fundamental notions from linear algebra

A complex vector space is a vector space whose scalars are complex numbers
instead of real numbers. Throughout this thesis we will be working exclusively
in the finite complex vector space Cn. The bra-ket notation |ψ⟩ (“ket psi”) is used
to describe a vector ψ in the complex vector space Cn:

|ψ⟩ =


ψ1

ψ2
...
ψn


If |ψ⟩ and |φ⟩ are vectors in some vector space, such as Cn, then so is α|ψ⟩+β|φ⟩
where α, β ∈ C.

A linear operator Amaps vectors in Cn to vectors in Cm and will be represented
as a matrix with complex elements: A ∈ Cm×n. 1n is the n-dimensional identity
operator (1n|ψ⟩ = |ψ⟩ for every |ψ⟩ ∈ Cn). It can be written as a matrix with ones
on the diagonal and zeros everywhere else. If the number of dimensions is not
important or clear from context, the identity is written as 1.

The complex conjugate z∗ of a complex number z is defined as (a+ bi)∗ = a− bi.
Further, |z|2 = z∗z = a2+b2. The complex conjugateA∗ of a matrixA is defined by
taking the complex conjugate element-wise: (A∗)ij = (Aij)

∗. A† is the conjugate
transpose or Hermitian transpose of A: A† = (AT )∗, i.e. (A†)ij = (Aji)

∗. It has the
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following property: (AB)† = B†A†. As a shorthand, we define the vector dual ⟨ψ|
(“bra psi”) as ⟨ψ| =

(
|ψ⟩
)†. This notation allows us to define the inner product

⟨ψ|φ⟩ ∈ C of the two vectors |ψ⟩ and |φ⟩ as

⟨ψ|φ⟩ =
(
ψ∗
1ψ

∗
2 . . . ψ

∗
n

)

φ1

φ2
...
φn

 =
∑
i

ψ∗
iφi.

The norm of a vector |ψ⟩ is defined as
√

⟨ψ|ψ⟩. A normalized vector is a vector
with norm 1 (⟨ψ|ψ⟩ = 1). Two vectors |ψ⟩ and |φ⟩ are orthogonal if ⟨ψ|φ⟩ = 0. A
set of vectors {|ei⟩} ⊆ Cn forms a basis of Cn if every vector in |ψ⟩ ∈ Cn can be
written as a linear combination of the |ei⟩: |ψ⟩ =

∑
i αi|ei⟩ where αi ∈ C. If the

|ei⟩ are normalized and mutually orthogonal, they form an orthonormal basis.
For any two states |ei⟩, |ej⟩ of some orthonormal basis, ⟨ei|ej⟩ = δij, where δij
denotes the Kronecker delta

δij =

{
1 if i = j

0 if i ̸= j.

From the definition of the vector dual, it follows that |φ⟩⟨ψ| is a linear operator
whichmaps |ψ⟩ to |φ⟩ and all vectors that are orthogonal to |ψ⟩ to the zero vector.
In particular, if |i⟩ and |j⟩ are standard basis vectors, then |i⟩⟨j| is matrix A with
Aij = 1 and zeros everywhere else. On the other hand, if A is a matrix and |i⟩
and |j⟩ are standard basis vectors, then ⟨i|A|j⟩ = Aij [18].

2.2. Quantum states and qubits

In the context of quantum computing, quantum states can be represented as
normalized vectors in Cn. The two vectors

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
form an orthonormal basis of C2. This basis is commonly referred to as the
1-qubit computational basis.

The smallest unit of information in quantum computing is the qubit. The state
of a qubit is represented as a normalized vector |ψ⟩ ∈ C2 and can therefore be
written as a linear combination of |0⟩ and |1⟩:

|ψ⟩ =
(
α
β

)
= α|0⟩+ β|1⟩ with ⟨ψ|ψ⟩ = |α|2 + |β|2 = 1 (2.1)

Whereas a classical bit can either be 0 or 1, a qubit can be in a superposition
of |0⟩ and |1⟩, which is determined by its amplitudes α and β. If we are given
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some qubit, we cannot access the amplitudes directly but we can obtain partial
information about them throughmeasurement. Measurements are performed in
an orthonormal basis, which usually but not always is the computational basis.
When measuring the qubit (2.1) in the computational basis, we will find it in
state |0⟩ with probability |α|2 and in state |1⟩ with probability |β|2. By measuring
the qubit, its superposition collapses. The qubit’s state after the measurement
will be the computational basis state in which it was measured.

Consider the two states

|+⟩ = 1√
2

(
|0⟩+ |1⟩

)
, |−⟩ = 1√

2

(
|0⟩ − |1⟩

)
.

When measured in the computational basis, we get the same kind of results:
|0⟩ and |1⟩ with probability 1/2 each. They are still considered different states
because the relative phase of the two amplitudes is different. Often, it is more
useful to think of the complex amplitudes in polar form: z = r exp(iφ) where r
describes the absolute value of the amplitude and φ describes its phase. The
relative phase of the amplitudes of |0⟩ and |1⟩ is significant and plays an impor-
tant role in many quantum algorithms. However, if two state vectors |ψ⟩ and |ψ′⟩
are the same up to a global phase factor, that is |ψ′⟩ = exp(iθ)|ψ⟩, they are phys-
ically indistinguishable and are considered to represent the same state. Thus,
without loss of generality, we can assume that the phase of |0⟩ is 0. By further
using the property (sin θ)2 + (cos θ)2 = 1, each qubit can be written in the form

|ψ⟩ = cos

(
θ

2

)
|0⟩+ exp(iφ) sin

(
θ

2

)
|1⟩ (2.2)

with φ ∈ [0, 2π] and θ ∈ [0, π]. For example, φ = π, θ = π/2 yields the state
|−⟩. This results in a useful visualization known as the Bloch sphere, shown in
Figure 1. Every single-qubit state can be thought of as a point on the Bloch
sphere, where |0⟩ is the “north pole” and |1⟩ is the “south pole” of the sphere.
This visualization, however, only works for single-qubit systems [18].

2.3. Multi-qubit systems

Multi-qubit systems are expressed using the tensor product. If V and W are
vector spaces, then the tensor product V ⊗ W is the vector space containing
all vectors which can be written as a linear combination of vectors of the form
|v⟩ ⊗ |w⟩ where |v⟩ ∈ V and |w⟩ ∈ W . Many useful properties follow from this
definition such as associativity and (|v1⟩ + |v2⟩) ⊗ |w⟩ = |v1⟩ ⊗ |w⟩ + |v2⟩ ⊗ |w⟩.
As a shorthand notation, we will write |v⟩ ⊗ |w⟩ = |v, w⟩ = |vw⟩. States in a
two-qubit system are represented as normalized vectors in C2 ⊗ C2 and can
be written as linear combinations of vectors from the two-qubit computational
basis {|00⟩, |01⟩, |10⟩, |11⟩}:

|ψ⟩ = α|00⟩+ β|01⟩+ γ|10⟩+ δ|11⟩ with |α|2 + |β|2 + |γ|2 + |δ|2 = 1
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Figure 1.: The Bloch sphere: a useful way to visualize the general single-qubit state
cos θ2 |0⟩+ eiϕ sin θ

2 |1⟩ [18]

In practice, a vector in Cn ⊗ Cm is commonly represented as a vector in Cnm.
This transformation can be done using the Kronecker product, which for two
qubits is defined as:

|v⟩ ⊗ |w⟩ =
(
v0
v1

)
⊗
(
w0

w1

)
=

v0 ·
(
w0

w1

)
v1 ·

(
w0

w1

)
 =


v0w0

v0w1

v1w0

v1w1

 (2.3)

By generalizing this definition to higher dimensions, the state of an n-qubit sys-
tem can be represented as a 2n-dimensional, complex vector [18].

2.4. Quantum gates

By the postulates of Quantummechanics, if |ψ(t)⟩ is a state of some closed quan-
tum system at time t, then the evolution of the state from time t1 to time t2 can be
written as |ψ(t2)⟩ = U |ψ(t1)⟩ where U is a unitary operator. Quantum gates are
therefore represented as unitary operators. An operator/a matrix U is unitary if
UU † = U †U = 1. From this property, it follows that unitary operators preserve
inner products since the inner product of U |ψ⟩ and U |φ⟩ is(

U |ψ⟩
)†
U |φ⟩ = ⟨ψ|U †U |φ⟩ = ⟨ψ|1|φ⟩ = ⟨ψ|φ⟩.

In particular, normalized vectors stay normalized and orthogonal vectors stay
orthogonal after applying a unitary. Unitary operators can therefore be thought
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of as rotations, mapping the vectors of one orthonormal basis {|ei⟩} to the vec-
tors of some other orthonormal basis {|fi⟩} of the same dimension. In fact, any
unitary can be written as

U =
∑
j

|fj⟩⟨ej| with U |ei⟩ =
∑
j

|fj⟩ ⟨ej|ei⟩︸ ︷︷ ︸
δij

= |fi⟩.

The tensor product can also be used on operators by defining (A⊗B)(|v⟩⊗|w⟩) =
A|v⟩⊗B|w⟩ and extending this definition to all vectors by linearity. This includes
vector duals: |vw⟩† = ⟨vw|. The Kronecker product can be defined analogously
to (2.3) for matrices. For example, for A ∈ C2×3 and B ∈ C2×2:

A⊗B =

(
a11B a12B a13B
a21B a22B a23B

)
=


a11b11 a11b12 a12b11 a12b12 a13b11 a13b12
a11b21 a11b22 a12b21 a12b22 a13b21 a13b22
a21b11 a21b12 a22b11 a22b12 a23b11 a23b12
a21b21 a21b22 a22b21 a22b22 a23b21 a23b22


The definition of unitary operators implies that if U1 and U2 are unitary, then so
are U2U1 and U1 ⊗ U2. In other words, unitaries can be composed sequentially
and in parallel. A quantum circuit can thus be thought of as one large unitary
operator which is composed of many smaller unitary operators, the individual
quantum gates.

While quantum gates acting on any number of qubits are conceivable, in prac-
tice almost all quantum gates either act on a single qubit or two qubits. Three
of the most widely used single-qubit gates are the so-called Pauli gates

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Each Pauli gate can be interpreted as a 180◦ rotation around its respective axis
of the Bloch sphere. As an alternative interpretation, the X gate applies a bit
flip and is equivalent to the classical NOT gate (X|0⟩ = |1⟩, X|1⟩ = |0⟩), Z applies
a phase flip by adding a relative phase of π or 180◦ to the amplitude of |1⟩ (Z|0⟩ =
|0⟩, Z|1⟩ = −|1⟩), and Y applies both a bit and a phase flip.

Another important gate is the Hadamard gate H which maps |0⟩ to |+⟩ and |1⟩
to |−⟩:

H = |+⟩⟨0|+ |−⟩⟨1| = 1√
2

(
1 1
1 −1

)
Since qubits are initialized as |0⟩ in many physical quantum computers, the
Hadamard is often used to prepare the equal superposition |+⟩.
These four gates all have in common that applying each gate twice restores
the original state: XX = Y Y = ZZ = HH = 1. Three other useful gates which
generally do not have this property are the rotational gatesRX(θ), RY (θ), RZ(θ).
Each gate is parameterized by an angle θ and corresponds to a rotation of θ
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around the respective Bloch sphere axis. To find the matrix representations
of these gates, one needs to compute the matrix exponentiation of the Pauli
matrices. By using the Taylor series expansions of exp(·), sin(·) and cos(·), you
can show that for every matrix A such that AA = 1,

exp(iθA) = cos(θ)1− i sin(θ)A.

Using this fact one can derive RX(θ), RY (θ) and RZ(θ):

RX(θ) = exp(−iθX/2) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
RY (θ) = exp(−iθY/2) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
RZ(θ) = exp(−iθZ/2) =

(
exp

(
−i θ

2

)
0

0 exp
(
i θ
2

))
where the factor 1/2 is necessary to preserve the Bloch sphere interpretation
given by Figure 1. Every possible single-qubit gate can be represented as a
combination of RX, RY and RZ. Since chaining multiple rotations results in
another rotation, every single-qubit gate is equivalent to some rotation around
the Bloch sphere.

The identity gate 12 is trivially unitary since 11† = 11 = 1. To apply a single-
qubit gate to some qubit in a multi-qubit system, we can tensor it with the iden-
tity. For example, to apply the X gate to the first qubit in a three-qubit system,
we apply the unitary X ⊗ 12 ⊗ 12 to the system. As a notational shorthand, we
will write the unitary applying the single qubit gate U to the i-th qubit as U (i).
The unitary of the previous example would therefore be written as X(1).

If a quantum circuit only contains single-qubit gates, every qubit is essentially
independent. This changes when we introduce two-qubit gates. The most com-
mon two-qubit gate is the controlled-NOT or CNOT gate. It involves a control
qubit and a target qubit. The gate flips the target qubit if the control qubit is in
state |1⟩ and leaves it untouched if the control qubit is in state |0⟩:

CNOT = |00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨11|+ |11⟩⟨10| =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Alternatively, we can interpret CNOT as a gate mapping |a, b⟩ to |a, a ⊕ b⟩ where
⊕ denotes Boolean XOR. Every possible unitary operation on a multi-qubit sys-
tem can be implemented using single-qubit gates and the CNOT gate.

CNOT can cause two qubits to become entangled:

CNOT (|+⟩ ⊗ |0⟩) = 1√
2

(
|00⟩+ |11⟩

)
(2.4)
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If a multi-qubit state |ψ⟩ can be written as a tensor product |a⟩ ⊗ |b⟩, we call it
separable. Otherwise, we call it entangled. Intuitively, if two qubits are entan-
gled, then measuring one gives us additional information about the other which
we did not have before. In (2.4), for example, if we measure the first qubit and
find it in state |0⟩, we know that the second qubit must also be in state |0⟩ since
|01⟩ has amplitude 0 [18].

2.5. Measurements

Measuring a single-qubit state |ψ⟩ in the computational basis can be interpreted
as a projection of the state onto the basis vectors |0⟩ and |1⟩ where ⟨ψ|0⟩⟨0|ψ⟩ =
|⟨0|ψ⟩|2 is the probability of getting the result |0⟩ when measuring |ψ⟩. In gen-
eral, these kinds of projective measurements of a quantum system are typically
described using observables. The same way a quantum gate is represented by
a unitary operator, an observable is represented by a Hermitian operator. An
operator H is Hermitian if H = H†.

Given a square matrix A, a vector |ψ⟩ and a scalar λ, if A|ψ⟩ = λψ, then λ is
called an eigenvalue of A and |ψ⟩ is called the corresponding eigenvector or
eigenstate. The eigenvalues of an observable are the possible measurement
results. It can be shown that eigenvalues of an observable/Hermitian operator
are always real. It can be further shown that every observableM has a so-called
spectral decomposition and can be written as

M =
∑
i

mi|vi⟩⟨vi|, (2.5)

where the mi are the eigenvalues of M , the {|vi⟩} form an orthonormal basis of
Cn and each |vi⟩ is an eigenvector ofM with eigenvaluemi. {|vi⟩} can be thought
of as the measurement basis of M . If any of the |vi⟩ is measured with M , the
measurement result will be mi with probability 1. If the mi are all distinct, the
decomposition (2.5) will be unique. In the general case, we need to group terms
with the same eigenvalue, giving the decomposition

M =
∑
m

mPm. (2.6)

Here, the distinct m are the eigenvalues of M and every Pm is a so-called pro-
jector, which can be written as Pm =

∑
j |vj⟩⟨vj| for a subset of the basis vectors.

A projector can be thought of as a Hermitian operator which “projects” vectors
from Cn into the subspace formed by the |vj⟩.
Measurements of the observable given by (2.6) are defined as follows: When
measuring the state |ψ⟩, the probability of getting outcome m is given by

Pr(m) = ⟨ψ|Pm|ψ⟩. (2.7)
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As discussed earlier, measuring a quantum system changes its state. The state
after the measurement is given by

Pm|ψ⟩√
Pr(m)

.

Visually, Pm projects |ψ⟩ into the subspace which aligns with the measurement
result and the factor 1/

√
Pr(m) re-normalizes the state. Definition (2.7) justi-

fies the idea that two quantum states which are equal up to a global phase are
physically indistinguishable since(

exp(iθ)|ψ⟩
)†
Pm exp(iθ)|ψ⟩ = exp(−iθ) exp(iθ)︸ ︷︷ ︸

exp(−iθ+iθ)

⟨ψ|Pm|ψ⟩ = ⟨ψ|Pm|ψ⟩,

so there is no observable to tell them apart. Using (2.7), the expected measure-
ment result when measuring M is given by

E [M ] =
∑
m

mPr(m) =
∑
m

m⟨ψ|Pm|ψ⟩ = ⟨ψ|
(∑

m

mPm

)
|ψ⟩ = ⟨ψ|M |ψ⟩. (2.8)

The most common kind of measurement is the Z measurement with observable
Z (as defined in Section 2.4). Z has the eigenvalue/eigenstate pairs Z|0⟩ = +1|0⟩
and Z|1⟩ = −1|1⟩. So, a Z measurement is a measurement in the computational
basis, where we associate |0⟩ with result 1 and |1⟩ with result −1. For example,
measuring |+⟩ yields

Pr(1) = ⟨+|0⟩⟨0|+⟩ = 1

2
and Pr(−1) = ⟨+|1⟩⟨1|+⟩ = 1

2
as expected.

Another common measurement is the X measurement using observable X with
X|+⟩ = +1|+⟩ and X|−⟩ = −1|−⟩. It is equivalent to first applying the unitary
H and then performing a Z measurement. Finally, 12 can also be thought of as
a measurement. It has only one possible outcome, 1, and leaves the measured
state untouched.

Observables can be composed with the tensor product. If ai are the possible
results of observable A and bj are the possible results of observable B, then
A ⊗ B is an observable whose results are all products aibj. For example, the
observable Z(1)Z(3) = Z ⊗ 12 ⊗ Z measures qubits 1 and 3 of a 3-qubit system
in the computational while leaving qubit 2 untouched. The result is +1 if the
qubits are found to be in the same computational basis state and −1 if their
computational basis states are different.

We can also add observables, adding their corresponding results, as long as
they are diagonal in the same basis, that is they share the same measurement
basis {|vi⟩}. For example, M = Z ⊗ 12 + Z ⊗ Z is an observable with

⟨00|M |00⟩ = 2, ⟨01|M |01⟩ = 0, ⟨10|M |10⟩ = −2, ⟨11|M |11⟩ = 0

since both Z⊗12 and Z⊗Z can be written as a linear combination of |v⟩⟨v| with
v ∈ {00, 01, 10, 11} [18].
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3. Quantum optimization

One of the most promising applications of quantum computers is solving hard
optimization problems, with the QAOA being one of the leading candidate al-
gorithms of this field. This chapter motivates and explains the QAOA and two
of its variants, which will be investigated in this thesis. Section 3.1 explains
how optimization problems are typically represented in the context of quantum
computing. In Section 3.2 and Section 3.3, two NP-hard optimization problems
are introduced, which will be the main focus of the investigation of noisy QAOA.
Section 3.4 introduces adiabatic quantum computation (AQC). This is the key
motivation behind the QAOA, which will be explained in Section 3.5. Finally,
Section 3.6 explores two QAOA variants: WSQAOA and RQAOA.

3.1. Hamiltonians and the Ising model

In the context of Quantummechanics, a Hamiltonian is an operator which repre-
sents the energy of a particular quantum system. Mathematically, a Hamiltonian
H is expressed as a Hermitian operator. The eigenvectors of a Hamiltonian are
usually called its energy eigenstates. The corresponding eigenvalues are the
energy values of their respective eigenstate. Since every Hamiltonian is Hermi-
tian, its eigenvalues are always real (cf. Section 2.5). The eigenstate with the
lowest eigenvalue is called the lowest-energy eigenstate or ground state. We
can interpret a Hamiltonian as an observable. With this interpretation ⟨ψ|H|ψ⟩
is the average energy value when measuring state |ψ⟩ [18].
Suppose we want to solve some optimization problem where we try to find the
optimal input x ∈ X to some objective function f(·), meaning the goal is to
find argminx∈X f(x). We can limit ourselves to minimization problems since any
maximization problem is equivalent to the minimization problem that results
from identifying f ′(x) = −f(x). In quantum computing, there are multiple ap-
proaches to solving optimization problems, such as AQC, Variational Quantum
Eigensolvers or the QAOA. Conceptionally, they all have in common that they
reduce the problem of finding the optimal solution to finding the ground state
of a certain Hamiltonian, where the ground state is the state |ψ⟩ that mini-
mizes ⟨ψ|H|ψ⟩ [5], [19], [20]. This can be achieved by constructing a Hamil-
tonian whose eigenstates correspond to the possible inputs x ∈ X and whose

11



respective eigenvalues correspond to the f(x). Therefore, the spectral decom-
position of this problem Hamiltonian H is

H =
∑
x∈X

f(x)|x⟩⟨x|. (3.1)

Often, the inputs to the objective function are binary strings (X = {0, 1}n). In
this case, the |x⟩ are usually represented as the n-qubit computational basis
states. From (3.1), we see thatH will then be a 2n by 2n diagonal matrix with the
f(x) as its diagonal elements. Therefore, constructing the Hamiltonian matrix
explicitly would be just as difficult as finding the optimal x using brute force.

