
Influence of HW-SW-Co-Design
on Quantum Computing Scalability

Hila Safi
Siemens AG, Technology
Technical University of

Applied Science Regensburg
Munich, Germany

hila.safi@siemens.com

Karen Wintersperger
Siemens AG, Technology

Munich, Germany
karen.wintersperger@siemens.com

Wolfgang Mauerer
Technical University of

Applied Science Regensburg
Siemens AG, Technology

Regensburg/Munich, Germany
wolfgang.mauerer@othr.de

Abstract—The use of quantum processing units (QPUs)
promises speed-ups for solving computational problems. Yet,
current devices are limited by the number of qubits and suffer
from significant imperfections, which prevents achieving quan-
tum advantage. To step towards practical utility, one approach is
to apply hardware-software co-design methods. This can involve
tailoring problem formulations and algorithms to the quantum
execution environment, but also entails the possibility of adapting
physical properties of the QPU to specific applications. In this
work, we follow the latter path, and investigate how key figures—
circuit depth and gate count—required to solve four cornerstone
NP-complete problems vary with tailored hardware properties.

Our results reveal that achieving near-optimal performance
and properties does not necessarily require optimal quantum
hardware, but can be satisfied with much simpler structures
that can potentially be realised for many hardware approaches.
Using statistical analysis techniques, we additionally identify an
underlying general model that applies to all subject problems.
This suggests that our results may be universally applicable to
other algorithms and problem domains, and tailored QPUs can
find utility outside their initially envisaged problem domains.
The substantial possible improvements nonetheless highlight the
importance of QPU tailoring to progress towards practical
deployment and scalability of quantum software.

Index Terms—quantum computing, software engineering,
hardware-software co-design, quantum algorithm performance
analysis, scalability of quantum applications

I. INTRODUCTION

NP-Complete problems are of great interest in computer sci-
ence and mathematics, as many industrial problems belong to
this complexity class. They are believed to be computationally
intractable for classical computers, at least in the worst case.
This means that for large instances of these problems, it may
not be possible to find a solution in a reasonable amount of
time using any known algorithm. Industrial use-cases already
benefit from approximating optimisation. These problems can
be rewritten as NP-optimisation (NPO) problems as well as
involve combinatorial aspects to model each problem [1]. In
practice, there exist heuristics and approximation algorithms
that can be used to find good near-optimal solutions to
some NP-complete problems by choosing a trade-off between
performance and result quality, albeit it is known that problems
exist that defy such techniques [2], [3].

Quantum algorithms in general have the potential to im-
prove the both, quality and performance of approximate
solutions to NP-complete problems [4]. QAOA (Quantum
Approximate Optimisation Algorithm) is a particularly well-
known and widely studied quantum algorithm for finding
approximate solutions to combinatorial optimisation problems.
However, and among other factors, current quantum hardware
limitations restrict the potential of using QAOA tol solve
problems of practical interest. Quantum computers face dif-
ferent challenges; for instance they are limited to a relatively
small number of qubits, typically ranging from around 50 to
400. Scaling quantum computers to large numbers of qubits
is a difficult engineering problem that also heavily depends
on the specific hardware platform. Another problem is that
quantum computers are susceptible to noise and distortions
from their environment and suffer from imperfections in the
control signals [5], both leading to errors in the operations
performed on the qubits, and limited decoherence times.

Changes to the hardware architecture can influence the
connectivity between qubits, the coherence time, and the gate
error rates. These modifications impact the performance and
resource requirements of quantum algorithms, such as the
number of gates needed to execute the quantum circuit, the
number of measurements required and the amount of memory
and time needed to store and manipulate quantum states. In
this paper, we consider the effects of such hardware improve-
ments on four NP- complete problems: Travelling Salesperson
(TSP), Number Partitioning (NumPart), Maximum Cut (Max-
Cut) and Maximum 3-Satisfiability (Max3Sat).

This is of particular importance in the current era of
noisy, intermediate-scale quantum (NISQ) computers, which
is expected to last for at least several years (possibly even
decades) until fault-tolerant, perfect quantum computing be-
comes feasible. Yet, there is an increasing interest in util-
ising NISQ devices in high- performance computing (HPC)
scenarios, and tailoring NISQ devices to problems is seen as
a possible or even necessary of stepping towards practically
relevant quantum speedups and advantage. As properties of
quantum algorithms depend on QPU (hardware) properties [6],
hardware-software co-design can help to address some of the
key challenges of current quantum devices [7]. By designing

mailto:hila.safi@siemens.com
mailto:karen.wintersperger@siemens.com
mailto:wolfgang.mauerer@othr.de

algorithms and programs optimised for these limitations, it
may be possible to surpass result quality of more generic
approaches. It is also an important and promising approach
to optimise the performance and efficiency of quantum com-
puting systems by putting both the hardware and software
component as a cohesive unit. The focus of this paper is
to examine sthe impact of hardware-software co-design on
quantum computing scalability. We use numerical simulations
to explore the potential for co-design using a hybrid quantum
algorithm (QAOA) applied so several subject problems. The
quantum circuits are compiled to different types of simulated
hardware backends, which are extended from the topology of
the IBM-Q devices.

The paper is augmented by a reproduction package [8],
which is available for download (link in PDF).1 Some sup-
porting material that we could not present in the main text is
available on the supplementary website.

The rest of this work is structured as follows. Section II
reviews related work. Following in Sec. III, we explain the
principles behind our approach, and also elaborate on proper-
ties of the subject problems. Results from numerical experi-
ments, conducted in Sec. IV, are analysed in Sec. V, which
also presents a general model that universally describes all
subject problems. Finally, Sec. VII discusses the consequences
of our findings, together with an outlook on future research
directions.

II. RELATED WORK

QAOA has been studied as a promising approach to solve
combinatorial optimisation problems. Several previous works
have focused on optimising QAOA for available quantum
hardware. The main challenges in this context are the limited
number of qubits and the high error rates of current quantum
devices. To address these challenges, different approaches
have been proposed, such as the use of hardware-software
co-design, error mitigation techniques [9], hardware-efficient
ansätze [4] or hybrid classical-quantum optimisation [10].
Lotshaw et al. [11] discuss the impact of problem sizes and
complexity on QAOA performance and resource requirements
on contemporary hardware, and also analyse scalability of the
algorithm under different hardware topologies. Furthermore,
Wille et al. [12] address the challenge of mapping quantum
circuits to the topology of targeted architectures and present a
tool for tackling this problem. Some works have focused more
on designing quantum hardware that is optimised for specific
quantum algorithms. For example in the work of Kandala et
al. [13], a superconducting quantum processor was optimised
for the variational quantum eigensolver (VQE) algorithm. The
paper shows that this approach can significantly reduce the
number of gates required to implement VQE on the hard-
ware. In [7], an architecture design-flow for superconducting
quantum computers is proposed that finds a trade-off between
optimisation of the processor’s yield rate and a mapping

1We will place this material on a long-term stable, DOI-compliant location
for the accepted version of this paper.

with minimal gate-overhead. The ansatz is compared to other
designs using the example of VQE for quantum chemistry
calculations. Furthermore, Linke et al. [14] assert that co-
designing quantum applications for specific purposes is crucial
to successfully utilise quantum computers in the near future.
They reach this conclusion by comparing identical quantum
algorithms on two different hardware platforms.

III. CONTEXT AND FOUNDATIONS

In the following, we lay some foundations necessary to un-
derstand our approach and rationale behind the experiments..

A. Quantum Optimisation with QAOA

QAOA is a widely used variational hybrid quantum algo-
rithm on NISQ hardware developed by Fahri et al. in 2014 [4].
The algorithm has shown promising results on small-scale
quantum devices for several optimisation problems, including
the MaxCut problem and the TSP [15]. As quantum hardware
continues to improve, QAOA and other quantum optimisation
algorithms are expected to play an increasingly important role
in solving real-world problems.

1) Algorithm: QAOA produces approximate solutions for
combinatorial optimisation problems, which are described by
a problem Hamiltonian Hp. The algorithm consists of several
layers of parameterised unitary operators U(β, γ). As the
number of layers p ≥ 1, p ∈ N increases, the quality of
the approximation improves [4]. First, the quantum register is
initialised in a well-defined state and after applying the unitary
operators, the expectation value of Hp is measured in the final
state. The parameters β, γ of the quantum circuit are optimised
by classical methods such that the expectation value of Hp is
minimised.