Fortunately, for many classes of problems, efficient constructions of the prob-
lem Hamiltonian exist. One particular example is the Ising model. Here, the
objective function C is given by [7]:

C(s) = C(s1, s2, . . . , sn) = −
∑
i<j

Jijsisj −
∑
i

hisi

The si are spin variables (si = ±1) and the Jij and the hi are problem-specific,
real constants. Intuitively, the hi describe the incentive for any individual si to
be +1 or −1, while the Jij describe correlations between the si. For example,
a negative Jij can be interpreted as: “si and sj should have different values”.
Simple Ising formulations exist for many classicNP-hard optimization problems,
including Max-clique, Knapsack, Vertex cover and Max-cut [7].

Conventionally, for computational basis states |x⟩ = |x1, . . . , x1⟩ the xi are in-
terpreted as binary (xi = {0, 1}). By identifying si = (−1)xi, we can write the
objective function in terms of binary variables:

C ′(x) = C ′(x1, . . . , xn) = C(s1, . . . , s2) = C(s)

The problem Hamiltonian HC can then be represented as:

HC = −
∑
i<j

JijZ
(i)Z(j) −

∑
i

hiZ
(i)

To see that this is the correct Hamiltonian, we can check that HC |x⟩ = C ′(x)|x⟩
for every computational basis state |x⟩ = |x1, x2, . . . , xn⟩, matching (3.1):

HC |x⟩ =
(
−
∑
i<j

JijZ
(i)Z(j) −

∑
i

hiZ
(i)

)
|x⟩

= −
∑
i<j

JijZ
(i)Z(j)|x⟩ −

∑
i

hiZ
(i)|x⟩ by linearity

= −
∑
i<j

Jij(−1)xi(−1)xj |x⟩ −
∑
i

hi(−1)xi |x⟩ since Z(i)|x⟩ = (−1)xi |x⟩

=

(
−
∑
i<j

Jijsisj −
∑
i

hisi

)
|x⟩ = C ′(x)|x⟩ by linearity
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Here, we used the fact that Z(i)|x⟩ = (−1)xi |x⟩ for every computational basis
state |x⟩. For example, (Z ⊗ 1)|x1, x2⟩ = Z|x1⟩ ⊗ |x2⟩ = (−1)x1|x1⟩ ⊗ |x2⟩ [7].

3.2. The Max-cut problem

The Max-cut problem is a well-known NP-hard optimization problem on undi-
rected graphs [21]. Visually, one can think of the problem as choosing one of
two colors for every vertex such that the number of edges between different-
color vertices is as large as possible. Max-cut is known to have a particularly
simple problem Hamiltonian, which makes it a great choice for analyzing quan-
tum approximation algorithms and QAOA in particular [5].

For the purposes of this thesis, we will formally define Max-cut as follows: A
graph G = (V,E) is defined as a set of vertices V = {1, 2, . . . , n} and an edge
relation E ⊆ V × V . We pose the additional restriction that edges only go from
lower to higher vertices: (u, v) ∈ E ⇒ u < v. This avoids double-counting
the edges, which makes the problem easier to work with, especially regarding
the RQAOA (cf. Section 3.6.2). We can assume that the reverse edge (v, u) is
implicitly part of the graph as well. Given a graph G = (V,E), a cut is a vertex
partition into two sets S and T (V = S ∪T, S ∩T = ∅). An edge (u, v) crosses the
cut if u ∈ S and v ∈ T or vice versa. The size of a cut is defined as the number
of edges crossing the cut. The Max-cut problem is the problem of finding the
largest-size cut for a given graph.

We can describe a cut using n spin variables s = {s1, s2, . . . , sn}:

si =

{
1 if i ∈ S

−1 if i ∈ T

The contribution of each edge (u, v) to the size of the cut is then given by

1

2
(1− susv) =

{
0 if su = sv

1 if su ̸= sv.

The objective function f(s) to maximize is the size of the cut and can therefore
be written as

f(s) =
∑

(u,v)∈E

1

2
(1− susv) =

|E|
2

+
∑

(u,v)∈E

−1

2
susv.

Since we can ignore the constant, cut-independent term |E|/2, we can represent
Max-cut in the Ising model as

minimize C(s) = −
∑
i<j

Jijsisj −
∑
i

hisi

with hi = 0, Jij =

{
−1

2
if (i, j) ∈ E

0 if (i, j) ̸∈ E.
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Note that we flipped the sign of the Jij since Max-cut is a maximization problem
while the Ising model describes minimization problems.

The decision version of Max-cut “Does there exist a cut with size at least k?”
is known to be NP-complete. Since computing the size of a given cut takes
polynomial time, decision Max-cut is in NP. NP-hardness can be shown via the
following reduction: 3-Sat ≤P Max-2-sat ≤P Max-cut [21]. Therefore, assum-
ing P ̸= NP, there is no polynomial-time algorithm for Max-cut. There exist,
however, multiple approaches to approximate the maximum cut.

A surprisingly effective method is to simply flip a coin for every vertex to de-
termine if it is in S or in T . By choosing all si randomly, independently with
Pr{si = −1} = Pr{si = 1} = 0.5, we get a cut of size |E|/2 in expectation. To see
this, we can define an indicator random variable Xe for every edge e ∈ E:

Xe =

{
1 if e is part of the cut
0 otherwise

E [Xe], the expected value of Xe, is

E [Xe] = 1 · Pr{Xe = 1}+ 0 · Pr{Xe = 0} = Pr{Xe = 1}.

For any given edge e = (u, v), Xe is 1 if and only if xu ̸= xv. Since all xi are
chosen independently, E [Xe] = Pr{xu ̸= xv} = 1/2. The size of the cut can
be described by the random variable X =

∑
e∈E Xe. Due to the linearity of

expectation, E [X] =
∑

e∈E E [Xe] = |E|/2.
The size of the maximum cut is at most |E|, so this simple method is a random-
ized 0.5-approximation algorithm for Max-cut [22].

The best known classical optimization algorithm for Max-cut is by Goemans and
Williamson [23]. Like many approximation algorithms, their approach involves
solving a relaxed (continuous) version of the problem and rounding the solution
to find an approximate solution for the original (discrete) problem. In particular,
their idea is to interpret the spin variables si ∈ R as 1-dimensional unit vectors
with |si| = 1. In this interpretation, a natural generalization is to consider n-
dimensional unit vectors vi ∈ Rn. The corresponding relaxation is:

maximize
1

2

∑
{i,j}∈E

(1− vi · vj) (3.2)

subject to: ∀i ∈ V : vi · vi = 1

Here, · denotes the vector dot product. It is easy to see that if we restrict the
vectors vi to be 1-dimensional, this relaxation is equivalent to the original Max-
cut problem.

By concatenating the column vectors vi to an n× n matrix B = (v⃗1 v⃗2 . . . v⃗n) and
setting A = BTB, A is the matrix of all dot products of the vi (Aij = vi · vj).
A is positive (semidefinite), meaning xTAx ≥ 0 for all vectors x ∈ Rn, since a
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symmetric matrix A is positive if and only if A = BTB [24]. This means that one
can equivalently formulate (3.2) in terms of A as follows:

maximize
1

2

∑
{i,j}∈E

(1− Aij)

subject to: A is positive and ∀i ∈ V : Aii = 1

This kind of formulation is known as a semidefinite program (SDP). There are
several efficient algorithms to solve SDPs [25], [26]. Once the optimal matrix
A has been found, one can use Cholesky decomposition [24] to retrieve B and
therefore the vectors vi. This means, the relaxation (3.2) can be solved in poly-
nomial time.

The final step in the Goemans-Williamson algorithm is to convert the solution
of the relaxed problem into an approximate solution of the discrete Max-cut
problem. If vi and vj point in roughly the same direction, then vivj is close
to 1 and sisj should equal 1 (si = sj). On the other hand, if vi and vj point
in opposite directions, then vivj is close to −1 and sisj should equal −1 (si ̸=
sj). This motivates the procedure of hyperplane rounding where a random n-
dimensional hyperplane is selected and for all vi on one side of the plane, the
corresponding si will be set to 1, whereas the si for the vectors on the other side
will be set to −1. This causes vectors pointing in similar directions to have a
higher probability of receiving the same spin value. To implement hyperplane
rounding, one can choose a random normal vector r ∈ Rn by sampling ri from a
normal distribution N (0, 1). Then, si = sign(r · vi) [23].
Let C be the average size of the cut obtained by applying hyperplane rounding
to the solution of the SDP relaxation and let C ′ be the size of the maximum cut.
Then, [23]

C

C ′ ≥ min
0≤θ≤π

{
2θ

π(1− cos(θ))

}
≈ 0.878.

3.3. The Partition problem

The Partition problem is the problem of partitioning a multiset1 of positive inte-
gers S = {c1, c2, . . . , cn} into two subsets S1 and S2 with equal size where the size
of a set X is defined as size(X) =

∑
c∈X c. This problem is among Karp’s 21 orig-

inal NP-complete problems [6]. The corresponding optimization problem can
be described as finding the partition which minimizes the absolute difference
| size(S1)− size(S2)|. This is equivalent to minimizing (size(S1)− size(S2))

2, so we
can formulate this problem in terms of spin variables as [7]

minimize C(s) =

(∑
i

cisi

)2

= −
∑
i<j

Jijsisj +
∑
i

c2i︸ ︷︷ ︸
constant

with Jij = −2cicj.

1A multiset is similar to a set, but it allows for multiple instances of the same element.
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Since the constant term C =
∑

i c
2
i is the same for all assignments of the si, we

can set C = 0 to acquire a valid Ising formulation.

Instead of minimizing the absolute difference of the two sizes, it is often more
convenient to think of minimizing the size of the larger set. For a given solu-
tion, we will call the size of the larger set the solution’s value. There are many
efficient approximation algorithms for the Partition problem. A simple greedy
algorithm, known as list scheduling, works as follows: Start with S1 = S2 = ∅.
Loop over the ci. For each ci, add it to the set with the currently smaller size.
This algorithm has an approximation ratio of 3/2 in the sense that the value of
the solution given by the algorithm is at most 3/2 as large as the optimal value.

Proof. LetOPT be the optimal value and letA be the value of the algorithm’s so-
lution. Without loss of generality, assume size(S1) ≥ size(S2). Then, A = size(S1).

In the perfect scenario, size(S1) = size(S2). Therefore, OPT ≥ 1
2

∑
i ci. Let cl

be the last number added to S1. Let S ′
1 and S ′

2 denote the contents of S1 and
S2, just before cl was added. Since cl is not in S ′

1 or S ′
2 and since S ′

1 and S ′
2 are

disjoint, size(S ′
1) + size(S ′

2) + cl ≤
∑

i ci. By the greedy behavior of the algorithm,
size(S ′

1) ≤ size(S ′
2). Combining the previous three inequalities, we get

OPT ≥ 1

2

∑
i

ci ≥
1

2
(size(S ′

1) + size(S ′
2) + cl) ≥ size(S ′

1) +
cl
2
.

Therefore, A = size(S1) = size(S ′
1) + cl ≤ OPT + cl/2. Clearly, OPT ≥ cl. This

implies A ≤ OPT +OPT/2 = 3OPT/2, proving the claim [27], [28].

3.4. Adiabatic quantum computation

Adiabatic quantum computation (AQC) is a popular quantum computing ap-
proach to solve optimization problems. In addition to the problem Hamiltonian
HC whose ground state is to be found, it introduces a so-called mixer Hamil-
tonian HM , which is usually a very simple Hamiltonian with a known ground
state. The quantum system is prepared in the ground state of HM . Then, the
Hamiltonian of the system slowly transitions from HM to HC according to

H(t) = (1− t/T )HM + t/THC . (3.3)

Here H(t) describes the Hamiltonian at time t and T describes the total time of
the procedure. Intuitively, H(t) interpolates between HM and HC: H(0) = HM

and H(T ) = HC . According to the adiabatic theorem, if T is large enough, that
is the transition happens slowly enough, the system will remain in the ground
state for the entire duration of the procedure. In other words, the system will
start in the ground state of HM and ultimately end up in the ground state of HC ,
solving the optimization problem [19], [29].
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AQC is generally performed on specialized quantum hardware. The rest of this
section covers how to simulate the process on a gate-based quantum computer
as outlined in Chapter 2 since this is the motivation behind the QAOA. The
Schrödinger equation describes how a closed quantum system |ψ⟩ with Hamil-
tonian H evolves over time:

iℏ
d

dt
|ψ⟩ = H|ψ⟩

Here, ℏ is the reduced Planck constant whose precise value we can ignore. By
scaling the time units appropriately, we can assume ℏ to be equal to 1. With this
simplification, for a constant Hamiltonian H, the Schrödinger equation has the
solution

|ψ(t)⟩ = U(H, t)|ψ(0)⟩, with U(H, t) = exp(−iHt).

One can show that U(H, t) is unitary, which means that, in theory, we can sim-
ulate it on a gate-based quantum computer. However, the Hamiltonian (3.3) is
not constant and changes over time. To approximate it, we divide T into discrete
time steps t0, t1, . . . , tk with ti − ti−1 = ∆t and apply a series of unitaries:

U
(
H(tk),∆t

)
U
(
H(tk−1),∆t

)
. . . U

(
H(t1),∆t

)
U
(
H(t0),∆t

)
(3.4)

The Hamiltonian H(t) is the sum of two Hamiltonians HM(t) = (1− t/T )HM and
HC(t) = t/THC . As will later be described in Section 3.5, in many cases we
can implement the time evolutions exp(−iHM(t)∆t) and exp(−iHC(t)∆t) using
quantum gates. Unfortunately, implementing the time evolution for H(t) is then
still non-trivial since, in general, for two matrices A and B,

exp(A+B) ̸= exp(A) exp(B).

However, by using the so-called Trotter formula

lim
n→∞

(
exp(A/n) exp(B/n)

)n
= exp(A+B),

we can approximate U(H(ti),∆t) as

U(H(ti),∆t) =
(
exp(−iHC(ti)∆t/n) exp(−iHM(ti)∆t/n)

)n. (3.5)

By combining (3.4) and (3.5), we find that we can simulate AQC on a gate-based
quantum computer by preparing |ψ0⟩, the ground state of HM and then applying
time evolutions of HC and HM in an alternating fashion:

U(β⃗, γ⃗)|ψ⟩ = exp(−iβpHM) exp(−iγpHC) . . . exp(−iβ1HM) exp(−iγ1HC)|ψ0⟩ (3.6)

By selecting a large enough depth p and choosing the parameters β⃗ = (β1, . . . , βn)
and γ⃗ = (γ1, . . . , γn) appropriately, we can approximate AQC with arbitrary pre-
cision [5], [19], [29].
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3.5. The Quantum Approximate Optimization
Algorithm

The QAOA tries to approximate the ground state of a problem Hamiltonian HC

by preparing the ground state of a mixer Hamiltonian HM and then applying
the circuit (3.6). However, the algorithm adds one additional idea: Instead of
using fixed parameters β⃗ and γ⃗, the circuit is run multiple times, updating β⃗
and γ⃗ using a classical optimization algorithm to minimize the expected energy
⟨ψ0|U(β⃗, γ⃗)†HCU(β⃗, γ⃗)|ψ0⟩. The QAOA can be described as follows [5]:

1. Execute the circuit multiple times, sampling ⟨ψ0|U(β⃗, γ⃗)†HCU(β⃗, γ⃗)|ψ0⟩.
2. Change β⃗, γ⃗ according to a classical optimizer.

3. Repeat steps 1 and 2, until some terminating condition is met.

4. Execute the circuit one final time and measure U(β⃗, γ⃗)|ψ0⟩ in the computa-
tional basis.

While the depth parameter p must be large to approximate AQC with any pre-
cision, QAOA tends to produce good results, even for much lower depths. For
example, on 3-regular graphs, where each vertex has exactly 3 outgoing edges,
1-layer QAOA already achieves an approximation ratio of 0.6924 [5].

The initial state |ψ0⟩ of the QAOA circuit is the ground state of themixer Hamilto-
nianHM . The most common choice isHM = −∑n

j=1X
(j). Since |+⟩ is the ground

state of −X with eigenvalue −1, the ground state of HM is |ψ0⟩ =
⊗n

i=1 |+⟩ with
eigenvalue −n. Qubits are initialized as |0⟩ in most physical implementations,
so |ψ0⟩ is typically prepared by applying the Hadamard gate to each qubit.

As described in Section 2.4, exp(−iθX) can be implemented using the rotational
gate RX(2θ). To implement exp(−iθHM), we can use the fact that if A and B
commute, that is AB = BA, then exp(A + B) = exp(A) exp(B). If two operators
can be written as diagonal matrices in the same basis, they commute. By their
spectral decomposition (cf. Section 2.5), the X(i) are diagonal in the n-qubit
|+⟩-|−⟩-basis, so they indeed commute. Therefore,

exp(−iθHM) =
n∏
j=1

exp(−iθX(j)) =
n∏
j=1

RX(2θ)(j) =
n⊗
j=1

RX(2θ).

This means we can implement the time-evolved mixer Hamiltonian by applying
an RX gate to each qubit.

We will assume that HC is an Ising Hamiltonian. Then, its individual terms are
all of the form Z(i) or Z(i)Z(j). This means they commute since they are diagonal
in the same basis, namely the computational basis. Therefore, we only need
to find quantum circuits implementing exp(−iθZ(i)) and circuits implementing
exp(−iθZ(i)Z(j)). Then, we can sequentially compose these circuits in any order
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...
...

...

|0⟩ H

exp(−iγiHC)

RX(2βi)

|0⟩ H RX(2βi)

...

|0⟩ H RX(2βi)

×p
(a) The general QAOA circuit: a Hadamard

gate for each qubit, followed by p times
alternating time-evolved problem Hamilto-
nian and mixer Hamiltonian and finally a
measurement

RZ(−2γi)

RZ(2γi)

(b) exp(−iHCγi) with HC = −Z(1) + Z(2)Z(3)

Figure 2.: Circuit diagrams for the QAOA

to implement exp(−iθHC). As described in Section 2.4, exp(−iθZ) = RZ(2θ).
To derive exp(−iθZ ⊗ Z), we will use the fact that if |ψ⟩ is an eigenstate of an
operator A and λ is the corresponding eigenvalue, then exp(A)ψ = exp(λ)ψ. The
2-qubit computational basis states are the eigenstates of Z ⊗ Z. Therefore,

exp(−iθZ ⊗ Z)|00⟩ = exp(−iθ)|00⟩, exp(−iθZ ⊗ Z)|01⟩ = exp(+iθ)|01⟩,
exp(−iθZ ⊗ Z)|10⟩ = exp(+iθ)|10⟩, exp(−iθZ ⊗ Z)|11⟩ = exp(−iθ)|11⟩.

Therefore, we can think of exp(−iZ⊗Z) as applying a phase shift whose direction
depends on the parity of the two qubits. One can verify that this operation is
implemented by CNOT (1⊗RZ(2θ))CNOT where the first CNOT computes the
parity, RZ(2θ) applies the phase shift and the second CNOT restores the state
of the second qubit. Figure 2b shows a circuit implementing a simple time-
evolved problem Hamiltonian. For the circuit diagram of the complete QAOA,
see Figure 2a. In a circuit diagram, qubits are represented as lines to which
quantum gates are applied from left to the right. The CNOT gate is denoted by
a ⊕ (target qubit) and a • (control qubit), connected by a vertical line [5], [18].

3.6. QAOA variants

Recent research on the QAOA has been extensive, exploring many possibilities
and variations to improve both its theoretical and empirical performance [8]. In
addition to the original QAOA, this thesis will also investigate the performance
of two QAOA variants that seem promising in overcoming the challenges of noisy
quantum circuits.
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3.6.1. The Warm-Starting QAOA

The intuition of QAOA is to simulate the adiabatic evolution from the ground
state of a problem-independent mixer Hamiltonian HM to the ground state of
the problem Hamiltonian HC . The idea of the Warm-Starting QAOA (WSQAOA)
is to select a mixer Hamiltonian whose ground state corresponds to a known,
very good solution to the given optimization problem or to a relaxation of the
problem, giving the algorithm a head start in finding the optimal solution. This
shifts the goal from finding the optimal solution from scratch to improving the
approximate solution found by a classical algorithm [14].

Let x∗ be the solution for a continuous relaxation of the studied optimization
problem, where each x∗i lies in the interval [0, 1]. The idea is to then choose a
mixer Hamiltonian whose ground state is

|ψ⟩ = |ψ1, ψ2, . . . , ψn⟩ =
n⊗
i=1

RY (θi)|0⟩ with θi = 2arcsin
(√

x∗i

)
.

For each qubit, the RY (θi) gate performs a rotation around the y-axis of the
Bloch sphere between 0◦ and 180◦ based on the corresponding x∗i . For example,
if x∗i = 0, then |ψi⟩ = |0⟩, if x∗i = 1, then |ψi⟩ = |1⟩ and, if x∗i = 0.5, then |ψi⟩ = |+⟩.
The mixer Hamiltonian with ground state |ψ⟩ is

HM =
n∑
i=1

H
(i)
M,i with HM,i =

(
2x∗i − 1 −2

√
x∗i (1− x∗i )

−2
√
x∗i (1− x∗i ) 1− 2x∗i

)
.

When interpreting each |ψi⟩ as a vector on the Bloch sphere, H(i)
M,i rotates the

i-th qubit 180◦ around this vector. Analogously to the mixer Hamiltonian
∑

iX
(i)

for the original QAOA, the time evolution of the WSQAOA HM applies a rota-
tion with angle β around this vector to each qubit and can be implemented as⊗n

i=1RY (θi)RZ(−2β)RY (−θi). Visually, this operation aligns the axis of rotation
with the z-axis, applies the desired rotation and finally restores the original ori-
entation of the Bloch sphere.

Instead of initializing the quantum state with the solution to a relaxation, a nat-
ural alternative is to use an approximate solution to the original problem as the
initial state. In this case, each x∗i is either 0 or 1, so the ground state of the
mixer Hamiltonian is a computational basis state. This causes a problem, how-
ever, since now both the time-evolved mixer Hamiltonian and the time evolved
problem Hamiltonian perform phase shifts, not changing the absolute values of
the computational basis states’ amplitudes. So, measuring the final state after
running the circuit will simply return the initial state. To fix this, the authors of
[14] propose choosing an ϵ ∈ [0, 0.5], setting x′i = ϵ for x∗i = 0 and x′i = 1 − ϵ for
x∗i = 1 and using x′ instead of x∗ for the ground state |ψ⟩ and the corresponding
exp(−iHMβ). The parameter ϵ can be used to interpolate between |ψ⟩ = |x∗⟩
(ϵ = 0) and |ψ⟩ =⊗n

i=1 |+⟩ (ϵ = 0.5).
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To approximateMax-cut with theWSQAOA, the authors of [14] suggest using the
solution of the Goemans-Williamson algorithm (see Section 3.2) for the initial.
They also suggest using ϵ = 0.25 as well as a slightly different time-evolved
mixer Hamiltonian,

⊗n
i=1RY (−θi)RZ(−2β)RY (θi), where the two RY rotations

are swapped. With this change, the initial state is not the ground state of the
mixer Hamiltonian anymore. However, the altered mixer Hamiltonian has the
benefit of allowing the algorithm to easily restore the cut given by the initial
state. This is because for p = 1, β1 = π

2
, γ1 = 0, the state of the j-th qubit

after applying the circuit is −i|1⟩ if x∗j = 0 and −i|0⟩ otherwise. Measuring this
state gives the output y with yj = −x∗j , which is the same cut as x∗, only the
two partitions S and T are swapped. This implies that Max-cut-WSQAOA under
ideal conditions yields a cut which is at least as good as the result of Goemans-
Williamson. The same argument also applies to the Partition problem whose
solutions have the same symmetry as the solutions for the Max-cut problem.
This means the WSQAOA with the altered mixer Hamiltonian can reconstruct
the Partition solution given by the initial state.

In this thesis, we will investigate two WSQAOA variants. The first variant is the
one described in the previous paragraph, which prepares the initial with ϵ = 0.25
as described above and which uses the altered mixer Hamiltonian to ensure
that the algorithm can reconstruct the solution of the initial state. In addition,
a version of QAOA proposed by [17] will be considered where the initial state
is prepared with ϵ = 0.25 as described in the previous paragraph, but the mixer
Hamiltonian of the standard QAOA, HM =

∑
iX

(i), is used. This version will
be called WS-Init-QAOA since it only changes the initial state, compared to the
standard QAOA, leaving the time-evolved mixer Hamiltonian unchanged.

3.6.2. The Recursive QAOA

Instead of using the quantum circuit to approximate the optimal value for all
variables at once, the main idea of the Recursive QAOA (RQAOA) is to iteratively
reduce the problem size by eliminating variables until the problem is trivial to
solve or until a predefined threshold is reached and the remaining problem can
be solved using a classical optimizer [15], [16].

Suppose we are given an Ising model objective function Cn with n variables
where all linear terms hi are equal to 0:

minimize Cn(s) = −
∑
i<j

Jijsisj

The Ising formulations of both Max-cut and Partition are of this form. Let Hn be
the corresponding problem Hamiltonian.

We use the QAOA to find the state |ψ⟩ = U(β⃗, γ⃗)|ψ0⟩ that minimizes ⟨ψ|Hn|ψ⟩.
Then for all non-zero Jij, we will compute Mij = ⟨ψ|Z(i)Z(j)|ψ⟩ where Z(i)Z(j)

measures the parity of qubits i and j. In practice, this can be done by running the
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circuitm times, each time measuring the qubits in the computational basis. This
gives results x1, x2, . . . , xm ∈ {0, 1}n. We then, for each non-zero Jij, compute

Mij =
1

m

m∑
k=1

(−1)x
k
i (−1)x

k
j .

Mij lies in the interval [−1, 1] by definition where Mij > 0 can be interpreted as
“si and sj should have the same value” andMij < 0 can be interpreted as “si and
sj should have opposite values”. We now pick the “most correlated” pair (sk, sl)
which we will define as the pair (si, sj) that maximizes |Mij|. The key idea of the
RQAOA is to add this correlation as a constraint into the problem Hamiltonian.
So if Mkl > 0, we add the constraint sl = sk. If Mkl < 0, we add the constraint
sl = −sk. We achieve this by replacing every instance sl in the Ising cost function
Cn with sign(Mkl)sk. In particular, we apply the following transformation:

Jijsisj →


0 if i = k and j = l

sign(Mkl)Jijsisk if i ̸= k and j = l

sign(Mkl)Jijsksj if i = k and j ̸= l

Jijsisj if i ̸= k and j ̸= l

(3.7)

The first case maps to zero since by replacing sl with sign(Mkl)sk we get the
constant term sign(Mkl)Jkls

2
k = sign(Mkl)Jkl which we can ignore since it is in-

dependent of the assignment of the variables. Because we have eliminated all
instances of sl, this new Ising cost function Cn−1 has n−1 variables. Intuitively, if
Cn is the cost function for aMax-cut instance, Cn−1 corresponds to an instance of
the weighted Max-cut problem for the graph which results from contracting the
edge (k, l) in the original graph. Note that (3.7) might create multiple terms for a
single pair of spin variables. For example, if J1l and J1k are non-zero, then J1ls1sl
will be transformed into sign(Mkl)J1js1sk while the term J1ks1sk stays unchanged.
Both terms then need to be combined into a single term (sign(Mkl)J1j+J1k)s1sk to
conform to the Ising model. Since sign(Mkl)J1j + J1k might be zero, it is actually
possible for Cn−1 to contain fewer than n− 1 variables.

We now repeat the process iteratively: We define the corresponding problem
Hamiltonian Hn−1 to the cost function Cn−1, we find the state |ψ⟩ = U(β⃗, γ⃗)|ψ0⟩
that minimizes ⟨ψ|Hn−1|ψ⟩, we compute all Mij = ⟨ψ|Z(i)Z(j)|ψ⟩, find the pair
(sk, sl) whose |Mij| is maximum, apply (3.7) to define Cn−2 and so on. We can
terminate at the latest when we reach C1(s) = 0. Then, we reconstruct a solu-
tion based on the previously encountered sign(Mkl). We can interpret the spin
variables as vertices and the sign(Mkl) as edges of an undirected graph. To find
the final solution, one variable in each connected component of this graph is set
arbitrarily. The others are then fully determined by the sign(Mkl) [15], [16].
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4. Modeling noisy quantum
circuits

Chapter 2 introduced state vectors, unitary operators and observables which
can be used to model idealized, gate-based quantum computation. However,
physical quantum computers experience various kinds of errors which distort
the results of the final measurement. Some of these errors can be described
using unitary operators, such as an incorrectly calibrated RX gate which im-
plements the rotation RX(θ + ϵ) instead of RX(θ). On the other hand, many
typical error sources influence the state of the circuit in a non-unitary way.
While the formalisms introduced in Chapter 2 assume that the circuit forms
a closed quantum system without any interactions with the environment, in a
physical quantum computer these kinds of interactions can never be eliminated
completely resulting in noisy behavior of the circuit’s state. Consequently, to
analyze the behavior of noisy quantum circuits, we need to model them as open
systems. Open systems can be viewed as subsystems of a larger, closed sys-
tem. While a transformation on the closed, total system is always unitary, the
same transformation might change the state of subsystems in a non-unitary way,
which is then perceived as noise.

This chapter introduces density matrices and quantum channels which can be
seen as the generalization of state vectors and unitary evolutions for open sys-
tems. Section 4.1 describes the trace, an operation from linear algebra which
will be essential for the rest of this chapter, and some of its properties. Sec-
tion 4.2 introduces the concept of density operators, the noisy equivalent of
state vectors. In Section 4.3, the concept of the partial trace is introduced which
is used to describe (open) subsystems of a closed quantum system. Section 4.4
describes quantum channels, whichmodel the effects unitary transformations in
a system have on a subsystem. Section 4.5 introduces the concept of fidelity to
describe howmuch a quantum channel alters its inputs. Finally, Section 4.6 pro-
vides several examples of quantum channels for realistic noisy phenomena.

4.1. The trace

The trace of a square matrix A is defined as the sum of the diagonal entries

Tr(A) =
∑
i

Aii =
∑
i

⟨i|A|i⟩, (4.1)
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where {|i⟩} is the computational/standard basis. From (4.1), it is easy to verify
that the trace is linear, that is Tr(αA + βB) = αTr(A) + β Tr(B), and cyclic:
Tr(AB) = Tr(BA).

For every orthonormal basis {|ei⟩}, there is a unitary U with |ei⟩ = U |i⟩. Thus,

Tr(A) = Tr(AUU †︸︷︷︸
1

)
cyclicity
= Tr(U †AU) =

∑
i

⟨i|U †AU |i⟩ =
∑
i

⟨ei|A|ei⟩.

In other words, the trace is independent of the basis. This insight leads to a
useful identity: For every state |ψ⟩ and every operator A,

Tr(A|ψ⟩⟨ψ|) =
∑
i

⟨ei|A|ψ⟩⟨ψ|ei⟩
|e1⟩=|ψ⟩
= ⟨ψ|A|ψ⟩. (4.2)

Here, we chose the orthonormal basis {|ei⟩} such that |e1⟩ = |ψ⟩ to ensure that
⟨ψ|ei⟩ = δi,1 [18], [30]. As a simple corollary to (4.2),

Tr(|ψ⟩⟨ψ|) = Tr(1|ψ⟩⟨ψ|) = ⟨ψ|1|ψ⟩ = ⟨ψ|ψ⟩. (4.3)

4.2. Mixed states and density operators

When the state of a quantum system is not fully known, for example because
it was influenced by noise, we say it is in a mixed state. A mixed state can be
thought of as a statistical mixture of pure states in the sense that the system is in
the pure state |ψi⟩ with probability pi, where the pi must add to 1. We represent
mixed states using density operators or density matrices:

ρ =
∑
i

pi|ψi⟩⟨ψi|

A pure state |ψ⟩ can be thought of as a special case of a mixed state where the
system is in state |ψ⟩ with probability 1. Naturally the density operator for state
|ψ⟩ is |ψ⟩⟨ψ|. Density matrices can also represent statistical mixtures of mixed
states. For two density operators ρ1 and ρ2, the combined operator

ρ = pρ1 + (1− p)ρ2 = p
∑
i

p1,i|ψ1,i⟩⟨ψ1,i|+ (1− p)
∑
j

p2,j|ψ2,j⟩⟨ψ2,j|

is also a density operator since p
∑

i p1,i + (1− p)
∑

j p2,j = p+ (1− p) = 1.

Unitary evolutions, measurements and tensor products can all be described con-
cisely in terms of density matrices, making them a useful formalism to describe
both pure and mixed states:
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Unitaries Suppose a unitary evolution U is applied to the mixed state ρ =∑
i pi|ψi⟩⟨ψi|. Intuitively, the system should be in state U |ψi⟩ with prob-

ability pi after the unitary is applied. The resulting density operator is
therefore

ρ′ =
∑
i

piU
†|ψi⟩⟨ψi|U linearity

= U †ρU .

Measurements Suppose we measure the observable M =
∑

mmPm. By (2.7),
the conditional probability of getting the measurement resultm, given the
system is in pure state |ψi⟩, is Pr(m|i) = ⟨ψi|Pm|ψi⟩. Then, we can compute
the probability of getting result m when measuring the mixed state given
by the |ψi⟩ and the pi as follows:

Pr(m) =
∑
i

pi Pr(m|i) =
∑
i

pi⟨ψi|Pm|ψi⟩

=
∑
i

piTr(Pm|ψi⟩⟨ψi|) by (4.2)

= Tr

(
Pm
∑
i

pi|ψi⟩⟨ψi|
)

by linearity

= Tr(Pmρ)

Similarly, one can derive that after the measurement, the system will be
in state PmρP †

m/
√
Pr(m). Analogous to (2.8), the expected measurement

result is Tr(Mρ).

Tensor products Suppose system A is in state ρA =
∑

i p
A
i |ψAi ⟩⟨ψAi | and system

B is in state ρB =
∑

j p
B
j |ψBj ⟩⟨ψBj |. Then the state of the combined system

can be described as∑
i,j

pAi p
B
j |ψAi , ψBj ⟩⟨ψAi , ψBj | =

∑
i,j

pAi |ψAi ⟩⟨ψAi | ⊗ pBj |ψBj ⟩⟨ψBj |

=
∑
i

pAi |ψAi ⟩⟨ψAi | ⊗
∑
j

pBj |ψBj ⟩⟨ψBj | = ρA ⊗ ρB.

Every density operator ρ =
∑

i pi|ψi⟩⟨ψi| has the following properties:

1. It is Hermitian, that is ρ = ρ†. This is because the individual |ψi⟩⟨ψi| are
Hermitian since (

|ψi⟩⟨ψi|
)†

=
(
⟨ψi|

)†(|ψi⟩)† = |ψi⟩⟨ψi|,

which extends to the whole operator by linearity.

2. Tr(ρ) = 1:

Tr(ρ)
linearity
=

∑
i

piTr(|ψi⟩⟨ψi|) (4.3)
=
∑
i

pi ⟨ψi|ψi⟩︸ ︷︷ ︸
=1

=
∑
i

pi = 1
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3. It is positive, that is for every |φ⟩, ⟨φ|ρ|φ⟩ ≥ 0:

⟨φ|ρ|φ⟩ = ⟨φ|
(∑

i

pi|ψi⟩⟨ψi|
)
|φ⟩ =

∑
i

pi ⟨φ|ψi⟩⟨ψi|φ⟩︸ ︷︷ ︸
=|⟨φ|ψi⟩|2≥0

≥ 0

Conversely, you can show that every operator satisfying these conditions is a
density operator. From properties 1 and 2, it follows that the general density
matrix for a single-qubit system is

ρ =

(
a b
b∗ 1− a

)
with a ∈ R, b ∈ C. By convention, the density matrix is represented in the com-
putational basis. Then, the diagonal entries describe the measurement proba-
bilities when measuring the state in the computational basis. For example, the
probability of finding the qubit in state |0⟩ is given by Tr(|0⟩⟨0|ρ) = ⟨0|ρ|0⟩ = a.

If the off-diagonal entries of a density matrix are zero, then the state is a sta-
tistical mixture of computational basis states. On the other hand, if the off-
diagonal entries are non-zero, the state is in a superposition of computational
basis states. For example, compare |+⟩ = 1√

2
(|0⟩ + |1⟩), the equal superposition

of the two vectors of the 1-qubit computational basis, with the statistical mix-
ture of these two vectors, each with probability 1

2
, also known as the maximally

mixed state:

|+⟩⟨+| = 1

2

(
|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0|+ |1⟩⟨1|

)
=

1

2

(
1 1
1 1

)
1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
=

1

2

(
1 0
0 1

)
The density matrix of the general, pure, single-qubit state |ψ⟩ = α|0⟩+ β|1⟩ is

|ψ⟩⟨ψ| =
(
|α|2 αβ∗

α∗β |β|2
)
.

Note that the relative phase information is also only captured by the off-diagonal
entries.

Every single-qubit density matrix can be written as

ρ =
12 + rxX + ryY + rzZ

2
,

where X, Y, Z are the three Pauli matrices and r⃗ = (rx, ry, rz) is a real three-
dimensional vector with norm ||r⃗|| ≤ 1, called the Bloch vector. Each Bloch
vector corresponds to a point inside the Bloch sphere (cf. Figure 1 on page 6).
The points on the Bloch sphere are the pure states, matching the description
given by (2.2). The maximally mixed state 1/2 is in the center of the Bloch
ball [18], [30].
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4.3. Subsystems and the partial trace

A mixed state can arise if the state preparation procedure involves randomness.
However, even if a system is in a pure state, a subsystem of the system can
still be in a mixed state. This fact makes density matrices especially useful
for describing open quantum systems. Consider the situation where we have a
quantum system made of two (possibly entangled) systems A and B. The state
of the combined system is described by ρAB. Suppose we want to know ρA, the
state of subsystem A. The operation which allows us to do this is called the
partial trace, TrB(·), and ρA is called the resulting reduced density operator:
ρA = TrB(ρ

AB).

For |a⟩ and |a′⟩, two vectors in the state space of A, and |b⟩ and |b′⟩, two vectors
in the state space of B, the partial trace TrB(·) is defined as follows:

TrB(|a⟩⟨a′| ⊗ |b⟩⟨b′|) = |a⟩⟨a′|Tr(|b⟩⟨b′|) = |a⟩⟨a′|⟨b|b′⟩

By requiring the partial trace to be linear in its input, we can extend the defini-
tion to arbitrary operators. This leads to the more explicit definition

TrB(ρAB) =
∑
j

(1A ⊗ ⟨ej|)ρAB(1A ⊗ |ej⟩). (4.4)

Here, 1A is the identity operator on system A and {|ej⟩} is an orthonormal basis
for systemB. Note that the trace is independent of the choice of basis. TrA is de-
fined symmetrically. The operation of computing the reduced density operator
ρA = TrB(ρ

AB) is called tracing out system B.

If ρAB is separable, that is ρAB = ρA ⊗ ρB, then TrB(ρ
A ⊗ ρB) = ρATr(ρB) = ρA

which aligns with the intuition that ρA should describe the state of subsystem
A. To justify that the partial trace is a sensible definition, even for entangled
subsystems, one has to show that ρA captures the complete characteristics of
any possible measurement.

Let M be any observable for system A. Then M ′ = M ⊗ 1 is the correspond-
ing observable for system AB, where we only measure subsystem A, ignoring
subsystem B. M ′ should give the same result in expectation as M . That is,
Tr(M ′ρAB) = Tr(MρA). It can be shown that the partial trace ρA = TrB(ρ

AB)
is the only function satisfying this condition for every observable. Intuitively
this is because for computing Tr(M ′ρAB), we need to sum over all basis vectors
⟨ai|⟨bj|M ′ρAB|ai⟩|bj⟩. In a sense, ρA = TrB(ρ

AB) captures the result of summing
over all |bj⟩ so one only needs to sum over all |ai⟩ to compute the expected mea-
surement result. A rigorous proof is given, for example, by [31].