Each layer consists of two different kinds of unitaries,
U(βi) = eiβHB and U(γi) = eiγHP . The algorithm applies
a mixer Hamiltonian, typically a Pauli-X operator, to each
qubit using the U(βi) = eiβHB unitary. This is followed by
a combination of single qubit Z−rotations RZ(γi) and two-
qubit rotation gates RZZ(γi) composing the U(γi) = eiγHP

unitary. Multiple layers of this process correspond to a dis-
cretized time evolution governed by the Hamiltonians HP and
HB . The algorithm’s initial state is usually the ground state
of HB , prepared using Hadamard gates H . To optimise the
objective function, the quantum circuit is executed multiple
times, and the qubits are measured in the computational
basis. The mean of the expectation values of HP for each
measurement outcome is minimised by the classical optimiser,
and the optimal solution is derived as the state or bit string
with the lowest energy expectation value in the probability
distribution obtained from the final set of parameters. The
algorithm determines the minimum value of the objective func-
tion specified in quadratic unconstrained binary form (QUBO).
A classical algorithm that can efficiently sample the output
distribution of QAOA even for p = 1, cannot exist based on
reasonable complexity-theoretic assumptions. This indicates
the possibility of quantum advantage, but practical utility on
real-world problems require further investigations [6].

https://github.com/quantumdoubleblind/qsw_2023.git
https://quantumdoubleblind.github.io/qsw_2023/

B. Translation of algorithms to quantum hardware

When programming a quantum algorithm, initially no re-
strictions on the type of gates being used or the interaction
between qubits is made. However, to execute a certain quan-
tum algorithm on a specific hardware backend, it needs to be
compiled to the properties of the backend, which is also called
transpilation. The most important properties of a quantum
computer that influence the transpilation of circuits are the size
of the backend, that is, the number of qubits available, their
geometric arrangement and connectivity, and the native gate
set. For the actual execution of the circuit, also other factors
such as the fidelities of gate operations, initialization and
measurement as well as the decoherence and gate operation
times play an important role.

The connectivity measures the number of other qubits one
qubit can interact with, and thus the ability to perform a two-
qubit gate operation between them. If a two-qubit gate needs
to be executed between qubits which are not connected, a
SWAP gate can be applied to swap the states of two qubits.
The geometric layout and connectivity of the QPU can be
depicted by a graph with nodes representing the qubits and
edges connecting two qubits if an interaction between them is
possible. Analogously, the circuit that is executed can also be
represented by a graph, which has an edge between two nodes,
if a two-qubit gate is performed between the corresponding
qubits. The transpilation process maps this circuit graph to the
hardware graph, while taking into account further restrictions,
such as the native gate set.

Due to the decomposition of gates into the native gate set of
the hardware as well as the insertion and further decomposition
of SWAP gates, the circuit contains more gates in total. This
is crucial in the current NISQ-era, as each gate introduces an
error, and thus the quality of the results is expected to drop
with a growing number of operations. Moreover, the circuit
depth is increased, which measures the maximum length of
the circuit accounting for parallel execution of gates, as well
as the overall runtime of the algorithm, due to the finite
execution time of each gate. The available quantum computers
only have a limited decoherence time, in which operations can
be performed, that should not be exceeded by the algorithm
runtime.

Thus, to increase the performance of quantum algorithms on
near-term quantum computers, the number of gate operations
should be minimised. This could be achieved by designing
optimised algorithms or by increasing the connectivity of the
hardware.

The ability to modify these properties depends on the
type of the QPU being used. Today, several different types
of quantum computing hardware exist, which differ by the
physical implementation of qubits. The two states |0〉 and |1〉
can be encoded in various different ways such as the naturally
occurring discrete energy levels of single ions or atoms, the
effective energies of superconducting circuit elements or in
the spatial modes of single photons, to just name a few [16]–
[19]. Along with the choice of qubits, also the control and

readout techniques, the infrastructure requirements (e.g., if
cooling with a cryostat is needed) and the properties relevant
for mapping between logical and physical circuits, such as
the number of qubits, the native gate set and the connectivity
are different for each type of QPU. This means that the
performance of a quantum algorithm usually heavily depends
on the type of hardware that it is running on.

C. Problem selection

In this paper, we focus on problems that belong to com-
plexity class NP-Complete (NPC), as it contains practically
relevant problems that, assuming the usually uncontended
P = NP hypothesis, cannot be efficiently solved on a classical
machine, and are in most instances also hard to approximate,
as is textbook knowledge [20].

A decision problem p is in NPC if a solution can be
determined by a non-deterministic Turing machine in polyno-
mial time (i.e., p ∈ NP), and is additionally NP-hard, which
means that any other problem in NP can be reduced to p
in polynomial time. We investigate the fundamental MaxCut,
NumPart, TSP and Max3Sat problem.