As mentioned earlier, if a system is in a pure state, it is possible that a subsys-
tem of this system is in a mixed state. For example, consider the 2-qubit state
1√
2
(|00⟩+ |11⟩), often denoted as |Φ+⟩. The density matrix representation of this
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state is |Φ+⟩⟨Φ+| = 1/2(|00⟩ + |11⟩)(⟨00| + ⟨11|). When we trace out the second
qubit, we get

Tr2(|Φ+⟩⟨Φ+|) = Tr2

(
1

2
(|00⟩+ |11⟩)(⟨00|+ ⟨11|)

)
=

1

2

(
Tr2(|00⟩⟨00|) + Tr2(|00⟩⟨11|) + Tr2(|11⟩⟨00|) + Tr2(|11⟩⟨11|)

)
=

1

2

(
|0⟩⟨0| ⟨0|0⟩︸︷︷︸

=1

+|0⟩⟨1| ⟨1|0⟩︸︷︷︸
=0

+|1⟩⟨0| ⟨0|1⟩︸︷︷︸
=0

+|1⟩⟨1| ⟨1|1⟩︸︷︷︸
=1

)
=

1

2

(
|0⟩⟨0|+ |1⟩⟨1|

)
,

which is the maximally mixed state.

4.4. Quantum channels and Kraus operators

The sameway density matrices can be seen as the generalization of state vectors
for open systems, quantum channels are the generalization of unitary operators
for open systems. In particular, the effects unitary evolutions of the total system
have on a subsystem can be described as quantum channels. Formally, quan-
tum channels are defined as completely-positive trace preserving maps (CPTP
maps). CPTP maps can be seen as functions of the form E : Cn×n → Cm×m map-
ping density matrices to other density matrices. By definition, a CPTP map E
has the following properties:

1. It is linear, that is E (
∑

i piρi) =
∑

i piE(ρi). Intuitively, if ρ is a statistical
mixture of states ρi, then E(ρ) should result in the same state as preparing
state E(ρi) with probability pi, which is exactly what the linearity property
describes.

2. It is trace-preserving, that is Tr(E(ρ)) = Tr(ρ). The resulting operator must
have the same trace (1) to be a valid density operator

3. It is positive, that is for every positive operator ρ, E(ρ) is positive. This
again is to ensure that E maps density matrices to density matrices, which
are positive operators.

4. It is completely positive, that is for any other density operator ρ′ with ar-
bitrary dimension, (I ⊗ E)(ρ′ ⊗ ρ) is positive if ρ′ ⊗ ρ is positive. Here, I
denotes the identity map. This ensures that if E is applied to a subsystem,
the operator for the total system remains a valid density operator. While
any completely positive operator is also positive, the converse does not
hold necessarily.

There are multiple possible representations for quantum channels/CPTP maps.
In the scope of this thesis, we will focus on one particular representation, called
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operator-sum representation, also known as Kraus representation where the
map is described in the form of a set of matrices {Ki}, the Kraus operators:

E(ρ) =
∑
i

KiρK
†
i

The Ki must satisfy the constraint
∑

iK
†
iKi = 1. This constraint is also known

as the completeness relation. It ensures that the map preserves the trace of the
density operator:

Tr(E(p)) = Tr

(∑
j

KjρK
†
j

)
linearity + cyclicity

= Tr

(∑
j

K†
jKjρ

)
linearity
= Tr

((∑
j

K†
jKj

)
ρ

)
= Tr(1ρ)

Kraus’ theorem states that a map is a CPTP map if and only if it can be written
in Kraus representation. Note that the Kraus representation of a particular
quantum channel is not necessarily unique. For instance, the two sets of Kraus
operators {|0⟩⟨0|, |1⟩⟨1|} and

{
1√
2
12,

1√
2
Z
}
both describe the same channel

E :

(
a b
b∗ 1− a

)
7→
(
a 0
0 1− a

)
.

Just like unitaries, assuming they have the correct dimensions, two quantum
channels, A with Kraus operators {Ai} and B with Kraus operators {Bj}, can be
composed sequentially

(B ◦ A)(ρ) = B(A(ρ)) =
∑
j

Bj

(∑
i

AiρA
†
i

)
B†
j =

∑
i,j

BjAiρA
†
iB

†
j (4.5)

and in parallel
(A⊗ B)(ρ) =

∑
i,j

(Ai ⊗Bj)ρ(A
†
i ⊗B†

j ). (4.6)

It is easy to check that if A and B satisfy the completeness relation then so do
B ◦ A and A⊗ B.
Noisy, non-unitary behavior of a quantum circuit comes from interactions with
the environment. These interactions can be thought of as unitary evolutions on
the combined system that includes both the circuit and its environment. There-
fore, we can describe interactions with the environment as a quantum channel
in three steps: add the environment, apply a unitary to the combined system
and trace out the environment. Each of these steps can be represented as a
quantum channel in Kraus representation, so their sequential composition is
also a valid quantum channel. The three steps are modeled as follows:
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1. Add the environment Without loss of generality, we can assume that the
environment is in some pure state |e1⟩⟨e1|. If the environment were not in
a pure state, we could think of it as being part of an even larger system.
Combine ρ with the environment |e1⟩⟨e1| to get ρ′ = ρ⊗|e1⟩⟨e1|. This can be
written as a quantum channel with the single Kraus operator 1⊗ |e1⟩:

E(ρ) = (1⊗ |e1⟩)ρ(1⊗ ⟨e1|) = (1⊗ |e1⟩)(ρ⊗ 11)(1⊗ ⟨e1|)
= (1ρ1)⊗ (|e1⟩11⟨ψ|) = ρ⊗ |e1⟩⟨e1|

The completeness relation is satisfied: (1⊗ ⟨e1|)(1⊗ |e1⟩) = 1⊗ ⟨e1|e1⟩ = 1.

2. Apply a unitary to the combined system Applying the unitary transfor-
mation U to system ρ′ is a quantum channel with the single Kraus operator
U since unitary evolution on density matrices is described as Uρ′U † and
since U †U = 1.

3. Trace out the environment By setting Kj = 1 ⊗ ⟨ei| for the orthonormal
basis {|ei⟩}, we can define the partial trace in terms of Kraus operators,
matching the definition (4.4). Again, this satisfies the completeness rela-
tion:

∑
i

(1⊗ |ei⟩)(1⊗ ⟨ei|) = 1⊗
(∑

i

|ei⟩⟨ei|
)

= 1⊗ 1 = 1

Here, we have used the fact that
∑

i |ei⟩⟨ei| = 1 for any orthonormal basis
{|ei⟩} since(∑

i

|ei⟩⟨ei|
)∑

j

αi|ej⟩ =
∑
i,j

αj|ei⟩ ⟨ei|ej⟩︸ ︷︷ ︸
=δij

=
∑
j

αj|ej⟩.

According to (4.5), the channel describing the whole sequence of adding the en-
vironment, applying a unitary and tracing out the environment can be described
by the following set of Kraus operators:

Ki = (1⊗ ⟨ei|)U(1⊗ |e1⟩) (4.7)

Conversely, for every set of square Kraus operators Ki, one can find a unitary
U that satisfies (4.7).

Single-qubit quantum channels can be interpreted visually in terms of the Bloch
ball. Just as single-qubit quantum gates (unitary operators) can be interpreted
as rotations of the Bloch sphere, quantum channels can be seen as affine trans-
formations mapping the Bloch ball into itself [18].
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4.5. Fidelity

The fidelity is a measure of the “distance” between two quantum states. It is
also a useful measure to describe how much a noisy quantum channel alters its
input compared to an idealized, unitary operation. Given two states represented
as density matrices ρ and σ, their fidelity F (ρ, σ) is given by:

F (ρ, σ) = Tr

(√√
ρσ

√
ρ

)2

(4.8)

It can be shown that the fidelity between any two states is always between 0
and 1 (0 ≤ F (ρ, σ) ≤ 1 for all ρ, σ) with F (ρ, σ) = 1 if and only if ρ = σ. It can also
be shown that the fidelity is symmetric: F (ρ, σ) = F (σ, ρ) [32].

Assuming ρ is a pure state, that is ρ = |ψ⟩⟨ψ|, then √
ρ = ρ since |ψ⟩⟨ψ|ψ⟩⟨ψ| =

|ψ⟩⟨ψ|. If at least one of the two states is pure, (4.8) can thus be simplified to

F (|ψ⟩⟨ψ|, σ) = Tr
(√

|ψ⟩⟨ψ|σ|ψ⟩⟨ψ|
)2

= Tr
(√

⟨ψ|σ|ψ⟩ |ψ⟩⟨ψ|
)2

=
(√

⟨ψ|σ|ψ⟩Tr(|ψ⟩⟨ψ|)︸ ︷︷ ︸
=1

)2
= ⟨ψ|σ|ψ⟩ by linearity.

Some authors use an alternative definition of fidelity: F ′(ρ, σ) =
√
F (ρ, σ), for

example in [18]. In the context of this thesis, however, we will only use the
definition (4.8), as given in [32] or [33], for example.

Let E be a quantum channel which maps d-dimensional density matrices to d-
dimensional density matrices. The average fidelity of E is defined as

F̄ (E) =
∫

⟨ψ| E
(
|ψ⟩⟨ψ|

)
|ψ⟩ dψ.

So, informally, the average fidelity of a quantum channel describes how much
it changes its input state, averaged over all possible pure input states. A closed
formula for computing the average fidelity of a channel exists [34]. In particular,
for a single qubit channel [35],

F̄ (E) = 1

2
+

1

12

∑
P∈{X,Y,Z}

Tr(PE(P )). (4.9)

One can also define the average fidelity of a channel with respect to a unitary
operator U to describe how well the channel approximates U :

F̄ (E , U) =
∫
⟨ψ|U †E

(
|ψ⟩⟨ψ|

)
U |ψ⟩ dψ

Since U †E
(
|ψ⟩⟨ψ|)U = U † ◦ E with U †(ρ) = U †ρU ,

F̄ (E , U) = F̄ (U † ◦ E). (4.10)
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Figure 3.: Visualization of the bit flip channel (p = 0.3) as an affine transformation of
the Bloch ball [18]

4.6. Noisy quantum channels

This section introduces some common quantum channels that are used to de-
scribe typical sources of error in quantum computers.

4.6.1. The bit flip channel

The bit flip channel models the situation where the value of a qubit flips with
probability p:

EBF (ρ) = (1− p)1ρ1+ pXρX

The corresponding Kraus operators are thereforeK1 =
√
1− p1, K2 =

√
pX. The

completeness relation is satisfied since

(1− p) 11︸︷︷︸
1

+pXX︸︷︷︸
1

= (1− p+ p)1 = 1. (4.11)

In terms of the Bloch ball, the bit flip channel can be interpreted as a contraction
towards the x-axis, as shown in Figure 3 [18].

4.6.2. The phase flip channel

The phase flip channel applies a phase flip, that is a phase shift of 180◦, with
probability p:

EPF (ρ) = (1− p)1ρ1+ pZρZ (4.12)

The Kraus operators are K1 =
√
1− p1, K2 =

√
pZ. Similar to (4.11), the com-

pleteness relation is satisfied. The phase flip channel contracts the Bloch ball
towards the z-axis (cf. Figure 4) [18].
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Figure 4.: Visualization of the phase flip channel (p = 0.3) [18]
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Figure 5.: Visualization of the depolarizing channel (p = 0.5) [18]

4.6.3. The depolarizing channel

The depolarizing channel describes a situation where, with some probability p,
the state of a qubit is replaced with the maximally mixed state 1/2:

ED(ρ) = (1− p)ρ+ p · 1
2

Unlike the bit flip and the phase flip channels, the depolarizing channel uni-
formly contracts the Bloch ball towards the maximally mixed state, as visualized
by Figure 5. By using the fact that 1 = (ρ +XρX + Y ρY + ZρZ)/2 for all ρ, we
can write ED as

ED(ρ) = (1− 3p/4)ρ+ p/4(XρX + Y ρY + ZρZ).

This means, we can represent this channel using the Kraus operators K1 =√
1− 3p/41, K2 =

√
p/4X, K3 =

√
p/4Y , K4 =

√
p/4Z. Since P †P = 1 for every
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Pauli matrix P , it is again easy to see that these Kraus operators satisfy the
completeness relation

∑4
i=1Ki = 1. From its Kraus representation, it follows

that the depolarizing channel can alternatively be interpreted as a “random
change” of the state with probability 3p/4 where a change refers to applying
one of the three Pauli gates with equal probability [18].

The depolarizing channel can be generalized for multi-qubit states:

ED,n(ρ) = (1− p)ρ+ p · 1
2n

(4.13)

Here, n is the number of qubits. It is possible to find a decomposition of the
2n-dimensional identity, similar to the one-qubit case above, by using the n-fold
tensor products of the Pauli matrices (including the identity) as a basis:

Bn =
⋃

(P1,...,Pn)∈{1,X,Y,Z}n

{
n⊗
j=1

Pj

}
,

1 =
1

2n

∑
B∈Bn

B†ρB

Again, this holds for any density operator ρ. The Kraus decomposition of the
n-qubit depolarizing channel is therefore

ED,n(ρ) =
(
1− p+

p

4n

)
1ρ1+

∑
B∈Bn\{1}

p

4n
B†ρB.

Given any pure state |ψ⟩, the fidelity of |ψ⟩⟨ψ| and ED,n(|ψ⟩⟨ψ|) is

F (ED,n(|ψ⟩⟨ψ|), |ψ⟩⟨ψ|) = ⟨ψ|
(
(1− p)|ψ⟩⟨ψ|+ p

1

2n

)
|ψ⟩ (4.14)

= (1− p) ⟨ψ|ψ⟩2︸ ︷︷ ︸
=1

+
p

2n
⟨ψ|ψ⟩︸ ︷︷ ︸

=1

= 1− p+
p

2n
.

Since the fidelity does not depend on the state |ψ⟩, the average fidelity F̄ (ED,n)
is also F̄ (ED,n) = 1− p+ p/2n [36].

If E is some quantum channel, we can compute F (ED(E(|ψ⟩⟨ψ|)), |ψ⟩⟨ψ|) analo-
gously to (4.14). Doing this, we find that the average fidelity of the composed
channel ED,n ◦ E is [37]

F̄ (ED,n ◦ E) = (1− p)F̄ (E) + p/2n. (4.15)

4.6.4. The amplitude damping channel

The amplitude damping channel describes a situation where a qubit in state
|0⟩ stays unaffected but a qubit in state |1⟩ flips to |0⟩ with some probability p.
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Figure 6.: Visualization of the amplitude damping channel (p = 0.8) [18]

This can happen due to the qubit losing energy to its environment in form of
a photon. Suppose |0⟩ represents the absence of a photon and |1⟩ represents
the presence of a photon. Then, this scenario can be represented by a unitary
transformation U with U |00⟩ = |00⟩, U |01⟩ =

√
1− p|01⟩ + √

p|10⟩. This unitary
can be described as

U = |00⟩⟨00|+
(√

1− p|01⟩+√
p|10⟩

)
⟨01|+ |ψ⟩⟨10|+ |φ⟩⟨11|

for some unknown states |ψ⟩ and |φ⟩. By (4.7), the Kraus operators describing
the effect of this transformation on the second qubit are

K1 =
(
⟨0| ⊗ 1

)
U
(
|0⟩ ⊗ 1

)
= |0⟩⟨0|+

√
1− p|1⟩⟨1| =

(
1 0
0

√
1− p

)
,

K2 =
(
⟨1| ⊗ 1

)
U
(
|0⟩ ⊗ 1

)
=

√
p|1⟩⟨0| =

(
0

√
p

0 0

)
.

The resulting quantum channel EAD acts on a general qubit state as follows:

EAD :

(
a b
b∗ 1− a

)
7→
(
(a− 1)(1− p) + 1

√
1− p b√

1− p b∗ (1− a)(1− p)

)
This causes the Bloch ball to shrink towards the north pole |0⟩⟨0|, as shown in
Figure 6. If probability p is 1, then EAD(ρ) = |0⟩⟨0| for every ρ.
The amplitude damping channel assumes that energy is always transferred from
the qubit to its environment as if the environment had zero temperature. The
scenario where the environment’s temperature is greater than zero can be de-
scribed using the generalized amplitude damping channel, which shrinks the
Bloch ball towards the mixed state a0|0⟩⟨0|+ (1− a0)|1⟩⟨1|:

EGAD :

(
a b
b∗ 1− a

)
7→
(
(a− a0)(1− p) + a0

√
1− p b√

1− p b∗ (a0 − a)(1− p) + 1− a0

)
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The generalized amplitude damping channel can be represented with the Kraus
operators [18]

K1 =
√
a0

(
1 0
0

√
1− p

)
, K2 =

√
a0

(
0

√
p

0 0

)
,

K3 =
√
1− a0

(√
1− p 0
0 1

)
, K4 =

√
1− a0

(
0 0√
p 0

)
.

4.6.5. The phase damping channel

The phase damping channel models an interaction of the qubit with its environ-
ment without a transfer of energy. Consider the situation where, with proba-
bility p, a qubit in state |ψ⟩ interacts with the environment in state |0⟩. If the
qubit’s state is |0⟩, then the environment transitions to state |1⟩. If qubit’s state
it |1⟩, the environment transitions to state |2⟩. The corresponding unitary is

U =
(√

1− p|00⟩+√
p|10⟩

)
⟨00|+

(√
1− p|01⟩+√

p|21⟩
)
⟨01|+R,

where R denotes the remaining terms. The Kraus operators are

K1 =
(
⟨0| ⊗ 1

)
U
(
|0⟩ ⊗ 1

)
=

(√
1− p 0
0

√
1− p

)
,

K2 =
(
⟨1| ⊗ 1

)
U
(
|0⟩ ⊗ 1

)
=

(√
p 0
0 0

)
,

K3 =
(
⟨2| ⊗ 1

)
U
(
|0⟩ ⊗ 1

)
=

(
0 0
0

√
p

)
.

The corresponding quantum channel can be written as [38]

EPD :

(
a b
b∗ 1− a

)
7→
(

a (1− p)b
(1− p)b∗ 1− a

)
.

It reduces the non-diagonal entries containing the qubit’s relative phase infor-
mation while keeping the diagonal entries the same.

An alternative definition of the dephasing channel is [18]

E ′
PD(ρ) = K1ρK

†
1 +K2ρK

†
2

with K1 =

(
1 0
0

√
1− γ

)
, K2 =

(
0 0
0

√
γ

)
.

By setting, γ = 1− (1− p)2, these two definitions are equivalent. The dephasing
channel is also equivalent to the phase flip channel (4.12) with probability p/2.
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4.6.6. The thermal relaxation channel

If a physical qubit is left untouched, over time it will lose energy to its envi-
ronment. This process is called thermal relaxation or thermalization and it de-
scribes the process of a qubit slowly transitioning into the thermal equilibrium
state a0|0⟩⟨0|+ (1− a0)|1⟩⟨1|. The probability of a qubit being in a state which is
not the equilibrium state decreases exponentially over time. Thermal relaxation
is governed by two parameters: T1 is the so-called longitudinal relaxation time,
which describes the rate of motion along the z-axis of the Bloch sphere towards
the equilibrium state. T2 is the transverse relaxation time, which describes a
shrinking of the x and y components of the Bloch vector. Intuitively, if T2 is
large, then the qubit can hold a superposition of computational basis states for
longer. Both T1 and T2 can be measured empirically for physical systems [39].

Thermal relaxation over a time span of t can be modeled using the following
channel [18], [39]:

ETR :

(
a b
b∗ 1− a

)
7→
(
(a− a0)e

−t/T1 + a0 be−t/T2

b∗e−t/T2 (a0 − a)e−t/T1 + 1− a0

)
(4.16)

By applying a generalized amplitude damping channel with reset probability
p = 1−e−t/T1, we can transform the diagonal elements according to (4.16). It also
scales the off-diagonal elements by a factor of

√
1− p = e−t/T1/2. So, to achieve

the desired off-diagonal scaling factor of e−t/T2, we will apply a phase damping
channel with dephasing probability p = 1 − et/T1/2−t/T2. Notice that for p to be
at least 0, T2 ≤ 2T1. This is the case for the superconducting qubits modeled in
this thesis [39]. Therefore, the map (4.16) can be implemented by sequentially
composing the generalized amplitude damping channel and the phase damping
channel: EPD ◦ EGAD [18]. If a0 = 1, we can use the regular amplitude damping
channel instead of the generalized.

By (4.9), the average fidelity of the thermal relaxation channel with a0 = 1 is

F̄ (ETR) =
1

2
+

1

6
exp(−t/T1) +

1

3
exp(−t/T2). (4.17)

4.6.7. The asymmetric bit flip channel

The asymmetric bit flip channel applies a bit flip with probability p0→1 if the
qubit is in state |0⟩ and a bit flip with probability p1→0 if the qubit is in state
|1⟩. To derive the Kraus operators for this channel, one can consider a situation
similar to the one described in Section 4.6.4. Instead of one, there are two
environment qubits, which initially are in state |01⟩, meaning the second one
stores a photon. Like above, if the circuit qubit contains a photon, it may lose
it to the first environment qubit with probability p1→0. In addition, if the circuit
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qubit does not contain a photon, it can gain one from the second environment
qubit. So, the scenario can be modeled using the unitary

U |010⟩ 7→ (1− p0→1)|010⟩+ p0→1|001⟩,
U |011⟩ 7→ (1− p1→0)|011⟩+ p1→0|110⟩,

yielding the Kraus operators

K1 =

(√
1− p0→1 0

0
√
1− p1→0

)
, K2 =

(√
p0→1 0
0 0

)
, K3 =

(
0 0
0

√
p1→0

)
,

which satisfy the completeness relation. The fourth Kraus operator is zero.

The asymmetric bit flip channel EAB can be used to simulate readout errors
where measuring the state of a qubit might give incorrect results, even if it is
in a computational basis state. For this application, p0→1 describes the probabil-
ity of incorrectly measuring |0⟩ as |1⟩ and p1→0 is the probability of incorrectly
measuring |1⟩ as |0⟩. The diagonal entries of the density matrix correspond to
the measuring probabilities for the computational basis states and the channel
transforms these according to

diag

(
EAB

(
a b
b∗ 1− a

))
=

(
(1− p0→1)a+ p1→0(1− a)
(1− p1→0)(1− a) + p0→1a

)
,

which the correct probabilities for this scenario.
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5. Design and implementation of
the performance analysis

In this thesis, we analyze the performance of the QAOA, WSQAOA, WS-Init-
QAOA and RQAOA on random instances of the problems Max-cut and Partition
for different levels of noise using numerical simulations. This chapter describes
how these simulations were performed and discusses possible limitations and
extensions. Sections 5.1 and 5.2 describe which problem instances and algo-
rithms were considered for the analysis. Section 5.3 describes the design and
parameter selection of the noise model used for the simulations. Sections 5.4,
5.5 and 5.6 deal with three additional aspects (sampling, gate set transpilation
and circuit connectivity) and how they were taken into account for the simula-
tions. Finally, Section 5.7 is about the Qaptiva 800 platform used for the simula-
tion. This section explains how the simulations were implemented and discusses
the implementation-relevant features and limitations of the platform.

5.1. Description of the analyzed problem
instances

The following problem instances are considered:

• Max-cut: For every n ∈ {5, 6, 7, 8, 9, 10}, 100 random graphs with n ver-
tices are considered. These graphs are random in the sense that between
every pair of vertices an edge is inserted with probability p = 0.5 [40]. The
graphs are generated using the gnp_random_graph function from the Py-
thon library NetworkX [41]. For each n, the seeds {0, 1, . . . , 99} are passed
into gnp_random_graph to generate the graphs.

• Partition: For every n ∈ {5, 6, 7, 8, 9, 10}, 100 sets of numbers {c1, . . . , cn}
are considered. Each ci is drawn uniformly at random from the interval 0 ≤
ci < 1. The sets are generated using NumPy’s np.random.rand function,
seeded with {0, 1, . . . , 99} [42].

Unfortunately, due to the exponential time complexity of density-matrix-based
quantum circuit simulations (cf. Section 5.7.3) and the limited time frame of
this thesis, the analysis is limited to circuits with at most 10 qubits.
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To measure how well the QAOA variants approximate the optimal solutions with
and without noise, we will consider their performance ratio. Given a partic-
ular problem instance x and an algorithm A, we will define the performance
ratio RA(x) as the ratio between A(x), the approximate solution produced by
the algorithm, and the optimal solution OPT (x): RA(x) = A(x)/OPT (x). For
the analysis, we will typically average the performance ratio over all instances
{x1, x2, . . . , x100} of a particular problem and problem size n. Also note that, since
quantum measurements are random, the QAOA and its variants, are random-
ized algorithms. Therefore, for some problem instance x and some algorithm
A, RA(x) should be averaged over multiple runs of the algorithm. How this is
handled for the quantum simulations, will be discussed in Section 5.4.

Max-cut is a maximization problem whose objective, the size of the cut, is al-
ways non-negative. Therefore, for Max-cut, the performance ratio always lies
in the interval [0, 1] where the trivial cut S = V, T = ∅ yields the performance
ratio 0 and the maximum cut yields the performance ratio 1. Partition, however,
is a minimization problem in its typical formulation where the objective is to
minimize the absolute difference between the sizes of the two sets. To make it
easier to compare the results of Max-cut and Partition, Partition is converted
into a maximization problem. The worst possible objective value for Partition is
size(S1)+size(S2), which occurs when all numbers ci lie in one set (S1 = S, S2 = ∅
or vice versa). The best possible value is 0 when size(S1) = size(S2). Therefore,
the arguably most obvious conversion of Partition into a maximization problem
is the linear transformation f which maps size(S1) + size(S2) to 0 and 0 to 1:

f(x) = 1− x

size(S1) + size(S2)

This is the approach used in this thesis. Note that this transformation is only
applied after the fact to compute the performance ratios. The evaluated QAOA
variants work with the original problemHamiltonian, described in Section 3.3.

5.2. Description of the analyzed algorithms

The following algorithms are considered:

• QAOA as explained in Section 3.5

• WSQAOA with ϵ = 0.25 as explained in Section 3.6.1

• WS-Init-QAOA with ϵ = 0.25 as explained in Section 3.6.1

• RQAOA as explained in Section 3.6.2

For the main analysis (cf. Section 6.1), we will consider the depths p ∈ {1, 2, 3, 4}.
For secondary analyses, we will mostly limit ourselves to p ∈ {1, 2, 3} to reduce
overall simulation time. If not mentioned otherwise, the RQAOA will be run 5
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times on each problem instance, the other algorithms 3 times, averaging the re-
sults for each instance. This is explained further in Section 5.4. For all variants,
SciPy’s COBYLA optimizer with a tolerance of 1% and 150 maximum iterations
is used as the classical parameter optimizer [43]–[46]. In initial tests, using a
higher tolerance and more iterations had little effect on the performance ra-
tio for the classic QAOA. So, to speed up the simulations and generate more
results within the limited time frame of a Master’s thesis, these relatively low
parameters are used for the performance analysis. The variants WSQAOA and
WS-Init-QAOA require an approximate solution to the problem to prepare the
initial state. The WSQAOA’s mixer Hamiltonian also depends on this solution.
For Max-cut, the approximate solution is generated by the Goemans-Williamson
algorithm [23] (cf. Section 3.2). Note that this is a randomized algorithm so
the initial state for WSQAOA and WS-Init-QAOA differs from execution to exe-
cution. For Partition, the list scheduling algorithm is used [27] (cf. Section 3.3).
Even though its approximation ratio is much worse than the one of Goemans-
Williamson rounding, list scheduling performs a lot better on problem instances
where the numbers are drawn from the interval [0, 1] uniformly at random than in
the theoretical worst case [47]. For the analysis, the two algorithms are roughly
comparable, although list scheduling has a slightly worse average performance
ratio than Goemans-Williamson.

The RQAOA executes the QAOA multiple times, each time with a decreased
problem size. For the analysis, we run the RQAOA to the very end, only ter-
minating once all quadratic terms Jij are zero. As the final output of the algo-
rithm, one of the possible solutions given by the edge constraints is selected
uniformly at random. This is done by performing a depth-first search traversal
on the graph whose vertices are the spin variables si and whose edges are the
constraints found by the RQAOA. For every connected component of this graph,
the first variable encountered by the depth-first search is assigned si = {−1,+1}
uniformly at random. The values of the other variables are then determined by
the constraints.

5.3. Noise model

A variety of technologies have been proposed to realize physical quantum com-
puters, including trapped ions, neutral atoms or superconducting qubits [48]. It
remains to be seen which of these technologies will prevail to form the basis of
future quantum systems. For this thesis, we will implement a model that simu-
lates the behavior of IBM-Q quantum computers, which use so-called supercon-
ducting transmons as their qubits. These systems are not only readily available
via IBM’s cloud service, making them an important tool in modern quantum
computing research, IBM also provides detailed information about the noise
characteristics of their systems in the form of their so-called Fake Backends,
which are part of IBM’s open source quantum library Qiskit [3], [49].
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The model implemented in this thesis is based on Qiskit’s own noisy simulator
[37] as well as the work of [50]–[52]. The following sources of noise are consid-
ered by the model:

Gate infidelities Quantum gates can never be implemented perfectly. This
manifests itself in the fact that instead of the desired unitary, a different,
unknown unitary or non-unitary operator is applied instead.

Thermal relaxation As explained in Section 4.6.6, even if the qubit is not in-
volved in any quantum gates, its state over time slowly transitions to the
thermal equilibrium state a0|0⟩⟨0|+(1−a0)|1⟩⟨1|. This equilibrium depends
on the temperature. For IBM-Q systems, where the temperature is close
to zero Kelvin, the equilibrium state can be approximated as |0⟩⟨0| [50].

SPAM errors Consider a qubit that is prepared in its initial state and then im-
mediately measured, meaning the qubit was not affected by thermal relax-
ation or gate infidelities. Due to errors during the state preparation or the
measurement, it is still possible to find the qubit in a different state than
the one it was prepared in. Since in this scenario, it is often difficult to
tell if state preparation or measurement was the cause of the error, both
effects are typically combined under the term SPAM errors [53].

Consequently, the implemented model is characterized by the following param-
eters:

• Longitudinal relaxation time T1 and transverse relaxation time T2

• For each gate type (e.g. RZ or CNOT ), the gate fidelity F̄ (Ũ , U) and the
gate’s duration

• p0→1, the probability of measuring |1⟩ after preparing |0⟩, and p1→1, the
probability of measuring |0⟩ after preparing |1⟩.

To simplify the model, we will assume that each qubit experiences the same gate
fidelities, thermal relaxation and SPAM errors, meaning the parameters above
are the same for every qubit.

For idealized simulations, a quantum circuit is represented as the composition
of unitary operators, one for each quantum gate, as explained in Chapter 2.
For our noisy simulations, we will use the formalisms described in Chapter 4,
representing states as density matrices and representing the circuit as a quan-
tum channel composed of many “smaller” quantum channels. To convert an
idealized circuit into its noisy equivalent, each gate unitary is replaced with
the corresponding quantum channel, meaning the unitary U is replaced with
U(ρ) = UρU †. Next, additional (noisy) quantum channels are inserted into the
circuit as follows:

Gate noise Due gate infidelities, the qubits involved in a quantum gate may
end up in a slightly different state than the one resulting from applying the
correct unitary. If we have no information about this altered state, we can
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model this scenario by applying the correct unitary U with probability 1−p
and replacing the state of the involved qubit or qubits with the maximally
mixed state I/2n with probability p: Ũ(ρ) = (1 − p)UρU † + p1/2n. This is
equivalent to inserting a depolarizing channel after the gate: Ũ = ED,n ◦ U .
To compute the average fidelity F̄ (Ũ , U), note that, since U †U = 1,

(U † ◦ Ũ)(ρ) = U †
(
(1− p)UρU † + p

1

2n

)
U = (1− p)ρ+ p

1

2n
= ED,n(ρ),

By using (4.10) and (4.14), we obtain

F̄ (Ũ , U) (4.10)
= F̄ (U † ◦ Ũ) = F̄ (ED,n) (4.14)

= 1− p+ p/2n.

We can solve this for p to find the correct depolarizing probability in order
to match the desired fidelity of the gate.

The above approach assumes that the fidelity of the gate can be fully ex-
plained by errors due to the application of the gate, ignoring the effects
of thermal relaxation. To account for thermal relaxation, after every gate,
our model inserts a 1-qubit thermal relaxation channel for each involved
qubit, followed by a depolarizing channel on the involved qubit(s). Our
model works under the simplified assumption that the thermal equilibrium
is |0⟩⟨0| and therefore uses a0 = 1, T1, T2 and the gate’s duration t to pa-
rameterize the thermal relaxation channel. The depolarizing probability is
computed such that the average fidelity of the composed channel ED ◦ ETR
(or ED,2 ◦ (ETR ⊗ ETR) for a 2-qubit gate) matches the desired gate fidelity.
For example, in the single-qubit case, by (4.15) and (4.17), the composed
channel’s average fidelity is

F̄ (ED ◦ ETR) = (1− p)

(
1

2
+

1

6
exp(−t/T1) +

1

3
exp(−t/T2)

)
+

p

2n
,

which we can easily solve for p. This idea of modeling gate noise as the
combination of depolarizing and thermal relaxation noise was adapted
from the implementation of Qiskit’s own noisy circuit simulator [37].

Idle noise It is possible for a qubit to be idle for some time during the circuit’s
execution, meaning it is not involved in any gate. This is due to dependen-
cies between the different qubits caused by multi-qubit gates. For exam-
ple, if a H gate is applied to qubit 1 and then a CNOT gate is applied to
qubits 1 and 2, then qubit 2 remains idle for the duration of the H gate.
The thermal relaxation during this idle period is modeled by inserting a
thermal relaxation channel for qubit 2 just before the CNOT gate. In gen-
eral, for every idle period, our model inserts a thermal relaxation channel
for the idle qubit right before the following gate. We assume that all qubits
are initialized and measured at the same time, meaning there are poten-
tial idle periods before the first gate of some qubit and after its last gate.
Each idle noise channel is a thermal relaxation channel parameterized by
a0 = 1, T1, T2 and the idle period’s duration t.
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|0⟩ X

|0⟩ Y7→

|0⟩ X ETR ED ETR
ED

ETR EAB

|0⟩ ETR ETR Y ETR ED EAB

Figure 7.: Transformation of the ideal circuit into its noisy equivalent by inserting noisy
quantum channels. Gate noise is shown in red, idle noise in green and read-
out noise in blue

SPAM errors For simplification, we will model SPAM errors solely as measure-
ment/readout errors. These readout errors can be implemented during
post-processing after the circuit simulation. However, it is convenient to
include them as part of the circuit anyway. Therefore, our model inserts
an asymmetric bit flip channel for each qubit at the very end of the circuit,
parameterized by p0→1 and p1→0.

Figure 7 illustrates how quantum channels are inserted by the noisemodel using
a simple example circuit.

5.3.1. Noise parameter selection

As of Qiskit version 0.23.2, the Fake Backends contain the following data points
for 46 physical IBM-Q quantum computers relevant to our model [54]:

• T1 and T2 relaxation times for each qubit

• SPAM errors, both "prepare |0⟩, measure |1⟩" and "prepare |1⟩, measure
|0⟩", per qubit.

• gate errors per gate and qubit (or pair of qubits for two-qubit gates)

• gate durations per gate and qubit(s)

We interpret the gate errors reported by the backends as gate infidelities, where
the infidelity of a gate is defined as one minus its average fidelity.

The values for these parameters differ greatly between different systems and
sometimes even between individual qubits. As an extreme example, the small-
est reported T1 relaxation time is about 7µs while the largest is almost 600µs.
To find a representative, unified parameter set, we will use median values. For
example, the parameter “duration of the CNOT gate” is determined as follows:

44



RZ / U1
√
X / U2 CNOT

Gate duration [ns] 0 35 400
Gate fidelity 100% 99.97% 99%
T1 relaxation time [µs] 100
T2 relaxation time [µs] 85
Readout: |0⟩ → |1⟩ 1.4%
Readout: |1⟩ → |0⟩ 3.3%

Table 1.: Noise parameters used for the performance analysis. Only gates which are
used by the QAOA circuits are displayed

For each backend supporting this gate, the median gate duration for that sys-
tem is computed by taking the median across all qubits. Then, the median of
these system medians is computed, which is then rounded to obtain the final
parameter. The other parameter values are obtained in the same way. By first
taking the median across the qubits for each system and then taking the median
across the systems, we ensure that systems with more qubits are not dispropor-
tionately over-represented. T1 and T2 are rounded to 5µs, error times to 5ns.
Gate infidelities are rounded to one significant figure and readout errors to two
significant figures. The final parameter set is displayed in Table 1. Note that
this table does not contain all gates which are supported by the Fake Backends,
only the ones which are used to simulate the circuits for the QAOA variants.
Also note that the RZ and the U1 gate as well as the

√
X and U2 are considered

to be the same gate when computing the median gate duration and gate fidelity.
This and the choice of gates will be explained in Section 5.5.

5.3.2. Modeling different degrees of noise

In addition to studying the performance of the different QAOA variants under the
influence of a realistic noise model, the goal of this thesis is also to analyze how
the performance changes when the degree/level of the applied noise changes.
What complicates this analysis is the fact that there are different sources of
noise, each of which affects the state of the quantum circuit in a different way.
From the noise model described above, we can identify three sources of noise:
thermal relaxation noise caused by the time needed to apply the quantum gates.
Additional gate noise modeled as depolarizing noise. And readout noise mod-
eled using asymmetric bit flip channels. We will study how the performance of
the QAOA variants is affected by these individual effects. To do this, we need
to adjust the “strength” of the different noise sources. Therefore, three more
parameters are added to the model: dTR changes the level of thermal relaxation
noise, dD changes the level of depolarizing noise and dAB changes the level of
asymmetric bit flip channels. For each of these parameters, the value 1.0 cor-
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responds to the original noise level whereas a value of 0.0 deactivates the error
source completely. The three parameters affect the noise sources as follows:
dTR scales the time parameter t of each thermal relaxation channel ETR, effec-
tively multiplying the duration of each gate by dTR. dD scales the depolarizing
probability p of each depolarizing channel ED. Finally, dAB scales the two SPAM
error probabilities p0→1 and p1→1 for the asymmetric bit flip channels EAB.
It is reasonable to assume that the noisy circuit’s fidelity correlates with the
performance ratios of the QAOA variants. The authors of [55] postulate that
for certain kinds of noise channels the fidelity of the quantum circuit can be
approximated by (1 − p)δN and the relative performance ratio, that is the noisy
performance ratio divided by the ideal performance ratio, can be approximated
by (1 − p)αN . Here, N is the circuit depth, p can be thought of as the noise
strength and δ and α are noise/architecture-specific constants. This suggests
that the relationship between circuit fidelity and relative performance ratio can
be approximated by the map F 7→ Fα/δ. These approximations for circuit fidelity
and relative performance ratio are further refined in [56]. Still, circuit fidelity
and performance ratio indeed seem to be highly correlated for the standard
QAOA. Therefore, circuit fidelity will also be part of the analysis.

To get an idea of how the much the different noise sources affect the perfor-
mance ratios of the QAOA variants, we can consider their effect on the circuit’s
fidelity. Intuitively, both thermal relaxation noise and depolarizing noise cause a
decrease of the fidelity which is exponential in the circuit depth. For the (single-
qubit) thermal relaxation channel, (4.17) simplifies to F̄ (ETR) ≈ 1/2 + 1/2e−t/T1

for T1 ≈ T2, which describes an exponential decay, in terms of the circuit depth
since the execution time of the circuit is clearly proportional to its depth. Note
that the average fidelity of any n-qubit channel is always at least 1/2n [34]. In
particular, every single-qubit channel has an average fidelity of at least 1/2.

The factor dTR linearly scales the decay constant of the thermal relaxation chan-
nel’s fidelity. Repeated application of the depolarizing channel causes a similar
exponential decay of the circuit’s fidelity. Let EkD,n denote the channel that re-
sults from applying the n-qubit depolarizing channel k times, each time with a
depolarizing probability of p. Here, k again can be interpreted to be proportional
to the circuit depth. Then,

F̄
(
EkD,n

)
=

1

2n
+

2n − 1

2n
ek ln(1−p). (5.1)

A derivation of this can be found in Section A.1 in the appendix. If the depolariz-
ing probability p is small, we can approximate ln(1−p) as−p by using the first two
terms of the Taylor expansion of ln(x) about x = 1: ln(x) ≈ ln(1) + ln′(1)(x− 1) =
x−1. Therefore, for small p, dD also approximately linearly scales the decay con-
stant of the depolarizing channel’s fidelity, similar to dTR. This indicates that, if
the depolarizing probability is not too large, dTR and dD influence the effect of
their respective channels on the circuit’s fidelity in roughly the same way. How-
ever, since ln(1−p) curves downward everywhere ( d2

dp2
ln(1−p) = −1/(1−p)p < 0),
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ln(1−p) is upper bounded by−p, which means that, for larger depolarizing prob-
abilities, the effect of dD increases compared to dTR.

Unlike thermal relaxation and depolarizing noise, readout noise is independent
of the circuit depth, making its effect less significant for deeper circuits com-
pared to the other two noise sources. Furthermore, readout noise can be inter-
preted as a mostly classical effect which can be tackled using classical, statis-
tical methods while thermal relaxation and depolarizing noise seem like more
interesting noise sources to study in the context of quantum computing and the
QAOA in particular. Therefore, this thesis will mainly focus on the effects of
thermal relaxation and depolarizing noise. If not stated otherwise, the model
for the evaluation results discussed in Chapter 6 will ignore readout noise, using
the parameters dD = 1.0, dTR = 1.0, dAB = 0.0.

5.4. Sampling noisy quantum circuits

An inherent property of quantum circuits is that, unlike classical logic circuits,
their output is always governed by a probability distribution. When measuring
the final n-qubit state after applying the circuit, one obtains only one of the 2n

possible results. The goal of QAOA and its variants is to adjust the parameters
β⃗, γ⃗ trying tominimize the expected energy ⟨ψ|HC |ψ⟩ of the problemHamiltonian
HC where |ψ⟩ = U(β⃗, γ⃗)|ψ0⟩ is the output of the quantum circuit. On a physical
quantum computer, one needs to run the circuit multiple times with the same set
of parameters β⃗, γ⃗ to get an accurate estimate for this expected energy. When
simulating the quantum circuit on a classical computer, however, we have a
complete characterization of the state |ψ⟩ with all its 2n amplitudes. This is
essentially equivalent to sampling the result of the circuit an infinite number
of times. So, we can calculate the expected energy exactly, either by explicitly
computing the matrix product ⟨ψ|HC |ψ⟩ or by computing the sum

∑
iC(s

(i))pi
where s(i) is the i-th computational basis state and pi = |ψi|2 is the probability
of measuring this state. When simulating the noisy circuit U(β⃗, γ⃗), the expected
energy can be computed as Tr

(
HC U(|ψ0⟩⟨ψ0|)

)
or by using the measurement

probabilities given by U(|ψ0⟩⟨ψ0|)’s diagonal elements.

For the performance analysis, we use the exact values for ⟨ψ|HC |ψ⟩ obtained
from the state vectors or density matrices to find the optimal parameters β⃗ and
γ⃗. For the final set of parameters, we then use themeasurement probabilities for
each computational basis state to compute the average performance ratio. This
approach allows us to obtain a reasonable estimate of the expected performance
ratio while only having to run the algorithm once. It is also easier to implement
when using the Qaptiva 800’s noisy simulator (cf. Section 5.7.2). However, using
the exact value for the expected energy has the downside of using unrealistically
accurate values of ⟨ψ|HC |ψ⟩ for the classical optimizer. Therefore, we will also
consider the case where only a limited number of samples is used during the
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QAOA optimization phase (cf. Section 6.7), although this will not be the main
focus of the evaluation.

The RQAOA requires special consideration. Here, the QAOA is run multiple
times and after each time the most correlated edge in the graph is contracted.
Finding the single edge which maximizes |⟨ψ|Z(i)Z(j)|ψ⟩| using only a few, say
polynomially many, samples is unrealistic. The best one can hope for is finding
an edge which is among the most highly correlated. Therefore, for this special
scenario of finding the most correlated edge, a limited, finite number of samples
is used for the performance analysis. The number of samples will be set to 10.
As we will see in Chapter 6, this small number of samples is enough to achieve
very good results with the RQAOA. In addition, due to its hybrid approach, we
only get a single solution from one execution of the RQAOA while for the other
variants, the final state gives us a probability distribution. Consequently, the
results for the RQAOA will be less accurate than for the other variants.

5.5. Gate sets and transpilation

While infinitely many conceivable quantum gates exist, in practice most quan-
tum algorithms are expressed using only a few common gates (cf. Section 2.4).
However, physical quantum computers typically support even fewer gates na-
tively. These so-called basis gatesmust be combined to simulate all other gates,
similar to how every classical logic gate can be implemented using only NAND
gates.

Almost all Qiskit Fake Backends support the CNOT gate as well as one of the
following two sets of single-qubit gates [54]:

G1 = {RZ(λ), X,
√
X}, G2 = {U1(λ), U2(ϕ, λ), U3(θ, ϕ, λ)}

Section 2.4 already covered X and RZ. The remaining gates are defined as
follows [57], [58]:

√
X ∝ RX

(π
2

)
, U1(λ) = U3(0, 0, λ) ∝ RZ(λ),

U2(ϕ, λ) = U3 (π/2, ϕ, λ) , U3(θ, ϕ, λ) =
(

cos
(
θ
2

)
−e−iλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

))
Here,∝ denotes equality up to a global phase. A set of gates is called universal if
every quantum gate can be implemented using gates from the set. As mentioned
in Section 2.4, the set of all possible single-qubit gates plus the CNOT gate
form a universal set of gates. All possible single-qubit gates can be implemented
using gates from G1 or by using gates from G2, making both G1 and G2 universal
when combined with the CNOT gate.

The U3 gate implements a rotation of the Bloch sphere around three Euler an-
gles. Therefore, any 2 × 2 unitary matrix can be represented, up to a global
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1
2

Figure 8.: The virtualRZ gate: The sequence of gatesRX(ϕ)RZ(θ) is effectively equiv-
alent to a single rotation of ϕ around the axis RZ(−θ)|+⟩.

phase, using a single U3(θ, ϕ, λ) matrix. Thus, the U3 gate alone is enough to
implement all single-qubit gates. In particular, for the QAOA variants studied
in this work,

H = U3(π/2, 0, π) = U2(0, π), RX(θ) = U3(θ,−π/2, π/2), RY (θ) = U3(θ, 0, 0).

Since

U2(ψ, λ) ∝ RZ(ψ + π/2) ·
√
X ·RZ(λ− π/2) and (5.2)

U3(θ, ϕ, λ) ∝ RZ(ϕ+ π) ·
√
X ·RZ(θ + π) ·

√
X ·RZ(λ), (5.3)

the gates fromG1 can also implement all possible single-qubit gates [59], [60].

It turns out that, for the purposes of this thesis, both gate sets are essentially
identical in terms of their noise characteristics. To see why, one needs to con-
sider the physical implementation of IBM-Q quantum gates. In simplified terms,
for superconducting transmon qubits, as they are used in IBM-Q systems, single-
qubit quantum gates are implemented by applying a microwave pulse at a fre-
quency corresponding to the energy difference between the qubit’s ground state
(|0⟩) and its first excited state (|1⟩). This corresponds to a rotation around the
Bloch sphere where the axis of rotation is determined by the phase shift of the
pulse and the angle of rotation is determined by the pulse’s amplitude. The
possible rotations implemented in this way are of the form

exp(−iθ/2A) with A = cos(γ)X + sin(γ)Y ,

where the rotation angle θ depends on the pulse’s amplitude and γ depends on
the pulse’s phase. This means, only rotations around an axis in the xy-plane are
physically possible. To implement a qubit phase shift, that is a RZ(θ) rotation,
the idea is to simply add an offset of −θ to all following values for γ, as shown in
Figure 8. Intuitively, instead of rotating the Bloch sphere by θ, we instead rotate
the reference frame by−θ and look at the sphere from this angle for all following
rotations. If the very last gate for some qubit is an RZ rotation, it can simply
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Figure 9.: A swap gate built from three CNOT gates

be removed, since it does not affect the final measurement in the computational
basis. By keeping track of all the accumulated offsets over the course of the
quantum algorithm, for both single-qubit and CNOT gates, this idea allows RZ
gates to be implemented virtually, making them essentially error-free since any
possible error is already accounted for by the noisy execution of some other
gate. This is reflected in Table 1 which assumes a fidelity of 1 and a duration of
0 for RZ(θ) / U1(θ) gates [39], [59].

According to the Qiskit documentation, the U2 gate is physically implemented
as a single

√
X pulse (90◦) along with the virtual RZ gate as described in (5.2).

The U3 gate uses two
√
X pulses as detailed in (5.3) [60]. In other words, for

studying the behavior of noisy circuits, it suffices to consider the
√
X gate as the

only single-qubit noisy gate. Therefore, for the performance analysis, circuits
will be transpiled into gate set G1 (cf. Section 5.7.2).

The fact that only one single-qubit gate and one two-qubit gate are physically im-
plemented on IBM-Q hardware reveals that the noisy quantum channels added
by the noise model described in Section 5.3 are extremely similar across all
QAOA variants. While the RQAOA uses standard QAOA circuits, the WSQAOA
uses a different mixer Hamiltonian, but this mixer Hamiltonian has the same
noise behavior since it is also physically implemented using two

√
X pulses. The

only difference in terms of noise characteristics between the QAOA variants is
due to the very first gate for each qubit. The standard QAOA and the RQAOA
use a Hadamard gate, which is implemented using a single

√
X pulse, whereas

the RY gate used by the WSQAOA and WS-Init-QAOA requires two pulses.

5.6. Circuit connectivity

Throughout the analysis, we assume thatCNOT gates can be applied to any pair
of qubits. In superconducting quantum computers, however, due to hardware
limitations, only certain pairs of qubits actually have a physical connection and
can be entangled with CNOT gates. These connections can be described by the
coupling graph of the quantum computer. The connectivity density describes
how strongly the coupling graph of a given quantum system is connected. It
is defined as the number of edges of the coupling graph divided by n(n − 1)/2,
the number of edges of the complete coupling graph with the same number of
qubits (n). The 46 considered Qiskit Fake Backends have a median connectivity
density of about 0.133.

50



To overcome the problem of non-adjacent qubits, additional gates need to be
inserted into the circuit to move qubits around. To swap two qubits, we can
apply three CNOT gates as shown in Figure 9, which has the following effect:

|a, b⟩ → |a, a⊕ b⟩ → | a⊕ a︸ ︷︷ ︸
=0

⊕ b, a⊕ b⟩ → |b, a⊕ b⊕ b︸︷︷︸
=0

⟩ = |b, a⟩

However, CNOT gates typically induce the most noise (cf. Table 1), so adding
many swap gates is undesirable. To overcome this problem, one needs to find
a circuit which is equivalent to the original circuit, meaning the input and out-
put qubits can be permuted, and which uses the minimum number of CNOT
gates. This so-called qubit routing problem is known to be NP-hard. The deci-
sion problem “Does there exist a qubit permutation such that all CNOT gates
of the circuit respect the coupling graph?” is already NP-complete [61]. Solving
the qubit routing problem heuristically is an active topic of research [62]–[64].

Considering qubit connectivity as well as different strategies to handle miss-
ing qubit connections increases the complexity of analyzing the performance of
the QAOA variants substantially. Therefore, the analysis performed in this the-
sis assumes a complete coupling graph, ignoring the problem of qubit routing
completely. However, higher noise levels than those of the baseline noise model
are considered, providing at least some indication of how the variants perform
when additional CNOT gates are inserted. In addition, there is some evidence
suggesting that above a certain connectivity threshold, the number of neces-
sary swap gates using common qubit routing heuristics decreases dramatically
[65], making them less of a problem than one might think. Still, it should be
noted that additional swap gates are certainly one of the largest noise factors
not captured by the analysis.

5.7. Implementation on the Qaptiva 800 platform

The simulations are performed on a Qaptiva 800, formerly known as Atos Quan-
tum Learning Machine, using its proprietary QLM library. This library already
implements much of the core functionality needed for the simulations, includ-
ing a density matrix-based noisy simulator. It still comes with some limitations
which need to be considered. The following subsections cover the implementa-
tion of the simulation pipeline using the QLM library.

5.7.1. Implementation of the hardware model

Through its NoisyQProc virtual quantum processing unit (QPU), the QLM library
supports the simulation of noisy quantum circuits using density matrices and
quantum channels. The noise model described in Section 5.3 is implemented
using QLM’s DefaultHardwareModel class. This class allows the user to specify

51



gate durations for each gate type and each qubit as well as a list of time-pa-
rameterized quantum channels. These channels will then be inserted with the
correct time parametrization during qubit idle periods between quantum gates.
Implementations for the amplitude damping channel and the phase damping
channel are also provided by the QLM library, making it easy to implement the
model’s idle noise.

The DefaultHardwareModel class also allows the user to specify a gate noise
channel, parameterized by gate type, qubit and gate parameters like rotation
angle. For each quantum gate, the corresponding channel is inserted imme-
diately after the gate. Unlike with idle noise, where multiple channels can be
specified, gate noise has to be constructed programmatically as one channel
in its complete Kraus representation. This is done by composing the correct
amplitude damping, phase damping and depolarizing channels. This naive com-
position according to (4.5) and (4.6) can result in channels with unnecessarily
many Kraus operators, which turns out to have a large impact on the running
time of the simulations. In particular, single-qubit gate noise is represented us-
ing (2 · 2) · 4 = 16 Kraus operators and two-qubit gate noise is represented using
(2 · 2)2 · 16 = 256 Kraus operators, even though every single-qubit channel re-
quires at most 4 operators and every two-qubit channel requires at most 16 oper-
ators [18]. Therefore, QLM’s feature of converting between different quantum
channel representations is used to convert from Kraus operator representation
to Choi matrix representation [66] and back to Kraus operator representation.
The second conversion ensures that the number of Kraus operators is not more
than 4 or 16 respectively.

According to our model, the depolarizing probability is set depending on the
thermal relaxation channel’s average fidelity such that the total fidelity of the
combined channel matches the desired gate fidelity. To do this, the function
get_average_process_fidelity provided by the QLM library is used to com-
pute the fidelity of ETR, or ETR ⊗ ETR in case of the CNOT gate. Then the depo-
larizing probability is computed by solving (4.15) for p.

Readout noise is also implemented using the gate noise feature of Default-
HardwareModel: For each qubit, a special dummy gate is inserted at the end of
the circuit. The gate noise for this dummy gate is configured to always use the
asymmetric bit flip channel for the readout error.

5.7.2. Implementation of the QAOA variants

The QLM library already contains much of the functionality needed for simulat-
ing QAOA circuits. It can generate Ising formulations of many common NP-hard
optimization problems, including Max-cut and Partition. It can also generate
(standard) QAOA circuits with depth p for a given Ising Hamiltonian. To gen-
erate the QAOA circuit, the exp(−iγZ(i)Z(j)) gates of the time-evolved problem
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Hamiltonian are rearranged using a “greedy coloring heuristic” to reduce cir-
cuit depth. Exactly which heuristic is used is not documented. However, it
seems likely that it is a technique similar to [67], where the edges of the graph
of the non-zero quadratic terms Jij are colored so that no two adjacent edges
have the same color. The gates for edges of the same color can be applied in
parallel to reduce circuit depth.

Parameterized circuits are also supported: Each circuit can have multiple vari-
ables, which are identified by strings. Circuit variables or math expression con-
taining these variables can be used as angles for rotational gates such as RX,
RY and RZ. Using the ScipyMinimizePlugin, which is a wrapper around the
SciPy function scipy.minimize, the QLM library can find the optimal set of cir-
cuit parameters θ⃗ to minimize ⟨ψ0|U

(
θ⃗
)†
HC U

(
θ⃗
)
|ψ0⟩ for some problem Hamilto-

nianHC . This involves executing the circuit multiple times, each time tuning the
variables θ⃗. By default, when used together with the NoisyQProc virtual QPU,
the density matrix representation is used, which means the expected energy
of the Hamiltonian is computed with theoretically infinitely many samples dur-
ing parameter optimization. NoisyQProc, however, also supports a stochastic
mode, which uses the standard state vector representation along with proba-
bilistic sampling to simulate noisy circuits. The number of samples used can be
adjusted. As a secondary analysis, we will consider different sample sizes for es-
timating the expected energy (cf. Section 6.7). For this analysis, the stochastic
mode will be used. For the other analyses, we will exclusively use the determin-
istic mode since it turns out to be much faster than stochastic mode for our sim-
ulations. Unfortunately, the ScipyMinimizePlugin does not have a documented
way of adjusting the number of samples for density-matrix-based simulations.

To implement the WS-Init-QAOA, the circuits produced by QLM’s QAOA circuit
generator are then modified in code by replacing the H by RY (θ) gates to pre-
pare the equal superposition. Additionally, for WSQAOA, the RX(β) implement-
ing the time evolution of the mixer Hamiltonian are replaced with instances
of RY (−θ)RZ(−2β)RY (θ). The RQAOA is also implemented manually. This in-
volves computing theMij from the final QAOA parameters, contracting the most
correlated edge to generate the new, reduced Ising Hamiltonian, keeping track
of which qubit corresponds to which spin variable when the number of qubits
decreases during the execution of the algorithm, and reconstructing the final
solution using depth-first search.

Circuits are transpiled to conform to the gate set
{
RZ(θ),

√
X,CNOT

}
. The

QLM library includes a tool to compile quantum circuits for a given gate set.
However, as of library version 1.7, this tool produces unpredictable and often
sub-optimal results when applied to the QAOA circuits. Therefore, a custom
circuit transpilation implementation is used instead. It involves expressing the
H and RX(θ) gates using RZ(θ) and

√
X gates as explained in Section 5.5. For

the WSQAOA time-evolved mixer Hamiltonian, one could convert each RY gate
individually, ending up with a total of four

√
X gates. However, to reduce noise,

we will instead express it using only two
√
X gates. In a one-time procedure,
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QLM’s circuit transpiler is used to express the circuit RY (−θ)RZ(−2β)RY (θ) in
the form RZ(θ3)

√
XRZ(θ2)

√
XRZ(θ1). The math expressions for θ1, θ2 and θ3 are

then serialized as human-readable strings in prefix notation using library func-
tionality. These serialized expressions are generated once and stored on disk.
When transpiling a WSQAOA circuit, these strings are loaded. The correct vari-
able name is inserted by simple string substitution and the math expression is
deserialized and inserted as angle parameters into the respective circuit gates.
This way, circuit parameters β⃗ are not changed by the transpilation, meaning
we can continue to use QLM’s ScipyMinimizePlugin as before.

5.7.3. Implementation of the simulation pipeline

Quantum simulations are highly computationally intensive. This is especially
true for noisy simulations involving density matrices: While an n-qubit pure
state can be represented with a 2n-dimensional state vector, representing an n-
qubit mixed state requires a 2n×2n density matrix. The performed performance
analysis requires simulating thousands of quantum circuits. Consequently, to
limit the time required to perform these simulations, the 192 physical CPU cores
of the Qaptiva 800 platform should be utilized as much as possible.

A simulation pipeline built on top the QLM library is implemented. Its main
goal is to perform rapid simulations for multiple parameter sets while utilizing
the Qaptiva hardware as much as possible. A simulation run performs a QAOA
variant on 100 problem instances, as described in Section 5.1. Each simulation
run is parameterized by:

• Problem type (Max-cut, Partition)

• Problem size (number of qubits)

• Algorithm type (QAOA, WSQAOA, WS-Init-QAOA, RQAOA)

• Circuit depth p (number of QAOA layers)

• Simulation type (ideal, noisy)

• Noise level parameters dD, dTR, dAB (only supported for noisy simulations)

• Number of tries per problem instance: The performance ratios are aver-
aged to increase the accuracy of the result.

• Performance indicator: This is usually the performance ratio. However,
for noisy simulations, the simulation pipeline can also measure the fidelity
of the circuit’s output state for the final values of β⃗ and γ⃗, compared with
the output of the same, ideal circuit (cf. Section 6.3).

• Number of samples for measuring ⟨ψ|HC |ψ⟩
• Number of samples for measuring ⟨ψ|Z(i)Z(j)|ψ⟩ (only RQAOA)
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These parameters are specified in a JSON format when starting a simulation
run. For one parameter set, simulation time may vary across different problem
instances since, for some instances, the optimizer may require fewer iterations
than the upper limit of 150. To ensure that all CPU cores are utilized as much as
possible, the pipeline supports launching multiple simulation runs. Simulations
for the next run can already start without needing to wait for all simulations of
the previous run to finish. The parameter sets for multiple runs can be specified
in the JSON by using an array instead of a single value for some parameter. The
simulation pipeline takes the Cartesian product of the possible combinations to
generate all parameter sets. Take the following, simplified, example:

{
"algorithm": ["QAOA", "WSQAOA"],
"qpu": [

{"type": "ideal"},
{"type": "noisy", "d_D": [1.0, 2.0]}

]
}

This would get expanded to the following parameter sets:

{ "algorithm": "QAOA", { "type": "ideal" }}
{ "algorithm": "QAOA", { "type": "noisy", "d_D": 1.0 }}
{ "algorithm": "QAOA", { "type": "noisy", "d_D": 2.0 }}
{ "algorithm": "WSQAOA", { "type": "ideal" }}
{ "algorithm": "WSQAOA", { "type": "noisy", "d_D": 1.0 }}
{ "algorithm": "WSQAOA", { "type": "noisy", "d_D": 2.0 }}

The QLM library supports two modes for performing simulations. In local mode,
simulation scripts are executed directly on the Qaptiva 800, which typically re-
quires access to the platform via SSH. In server mode, QLM jobs are created
on the user’s machine and sent to the Qaptiva 800, which functions as a server.
The server mode is well integrated into the QLM library, so only little changes in
the user’s source code are required to change from local mode to server mode.
One notable difference between the two modes is how jobs which require more
resources than are currently available are handled. A resource manager pro-
cess is permanently running on the Qaptiva 800 to ensure the fair distribution
of resources across multiple users. In local mode, if not enough resources are
available for the job according to resource manager, the execution of the job
is denied and an exception is thrown. In server mode, jobs are inserted into a
work queue. Jobs in this queue are executed as soon as enough resources are
available. Since the execution of a job on the user side is asynchronous in server
mode, the user’s code simply waits for the job to complete.
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The asynchronous execution of jobs, which allows the parallel execution of jobs
in a single-threaded Python script, and the fact that jobs automatically wait un-
til enough resources are available should make server mode the obvious choice
to execute a large batch of simulation. In practice, though, server mode comes
with various limitations. First, it requires serialization and deserialization of
jobs and their results, since both must be sent over a TCP connection, even if the
user’s script is running locally on the Qaptiva 800. Additionally, jobs and job re-
sults are written to disk in this mode to ensure they can still be accessed in case
the connection to the server terminates. Since job dispatching is synchronous,
this large additional I/O overhead can cause dispatching a job in server mode to
take longer than the entire execution of the same job in local mode, so there is
nothing to be gained by being able to execute jobs asynchronously. A possible
way to circumvent this problem is QLM’s feature to dispatch multiple jobs in a
single batch. However, there does not seem to be a way to combine this batch-
ing feature with the ScipyMinimizePlugin required to simulate QAOA circuits,
making this solution impractical.

The alternative to server mode is to use a multi-threaded script in local mode
which runs multiple simulations in parallel. When a resource exception occurs,
the affected thread waits a random amount of time and then tries again. This
approach comes with its own problems: Key parts of QLM library only work
correctly in a single-threaded environment. This can be solved by using Python’s
multiprocessing.Pool, which spawns multiple processes instead of threads
to execute the submitted tasks. Because the simulation pipeline can perform
multiple runs with different numbers of qubits in a single pass, it is difficult to
predict the optimal number of threads to maximize throughput andminimize the
number of resource exceptions. In addition, the QLM resource manager seems
to be overly pessimistic. Scenarios where most processes retry their current
job many times without doing any work are hard to avoid.

Therefore, for the performance analysis, the resource manager is turned off en-
tirely via an environment variable and tasks are executed by a multiprocess-
ing.Pool with 192 processes, the same as the number of physical CPU cores.
Each task corresponds to an execution unit which cannot be split up further. In
the context of the performance analysis, a task involves the complete execution
of an algorithm (QAOA, WSQAOA, WS-Init, RQAOA) including multiple, sequen-
tial simulations of the same circuit (or multiple circuits for the RQAOA).

The performance ratios are written into text files. Each line of these files stores
the results of a run as a JSON document containing the parameters for that run
and the performance ratio/fidelity for each problem instance. This allows the
results to be easily filtered and visualized later. When performing multiple runs,
once the results for a run are collected, they are immediately written to disk.
This way, if the simulation pipeline script needs to be restarted for any reason,
it can automatically skip over already completed runs.
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6. Evaluation of the results for
the noisy performance analysis

This chapter describes the key findings of the noise performance analysis. Sec-
tion 6.1 details the results of the main analysis which compares the performance
ratios of the QAOA variants when run on ideal and noisy circuits. In Section 6.2,
the effects of different noise levels will be analyzed. Section 6.3 examines the
effect of noise on circuit fidelity and Section 6.4 evaluates the effect of readout
errors on the algorithms’ performance. Section 6.5 talks about how the param-
eter optimization phase of the algorithms is affected by noise, while Section 6.6
compares the effect of single- and two-qubit gate noise. Section 6.7 analyzes the
effect of different sample sizes on the performance and Section 6.8 looks at how
well the RQAOA can handle higher levels of noise. Finally, Section 6.9 examines
the relationship between circuit depth and performance ratio and Section 6.10
attempts to answer the question whether there is an inherent difference in the
effects of thermal relaxation noise and gate infidelities on QAOA performance.

6.1. Comparison of the ideal and noisy results

The main result of the performance analysis is summarized in Figure 10a, which
compares the average performance ratios of the four QAOA variants with p ∈
{1, 2, 3, 4} layers for the 600 Max-cut instances and 600 Partition instances de-
scribed in Section 5.1 with problem size n ∈ {5, 6, 7, 8, 9, 10}. The results are
separated by problem, algorithm and number of layers, and are averaged over
the problem sizes (number of qubits). Figure 10b visualizes the same data, but
separated by problem size and averaged over the number of layers. The data
used for Figure 10, separated by both number of qubits and number of layers,
can be found in Section A.2 in the appendix. As justified in Section 5.3.2, the
noise model only considers thermal relaxation and depolarizing noise, ignor-
ing SPAM noise (dD = 1, dTR = 1, dAB = 0). The effect of readout errors will
be covered in Section 6.4. For orientation, the chart also shows the expected
performance ratios when selecting the solution uniformly at random as well as
the average performance ratio of the classical approximation algorithm which is
also used to initialize theWSQAOA and theWS-Init-QAOA (Goemans-Williamson
rounding for Max-cut and list scheduling for Partition).
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Figure 10.: Average performance ratio across all considered problem instances (n ∈
{5, 6, 7, 8, 9, 10}) for the four QAOA variants (p ∈ {1, 2, 3, 4}): comparison
between the ideal and the noisy circuit model
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The two charts reveal a clear order of the algorithms’ performance ratios which
is the same for both problems and both circuit models (ideal and noisy). The
RQAOA performs the best and the standard QAOA the worst, with the WSQAOA
and the WS-Init-QAOA being ranked second and third respectively. Although it
is not surprising that the algorithms perform worse on noisy circuits than on
their ideal counterparts, the difference varies greatly between variants. While
noise has a pronounced effect on the performance of the QAOA, WSQAOA and
WS-Init-QAOA, the noisy RQAOA seems to perform only slightly worse than the
ideal version, even slightly outperforming the Goemans-Williamson algorithm
for Max-cut. The RQAOA by design, after each QAOA run, considers only the
parity of each pair of spin variables that are part of the Ising Hamiltonian, and
selects the pair for which the result is the most conclusive. It seems reason-
able to assume that the more conclusive pairs also tend to have a relatively
high correlation when the algorithm is executed on a noisy circuit, making the
RQAOA much more resistant to noise than the other variants. Considerably less
impressive than the performance of the noisy RQAOA is the fact that the noisy
QAOA, WSQAOA and WS-Init-QAOA virtually do not benefit from adding more
QAOA layers. Only for the standard QAOA and Max-cut, the added computa-
tional power of a second layer outweighs the added noise caused by the deeper
circuits. It should be noted, however, that for the Partition problem, even in the
ideal case, the variants struggle to benefit from adding more layers, showing
the limitations of the classical optimizer used. The influence of the classical
optimizer will be discussed in Section 6.5.

The noisy RQAOA performs very well, evenwith only a single layer. While adding
more layers does not affect the results much, a slight improvement can still be
observed when adding a second and third layer. We can verify this observation
by performing a Wilcoxon signed-rank test [68], using the performance ratios of
the individual problem instances as data points. While the observation is indeed
statistically significant for Max-cut, with the p-value being 10−22 for layer 2 and
10−11 for layer 3, the situation is not quite clear for Partition where the p-values
are 0.039 and 0.051 respectively.

The noise resistance of the RQAOA is further demonstrated in Figure 11, which
visualizes the average relative performance ratio, separated by problem, prob-
lem size, algorithm and number of QAOA layers. For every problem instance,
we obtain the relative performance ratio by dividing the noisy performance ra-
tio by the ideal performance ratio. A larger relative performance ratio indicates
a larger resistance to noise. Even though the WSQAOA is the second best noisy
algorithm overall, it is actually the one most negatively affected by noise while
the WS-Init-QAOA is generally only slightly less resistant to noise than the stan-
dard QAOA. The bad relative performance of the WSQAOA, compared to the
WS-Init-QAOA, might have to do with its comparatively large “absolute” perfor-
mance ratio. Also, as explained in Section 3.6.1, the WSQAOA has the ability
to reconstruct the solution of the initial state. WSQAOA might outperform the
standard WS-Init-QAOA for the investigated problem instances mainly to due to
this ability, which could be strongly impaired by noise.
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Figure 11.: Comparison of the relative performance ratios (noisy divided by ideal) sep-
arated by problem, problem size, algorithm, and number of QAOA layers

Figure 10b and Figure 11 indicate that both the performance ratio of the noisy
variants and the relative performance ratio are generally negatively impacted by
the problem size. This makes sense since for a larger problem size, the circuits
also tend to grow deeper as more CNOT gates are required. Still, the number
of QAOA layers seem to have a much larger effect than the problem size. This
can be interpreted as a generally good sign when trying to apply the QAOA and
its variants to larger problems.

In Figure 10b, the results for the Partition problem with n ∈ {8, 9, 10} and noisy
QAOA, WSQAOA and WS-Init-QAOA are particularly noteworthy. Here, a large
decrease in performance ratio between n = 8 to n = 9 can be observed whereas
the results for 10 qubits are actually slightly better than the ones for 9 qubits.
The dip at n = 9 is most likely caused by a large jump in circuit depth whose
reason will be explained in Section 6.3. The increase in performance for n = 10
is probably due to the fact that the results are nearly completely random at
this point and that choosing a solution uniformly at random results in a slightly
higher performance ratio for n = 10 than for n = 9.

6.2. The effect of different noise levels

Since the noise resilience for most of the analyzed variants can be seen as rather
disappointing, a question which arises naturally is “How much noise can the al-
gorithms handle?”. More concretely, we will consider the question at which
level of noise adding more QAOA layers does not further improve the average
performance ratio of the algorithms. The heatmaps depicted in Figure 12 vi-
sualize the advantage of 2-layer and 3-layer circuits, compared to circuits with
one fewer layer, for different levels of noise (dD, dTR ∈ {0, 0.25, 0.5, 0.75, 1}). The
top-left cell in each heatmap is the ideal circuit. The x- and y-axis add more

60



0.0

0.5

1.0D
ep

ol
a
ri

zi
n

g

p = 2

Q
A

O
A

p = 3

0.0

0.5

1.0D
ep

ol
ar

iz
in

g

W
S

Q
A

O
A

0.0

0.5

1.0D
ep

ol
ar

iz
in

g

W
S

-In
it-Q

A
O

A
0.0 0.5 1.0

Thermal relaxation

0.0

0.5

1.0D
ep

ol
ar

iz
in

g

0.0 0.5 1.0

Thermal relaxation
R

Q
A

O
A

0.96

0.98

1.00

1.02

1.04

(a) Max-cut

0.0

0.5

1.0D
ep

ol
a
ri

zi
n

g

p = 2

Q
A

O
A

p = 3

0.0

0.5

1.0D
ep

ol
ar

iz
in

g

W
S

Q
A

O
A

0.0

0.5

1.0D
ep

ol
ar

iz
in

g

W
S

-In
it-Q

A
O

A

0.0 0.5 1.0

Thermal relaxation

0.0

0.5

1.0D
ep

ol
ar

iz
in

g

0.0 0.5 1.0

Thermal relaxation

R
Q

A
O

A

0.96

0.98

1.00

1.02

1.04

(b) Partition

Figure 12.: Performance ratio for p divided by performance ratio for p−1with p ∈ {2, 3}
for different noise levels: dD, dTR ∈ {0, 0.25, 0.5, 0.75, 1}

thermal relaxation and depolarizing noise with the bottom-right cell showing
the baseline noise model results. A red cell indicates that the algorithm bene-
fits from the added layer whereas a blue cell indicates that the average results
are worse. The “raw” performance ratios, separated by problem size and num-
ber of layers, are shown in Section A.3 in the appendix for selected values of
dD and dTR. Despite what the baseline noise model might suggest, the standard
QAOA and the WS-Init-QAOA show some noise resistance for lower levels of
noise when applied to Max-cut. For moderate noise levels, the standard QAOA
still benefits from adding a third layer, as does the WS-Init-QAOA when adding a
second. For Partition, the results are generally worse, as was already indicated
by Figure 11. A likely reason for this is the fact that the QAOA circuits for the
considered Partition instances are generally deeper than those forMax-cut. This
is because the problem Hamiltonian for Partition contains a quadratic term for
each pair of numbers whereas the problem Hamiltonian for Max-cut only con-
tains quadratic terms for roughly half of the pairs since between every pair of
vertices an edge is drawn with probability 0.5. Therefore, on average, Partition
circuits contain about twice as many CNOT gates as Max-cut circuits.

6.3. The effect of noise on circuit fidelity

The top-right and bottom-left corners of the heatmaps in Figure 12 indicate
that for the analyzed model, the effect of thermal relaxation noise seems to be
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greater than the effect of depolarizing noise. As explained in Section 5.3.2,
circuit fidelity seems to have a great effect on QAOA performance, so we will
compare the fidelity of the noisy circuits, with just depolarizing noise (dTR =
0), with just thermal relaxation noise (dD = 0) and with both depolarizing and
thermal relaxation noise. This is visualized in Figure 13. To compute the circuit
fidelity, we execute the noisy QAOA variant as usual, optimizing β⃗ and γ⃗. For
the final parameters β⃗, γ⃗, we compute the fidelity of the output of the noisy
circuit and the output of the ideal circuit, with the same parameters. This circuit
fidelity is averaged over the problem instances. The charts only visualize the
circuit fidelity for the QAOA, WSQAOA andWS-Init-QAOA. The RQAOA executes
multiple circuits so there is no clear way to assign a fidelity to the algorithm’s
execution.

According to Figure 13, thermal relaxation is indeed the main noise source for
the considered model, especially for deeper circuits. An interesting observa-
tion is the fact that the circuit fidelity differs slightly between algorithms. This
can hardly be explained by the extra

√
X pulse needed to prepare the initial

state of the WSQAOA since the WS-Init-QAOA and the WSQAOA circuits have
different average fidelities although they use exactly the same noise channels.
Nor can it be fully explained by the inherent bias of thermal relaxation noise
toward the computational basis favoring the initial states for the WSQAOA and
WS-Init-QAOA, since the same difference in fidelity can be observed when only
depolarizing noise is considered. In fact, when it comes to circuit fidelity, the
order of the algorithms is reversed compared to their relative performance ra-
tios shown in Figure 11. For example, the performance of the WSQAOA is most
affected by noise, although the outputs of the noisy WSQAOA circuits are the
closest to the ideal outputs among the tested variants. This might indicate that
the large impact of noise on the WSQAOA’s performance ratio can at least par-
tially be explained by the fact that its performance ratio in the ideal case is
higher compared to the standard QAOA and the WS-Init-QAOA, not because it
is inherently less resistant to noise.

Figure 13b shows that, at 9 layers, the fidelity of the Partition circuits drops
rapidly. This is an artifact of the greedy heuristic used by the QLM to reduce
the depth of the time-evolved problem Hamiltonian. For Partition, the graph of
the non-zero quadratic terms Jij is always complete, so all Partition circuits with
the same number of qubits use the same arrangement of gates. For Partition and
n ∈ {5, 6, 7, 8}, with the heuristic used, the time-evolved problem Hamiltonian
has a depth of 14 CNOT gates. For n ∈ {9, 10}, the depth is 30 CNOT gates.
Since CNOT gates are the most noisy (cf. Table 1), this explains the drop in
fidelity. These circuit depths are definitely sub-optimal: For example, the edges
of a complete graph with 10 vertices can be colored with only 9 colors such that
no two edges of the same color are adjacent [69]. Therefore, we can apply the
exp(−iγZ(i)Z(j)) gates in 9 layers where each layer corresponds to one of the
colors, resulting in a circuit with a depth of only 18 CNOT gates. This shows
that minimizing the depth of the time-evolved problem Hamiltonian can greatly
improve noisy performance.
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Figure 14.: Performance ratio: comparison between the baseline noise model with and
without readout noise

6.4. The influence of readout noise

For reasons explained in Section 5.3.2, we ignored the effects of readout noise in
the previous evaluations (dAB = 0). Figure 14 shows the difference between the
baseline noise model and the same model with readout noise (dAB = 1). Not sur-
prisingly, adding readout noise has a negative effect on the average performance
ratio, where the magnitude of the effect seems to depend on the noise resistance
of the variant, with the RQAOA being the least affected and the WSQAOA being
the most affected. However, the effect of readout errors appears to be mostly
independent of the number of layers, which makes sense, as it is modeled as a
one-time effect and not as noise applied over the course of the circuit. In par-
ticular, if adding a layer improves the average performance ratio of some QAOA
variant for the baseline noise model, then this is generally also true when adding
readout noise. If anything, the performance difference actually seems to shrink
as the number of layers increases. In fact, the performance for 3-layer QAOA
and WS-Init-QAOA is actually slightly better when readout noise is included,
although it is possible that this behavior can be explained by unintended side
effects due to the specific experimental setup used.

6.5. The effect of noise on the classical optimizer

During the execution of the QAOA or one of its variants, the expected energy
of the problem Hamiltonian ⟨ψ|HC |ψ⟩ gradually decreases over time while the
optimizer tries to find the optimal set of parameters β⃗ and γ⃗. Figure 15 shows
how the energy changes over the course of this process for four example in-
stances and for both the ideal and the noisy case. Comparing these and other
optimization traces, one can see that the optimization process generally takes
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Figure 15.: Effect of circuit noise on the classical optimization for selected problem
instances
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longer for more circuit layers since having more layers also means having more
parameters to optimize. WS-Init-QAOA circuits and especially WSQAOA cir-
cuits generally do not require as many iterations as the other variants since the
initial state provided by the classical approximation algorithm already gives a
head start when trying to find the optimal solution. These observations are not
surprising, but it is reassuring that they can be translated almost directly to the
noisy case as well, indicating that the optimization procedure operates similarly
on noisy circuits as on ideal ones.

When comparing ideal and noisy circuits, for most problem instances the op-
timization traces look similar to Figure 15a and Figure 15b in the sense that
both ideal and noisy optimizations eventually plateau. The difference is that
the plateau energy is generally higher in the noisy case than in the ideal case.
However, this is not true for all problem instances. In Figure 15c, the optimiza-
tion trace is very similar between the ideal and the noisy case for the first 20
iterations. However, the SciPy COBYLA optimizer terminates much earlier in the
noisy case, although the trajectory of the ideal case suggests that a better fi-
nal state might have been possible. In Figure 15d, both the ideal and the noisy
optimization plateau at around iteration 25 but on different energy levels. How-
ever, the noisy optimizer can recover within the maximum 150 of iterations and
reach a final energy close to the final energy in the ideal case. The examples
of Figure 15c and Figure 15d suggest that the gap between the ideal and noisy
results could be reduced by improving the classical parameter optimization. To
test this, the main evaluation from Section 6.1 was repeated, but with a maxi-
mum of 1000 iterations and a tolerance of 10−4. The results, which can be found
in Section A.4 in the appendix, show a slight improvement in both ideal and noisy
performance. However, the relative performance ratio (noisy ratio divided by
ideal ratio) seems to be about the same, indicating that simply increasing the
number of optimizer iterations does not bring a substantial improvement.

6.6. Comparing the noise of single-qubit and
CNOT gates

As explained in Section 5.5, the studied circuits contain only two types of noisy
gates: single-qubit

√
X gates and two-qubit CNOT gates. As shown in Table 1,

CNOT gates are much noisier than single-qubit gates in the sense that they
have both a lower fidelity and a higher duration. Therefore, it is reasonable
to assume that the gate infidelities of the CNOT gates, as well as the thermal
relaxation noise due to their duration, have a greater impact on the performance
ratio than the noise caused by

√
X gates. Figure 16 confirms this assumption.

The charts show the same data as Figure 10a, but in addition to the ideal and
the baseline noise models, they also display two additional models: one where
CNOT gates are assumed to be noiseless, having a fidelity of 1 and a duration
of 0, and one where

√
X gates are assumed to be noiseless.
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Figure 16 shows that CNOT gates indeed have a much larger effect on the
performance of the QAOA variants to such a degree that the results for the
baseline model are nearly the same as the model which assumes

√
X gates to

be noiseless. Similarly, if we ignore CNOT noise, the noise of the single-qubit
gates alone only has a small impact on the performance of the QAOA variants. As
shown above, RQAOA is the variant most resilient to noise for the tested problem
instances. This observation still seems to hold when only considering single-
qubit noise although the differences between the variants are very small.

6.7. The effect of sample size on noisy
performance

As discussed in Section 5.4, we have assumed that the expected energy ⟨ψ|HC |ψ⟩
can be measured with effectively infinitely many samples. Figure 17 shows how
the performance of the QAOA variants decreases for Max-cut when fewer sam-
ples are used. The chart shows the relative performance ratios for 10 and 100
samples, compared to the baseline model, where a relative performance ratio
of less than 1 indicates that the performance is worse than when using an ef-
fective sample size of ∞ and a value of 1 indicates no difference. Due to time
constraints (cf. Section 5.7.2), the algorithms were run 5 times for each prob-
lem instance, resulting in statistical uncertainty in the data. Still, several trends
can be observed: First of all, while the average performance ratio is definitely
negatively impacted by finite sample sizes, this impact is comparatively small
for p = 1 where for each algorithm the decrease is not more than 5%, even in
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Figure 17.: How does the number of samples for estimating ⟨ψ|HC |ψ⟩ during the QAOA
affect the results for Max-cut? The baseline model uses density matrices
and can therefore be considered to use infinitely many samples.

the extreme case of only 10 samples. Still, the errors due to sampling increase
as the number of layers grows. This is probably because of the difficulty of find-
ing the optimal set of parameters if the expected energy ⟨ψ|HC |ψ⟩ can only be
estimated with a very low accuracy. Consequently, the decline in performance
ratio from p = 2 to p = 3 is less severe for 100 samples than for 10 samples.

Interestingly, RQAOA handles a small number of samples worse than the other
variants when single-layer QAOA circuits are used. On the other hand, the in-
crease in sampling error due to more layers is not as bad as for the other vari-
ants. Therefore, the question of which QAOA variant is most sensitive to using
fewer samples cannot be answered conclusively from the data collected.

6.8. The performance of the RQAOA for higher
levels of noise

Out of the QAOA variants tested, the RQAOA is clearly the one most resistant to
noise. Even though the analyzed noise model accounts for the dominant noise
sources in physical quantum computers, namely thermal relaxation and gate in-
fidelities, we should not ignore that there are still some unconsidered aspects,
most notably additional swap gates due to limited circuit connectivity. There-
fore, the question arises if the RQAOA still performs this well when the noise
level increases. Figure 18 visualizes the performance of the RQAOA for higher
levels of thermal relaxation and depolarizing noise (dD, dTR ∈ {1, 2, 3, 4}). The
RQAOA still performs quite well if the noise level doubles (dD = dTR = 2). For
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Figure 19.: Average performance ratio of RQAOA for higher levels of noise (dD = dTR ∈
{1, 2, 3, 4}): algorithm comparison

dTR ≥ 3, however, a noticeable decrease in the performance ratio can be ob-
served, which especially affects circuits with more than one layer. As already
indicated by Figure 13, for the noise model considered, thermal relaxation noise
has a greater effect on circuit fidelity than depolarizing noise. Since both noise
sources cause an approximately exponential decrease in circuit fidelity, this dif-
ference is even more pronounced at higher noise levels.

Figure 19 gives a different perspective on the data of Figure 18. Here, we only
consider the case where dD = dTR ∈ {1, 2, 3, 4}, but separate the data by number
of layers and problem size. While the RQAOA generally performs better for Max-
cut than for Partition, large levels of noise seem to affectMax-cut more for larger
problem sizes, closing the gap between the two problems. However, Partition,
unlike Max-cut, is originally a minimization problem, so the performance ratio
might not necessarily be perfectly comparable between the two problems.
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Figure 20.: Performance of Max-cut-RQAOA for higher levels of noise (dD = dTR ∈
{1, 2, 3, 4}) if more samples are used to find the most correlated edge
(⟨ψ|Z(i)Z(j)|ψ⟩)

As discussed in Section 5.4, although an effectively infinite number of samples
is used to find the optimal parameters β⃗ and γ⃗, we use only 10 samples to find
the most correlated edge Jij in order to not give the RQAOA an unfair advantage
over the other QAOA variants. It might be possible, however, that 10 samples
are simply not enough to overcome higher levels of noise. Figure 20 shows
how better sampling of the ⟨ψ|Z(i)Z(j)|ψ⟩ improves the performance of Max-cut-
RQAOA for high noise levels. The charts also show the results for the effective
sample size of ∞, where the exact probabilities for each computational basis
state are used to measure ⟨ψ|Z(i)Z(j)|ψ⟩, giving an upper bound on the best pos-
sible performance. While higher numbers of samples improve the quality of the
solutions to some degree, there definitely seems to be a limit to how much bet-
ter sampling can help against higher levels of noise. In particular, using more
than 1000 samples has a negligible effect on the performance of the RQAOA.
Even infinitely many samples are not enough to overcome larger noise levels,
especially for deeper circuits with more qubits and QAOA layers. More samples
actually seem to have a negative effect for p = 3 and n ≥ 9. This might indicate
that the RQAOA benefits from more randomization if the noise level grows too
large. However, it could also be the result of other undesired side effects, which
might be eliminated by, for example, a different classical optimizer.

6.9. The effect of circuit depth on noise
resilience

From the previous evaluations, we can deduce that thermal relaxation due to
CNOT gates seems to be the largest source of noise, affecting the performance
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of the QAOA variants the most. CNOT -induced thermal relaxation is directly
determined by the depth of the circuit if we define circuit depth as the total
execution time of the circuit, assuming that CNOT gates have duration 1 and
single-qubit gates have duration 0. The idea that circuit depth has the largest
effect on performance is further supported by Figure 11 in Section 6.1, which
suggests that for Max-cut the effect of noise on the performance increases as
the number of qubits, and thus the circuit depth, increases. On the other hand,
for Partition, the effect of noise seems to be about the same for n ∈ {5, 6, 7, 8},
even though the number of CNOT grows quadratically with the problem size. It
is only when the circuit depth increases at n = 9 that a decrease in the relative
performance ratio can be observed.

Figure 21a shows the performance ratio for p ∈ {1, 2, 3} depending on circuit
depth for different levels of noise in a jitter plot. To help readability, for every
algorithm, noise level, problem and circuit, only data points between the 25th
and the 75th percentile are included in the plot. The× show the average perfor-
mance ratio for each depth. For Max-cut and small noise levels, deeper circuits
generally produce better results due to more QAOA layers, plateauing at around
depth 30. For larger noise levels, on the other hand, deeper circuits almost al-
ways have a negative effect on the performance. The results for the Partition
problem are less conclusive since there are fewer possible circuit depths and the
data points have a larger variance for circuits of the same depth. Nevertheless,
the general trends for Partition seem to be similar to those for Max-cut.

Figure 21b shows the performance ratio for p = 2, divided by the performance
ratio for p = 1, depending on the single-layer circuit depth. If we define an al-
gorithm to be noise-resilient if the performance ratio for p = 2 is larger than
the performance ratio for p = 1, we can say that for the baseline noise model
(dD = dTR = 1), the standard QAOA is noise-resilient up to a circuit depth of
approximately 10. For noise level 0.5, the QAOA is resilient up to at least cir-
cuit depth 15, while for noise level 2, noise resilience can only be achieved for
very small circuit depths. The WS-Init-QAOA manages to be noise-resilient at
similar circuit depths for noise level at most 0.5, for higher noise levels it does
not achieve noise resilience reliably. In general, the effect of circuit depth on
noise resilience seems to be less for the WS-Init-QAOA compared to the stan-
dard QAOA, as indicated by the smaller slope of the plots. For the RQAOA,
circuit depth has an even less noticeable effect. Nevertheless, for noise levels
above 1, noise resilience seems difficult to achieve.

Comparing the two problems Max-cut and Partition, while the deeper circuits of
Partition definitely impact the noise resilience negatively, for the QAOA andWS-
Init-QAOA, the relative performance of the 2-layer circuits is still slightly worse
on Partition instances with n ∈ {5, 6, 7, 8} when compared to Max-cut instances
with the same circuit depth. On the other hand, for the WSQAOA and RQAOA,
the Partition instances show similar or slightly better relative performance than
the comparable Max-cut instances.
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6.10. Difference of thermal relaxation noise and
depolarizing noise with the same fidelity

As discussed in the previous sections of this chapter, thermal relaxation affects
the performance of the QAOA variants more than depolarizing noise since it has
a greater effect on circuit fidelity for the investigated noise parameters. For
the final analysis of this evaluation, we want to consider the question: Is this
difference in performance only due to a difference in fidelity, or does thermal
relaxation inherently have a stronger negative effect on the QAOA than depolar-
izing noise? To answer this question, we will replace every thermal relaxation
channel with a depolarizing channel with the same fidelity. Specifically, for gate
noise, instead of sequentially composing thermal relaxation and depolarizing
noise, a single depolarizing channel is used whose fidelity matches the desired
gate fidelity from Table 1. For

√
X gates, a one-qubit depolarizing channel is

used, for CNOT gates we will use a two-qubit depolarizing channel. Thermal
relaxation channels representing idle noise are replaced with one-qubit depo-
larizing channels with identical fidelity.

Figure 22 shows the relative performance ratios of the four QAOA variants in
the sense that for each problem instance, the average performance ratio for the
depolarizing model is divided by the average result for the baseline noise model,
and these quotients are averaged. The first thing that stands out is that the
differences between the baseline and depolarizing models are relatively small
in most cases, suggesting that the amount of noise, characterized by the average
channel fidelity, plays a larger role than the type of noise applied. However, one
can observe that for Partition and p ≥ 3 the results of the depolarizing model
are a few percentage points better than the results of the original noise model.
A closer look at the data shows that 9- and 10-qubit problem instances are more
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affected, suggesting that this difference is larger for deeper circuits in general.
Note that, as explained in Section 6.3, Partition circuits for n ≥ 9 are much
deeper than Partition circuits with n ∈ {5, 6, 7, 8}. While the difference between
the two models is much smaller for the Max-cut instances, with the baseline
model actually performing slightly better in most cases, we can still notice a
similar trend of the relative performance ratio increasing for p = 4.

The differences between the results for the baseline and the depolarizing model
can probably at least partly be explained by properties of the analyzed optimiza-
tion problems Max-cut and Partition. The kind of thermal relaxation noise con-
sidered by the evaluation drives the state of each qubit towards |0⟩⟨0| over time
which corresponds to setting each spin variable si of the Ising Hamiltonian to 1.
However, this particular assignment results in the worst possible solution, both
for Max-cut and Partition, with a performance ratio of 0. On the other hand, de-
polarizing noise drives each qubit towards the maximally mixed state 1/2, which
corresponds to choosing si = ±1 with equal probability. This assignment of vari-
ables leads to solutions with performance ratios between roughly 0.6 and 0.7 as
shown by Figure 10, possibly giving the depolarizing model an advantage.

When looking at which variants are most affected by the type of noise applied,
there does not seem to be a clear trend for the RQAOA, perhaps because of insuf-
ficient data. Of the remaining variants, the WSQAOA has the smallest relative
performance ratio, indicating that it is slightly more affected by depolarizing
noise than the other variants. This might be due to the fact that both the am-
plitude damping and the phase damping components of the thermal relaxation
channel are defined in terms of the computational basis. For the WSQAOA,
the initial state and the ground state of the mixer Hamiltonian are closer to the
computational basis states than |+⟩, which is why thermal relaxation might have
a slight advantage over depolarizing noise for the WSQAOA, compared to the
other variants.
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7. Conclusion

In this thesis, we conducted simulations to investigate the performance of the
QAOA, the WSQAOA, the WS-Init-QAOA and the RQAOA for the problems Max-
cut and Partition when run on noisy quantum circuits with 5 to 10 qubits. For
this purpose, a realistic unified noise model based on real data from IBM-Q su-
perconducting quantum computers was developed which uses quantum chan-
nels to simulate the effects of thermal relaxation, gate infidelities and SPAM
errors. The simulations were performed on an Eviden Qaptiva 800 quantum
simulation platform. In order to take full advantage of the platform’s computa-
tional capabilities and to perform the computationally intensive density-matrix-
based simulations quickly, a custom simulation pipeline was implemented on
top of the platform’s proprietary QLM library.

As the main result of the thesis, we conclude that noise has by far the least effect
on the RQAOA, which in its noisy version actually outperforms the ideal versions
of the other three algorithms. This appears to indicate that the RQAOA’s idea
of assigning values to the spin variables incrementally instead of all at once is
much less disturbed by noise. The remaining variants are similarly impacted by
noise, although the WSQAOA is slightly more affected than the standard QAOA
while the WS-Init-QAOA is slightly less affected. The reasons why the WSQAOA
is less noise-resistant than the standard QAOA are not clear. What can be said,
however, is that it is probably not due to the WSQAOA mixer Hamiltonian being
more susceptible to noise than one of the standard QAOA. In fact, the fidelity of
noisy WSQAOA circuits actually seems to be slightly better when compared to
the standard QAOA.

Of the noise sources analyzed, thermal relaxation has the greatest impact on
performance. The data suggests that this is mainly because it has the largest
effect on the circuit fidelity for the studied noise parameters. However, there is
also some evidence that thermal relaxation noise has an inherently larger neg-
ative impact on QAOA performance than depolarizing noise, which was used
to model gate infidelities, although this evidence is not conclusive. SPAM er-
rors also degrade the performance of the QAOA variants, but this decrease is
much smaller than the one caused by thermal relaxation and gate infidelities
whose effect on circuit fidelity is approximately exponential in the circuit depth.
Therefore, from a quantum hardware manufacturer’s perspective, improving
qubit coherence times and reducing gate durations generally benefit the tested
QAOA variants more than improving gate fidelities. Compared to single-qubit
gates, CNOT gates not only have much larger gate infidelities, but also take
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much longer to execute, thereby inducing more thermal relaxation noise. Thus,
all QAOA variants would benefit greatly from improving the fidelity of CNOT
gates and especially from reducing their duration.

However, the data collected suggest that the number of CNOT gates is less crit-
ical than the increased circuit depth they cause. For the analyzed noise model,
the standard QAOA manages to achieve better results with two layers than with
one layer as long as the depth of the time-evolved problem Hamiltonian does
not exceed 10 CNOT gates. For twice the noise level the limit is much lower at
about 5 CNOT gates. For the RQAOA, adding a second layer does improve the
results at the baseline noise model, even though the improvement is very small.
For higher noise levels, adding more layers is generally not worth the addi-
tional noise caused by thermal relaxation and gate infidelities. Still, for a depth
of about 10 CNOT gates, the RQAOA achieves very good results with only sin-
gle layer even if the noise level is doubled. At four times the noise level, RQAOA
still achieves an average performance ratio of more than 0.8, while the other
variants do not perform much better than random guessing at circuit depth 5
and above.

For most evaluations, we assumed that the expected energy of the problem
Hamiltonian ⟨ψ|HC |ψ⟩ can be sampled with perfect accuracy, while only 10 sam-
ples are used for the RQAOA edge correlations ⟨ψ|Z(i)Z(j)|ψ⟩. Decreasing the
number of samples for the expected energy during the optimization of the QAOA
parameters negatively impacts the performance. This impact grows for higher
number of QAOA layers, indicating that more noisy circuits might generally re-
quire more samples. Still, even for sample size 10, all variants reach levels
of performance within 90% of their performance with infinitely many samples.
Which variants are more affected by fewer samples, can not be answered con-
clusively from the collected data.

Regarding the sampling of the edge correlations for the RQAOA, using more
than 1000 samples does not improve the results for the considered problem
instances. For this many samples, the considered problem instances can be
approximated with essentially perfect accuracy in the ideal case. For large noise
levels, even using an infinite number of samples will result in greatly degraded
performance compared to the ideal case, indicating that there appears to be a
limit to how much the effects noise can be mitigated by better sampling of the
RQAOA edge correlations.

To summarize, when considering the studied problem instances, it can be said
that the performance of the QAOA variants is most affected by circuit depth
while other aspects like readout noise, the number of qubits, the number of
samples and the studied problem are secondary factors with a significant but
smaller effect. When trying to achieve good results on noisy circuits, it is there-
fore essential to consider the depth of the problem Hamiltonian and possible
strategies to reduce it, such as using a Hamiltonian with fewer quadratic terms
or using a Hamiltonian whose terms can be rearranged in a way that minimizes
circuit depth.
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Although many aspects have been considered in the analysis performed in this
thesis, there are several factors that could not be addressed within the limited
time frame. The largest source of unaccounted noise is the extra swap gates
required due to the limited connectivity of physical superconducting quantum
computers since the noise model studied assumes a complete coupling graph.
Even though a performance evaluation for higher noise levels was performed
which provides some insight into how the variants might perform with addi-
tional CNOT gates, more experiments are needed. There are also other poten-
tial noise sources which were not considered [70]–[72]. For the analysis, the
SciPy COBYLA optimizer with a relatively low tolerance and number of iterations
was used to speed up the performed simulations. The optimization traces for
some problem instances suggest that using a different classical optimizer might
reduce the gap between ideal and noisy QAOA. There has been a great deal of
research into improving QAOA parameter optimization. A good overview of the
various techniques is given in Section 3.2 of [8]. Finally, this work only consid-
ers two problems, Max-cut and Partition. Although most findings of the analysis
apply to both problems, there are still differences, most notably that the perfor-
mance ratios for Partition are a bit lower in general, both in the ideal and in the
noisy case. It would be interesting to know to what degree the results of the
evaluation can be generalized to other problems.

To conclude, the QAOA and its variants are among the most promising quan-
tum algorithms of the NISQ era. Still, the level of noise experienced in current
quantum systems poses a significant threat to their ability to gain an advan-
tage over classical approximation algorithms and heuristics. The results for the
RQAOA show that there are techniques to mitigate the effects of noise. How-
ever, these results also suggest that many of these techniques have limitations.
There are certainly many challenges to overcome before quantum approximate
optimization algorithms are a practical option for solving large-scale real-world
optimization problems.
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A. Appendix

A.1. The average fidelity of the repeated
depolarizing channel

Let Ek = E ◦ E ◦ · · · ◦ E︸ ︷︷ ︸
×k

denote the k-fold repeated application of channel E . Then,

the average fidelity of the quantum channel describing for the k-fold application
of the n-qubit depolarizing channel with probability p is

F̄
(
EkD,n

)
=

1

2n
+

2n − 1

2n
ek ln(1−p). (5.1)

Proof. We will begin by showing that EkD,n is equivalent to a single n-qubit depo-
larizing channel with depolarizing probability 1− (1− p)k, that is,

EkD,n(ρ) = (1− p)kρ+ (1− (1− p)k)
1

2n
. (A.1)

We can prove this by induction: By definition of the depolarizing channel (4.13),
(A.1) is true for k = 1. Inductively, assume (A.1) is true for some k. Then, it is
also true for k + 1 since

Ek+1
D,n (ρ) = EkD,n(ED,n(ρ)) = (1− p)ED,n(ρ) + (1− (1− p)k)

1

2n
by ind. hypo.

= (1− p)k
(
(1− p)ρ+ p

1

2n

)
+ (1− (1− p)k)

1

2n

= (1− p)k+1ρ+
(
p(1− p)k + 1− (1− p)k)

1

2n

= (1− p)k+1ρ+
(
(1− (1− p))(1− p)k + 1− (1− p)k

) 1
2n

= (1− p)k+1ρ+ (1− (1− p)k+1)
1

2n
.

Therefore, by (4.14), the average fidelity of EkD,n is

F̄ (EkD,n) = 1− (1− (1− p)k) +
1− (1− p)k

2n
= (1− p)k +

1

2k
− (1− p)k

2n

=
1

2n
+

2n − 1

2n
(1− p)k =

1

2n
+

2n − 1

2n
ek ln(1−p),

proving the claim.
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A.2. Ideal and noisy results, separated by
number of layers and qubits

Figures 23 and 24 show the data from the main evaluation (cf. Section 6.1), sep-
arated by ideal/noisy, problem, problem size, algorithm and number of layers.
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Figure 23.: Ideal circuits
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Figure 24.: Baseline noise model (dD = 1, dTR = 1, dAB = 0)
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A.3. Results for selected noise levels, separated
by number of layers and qubits

Figures 25, 26, 27 and 28 show the performance ratios for the noise level anal-
ysis results with dD = dTR ∈ {0.25, 0.5, 2.0, 4.0} and dAB = 0, separated by
ideal/noisy, problem, problem size, algorithm and number of layers.
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Figure 25.: dD = 0.25, dTR = 0.25, dAB = 0
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Figure 26.: dD = 0.5, dTR = 0.5, dAB = 0
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Figure 27.: dD = 2, dTR = 2, dAB = 0
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A.4. Results when using more QAOA iterations

For the evaluation in Chapter 6, the SciPy COBYLA optimizer with a tolerance of
10−2 and a maximum of 150 iterations was used. Figures 30, 30 and 31 visualize
the main results from the main evaluation in Section 6.1, but when using a
tolerance of 10−4 and a maximum of 1000 iterations.
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