1) Maximum Cut: Given an undirected graph G = (V,E)
composed of vertices V and the set of edges E, the objective
is to partition the vertices into two disjoint sets, S and T, while
maximising the number of edges that cross the partition:

max
xi,j

∑
(i,j)∈E

(2xixj − xi − xj), (1)

where xi is a binary variable that takes the value 1 if vertex
Vi lies in the first subset S and 0 if it lies in the second subset
T.

2) Number Partitioning: Let x1, x2 . . . , xn be a set of
positive integers. The objective is to divide the set into two
subsets S and T, while minimising the difference between the
sums of the two non-empty subsets

min
xi

(
n∑
i=1

aixi −
n∑
i=1

ai(1− xi)

)2

, (2)

where xi = 1 if ai is assigned to subset S and xi = 0 if
ai is assigned to subset T. Note that we minimise the square
of the expression, since a QUBO formulation is not able to
represent the alternative of absolute values.

3) Travelling Salesperson: Given a set of n cities
1, 2, . . . , n, the travelling salesperson problem determines the
shortest path, whilst starting and ending at the same city and
visiting each location exactly once

min
xi,j

n∑
i=1

n∑
j 6=i,j=1

ci,jxi,j , (3)

where xi,j = 1 if the path goes from city i to city j and
xi,j = 0 otherwise.

4) Maximum 3-Satisfiability: Given a set of m clauses
1, 2, . . . ,m , each consisting of three Boolean variables or
their negations, Max3Sat seeks to find an assignment of truth
values to the variables that satisfies the maximum number of
clauses. The objective function can be expressed as follows:

max
xi,j

1

m

m∑
i=1

wi

3∑
j=1

xi,j , (4)

where wi is the weight of clause i, ci is the number of
literals in clause i that are satisfied by the assignment, and m
is the total number of clauses.

We selected this set of problems for two reasons, one of
which is that they represent significant industrial use cases as-
sociated with them. MaxCut has various industrial applications
in network optimisation and clustering. Amongst other things
it is used for targeted advertising, recommendation systems
as well as identifying the ideal placement, for instance, for
hospitals or subway stations to extend and improve infras-
tructures. NumPart can be used for load balancing. The goal
could be to divide a set of tasks among machines in a way
that minimises the differences in workload. It can also help to
find an optimal division of orders among workers. The TSP
is well known and is commonly applied in the logistics and
transportation industry [21]. Just as importantly, Max3Sat is
used in the design of digital circuits, where the goal is to
minimise the number of gates needed to implement a logic
function, thus reducing the overall complexity of the circuit.
This can help save costs and leads to a better performance. It
is worth noting that many other NP-Complete problems have
similar applications in various industrial settings.

The other reason to chose this set of problems is that
decision problems are less common in industrial use-cases than
approximate optimisation problems. For example, in the case
of the travelling salesperson one could ask ”what are possible
short routes”. Accepting for small deviations from optimal
solutions can lead to significant savings in time and effort for
many problems, which usually is a more desirable outcome in
practical applications [1]. This particular problem set contains
problems from three different complexity classes when de-
scribed as NP (nondeterministic polynomial time) problems—
APX-Complete, NPO-Complete and MAX-SNP. This helps us
compare the scalability within the same complexity class, as
well as across different complexity classes.

D. Complexity classes in NP optimisation problems

APX-complete problems are considered to be the hardest
problems to approximate within a constant factor in poly-
nomial time, assuming P 6= NP. MaxCut belongs to this
complexity class. NPO-complete problems include the TSP
and NumPart problem. These problems are characterised by
the task of finding an optimal solution that satisfies a set
of constraints, and are at least as hard as the hardest deci-
sion problems in NP. Unlike APX-complete problems, NPO-
complete problems may not have a constant-factor approxi-
mation algorithm that runs in polynomial time. On the other

hand, MAX-SNP consists of optimisation problems that can be
expressed as a Boolean formula in conjunctive normal form,
where each clause is a disjunction of at most k literals. The
main difference between these complexity classes lies in the
available approximation algorithms [22].

IV. EXPERIMENTS

A. Setup

In this work, the quantum circuits are designed and tran-
spiled using Qiskit [23]. We study the QAOA-circuits for sev-
eral instances of the four problems described above after being
transpiled to hardware backends with different properties. As
a starting point, a backend with 127 qubits is chosen that
matches the geometric layout and connectivity of the current
IBM-Q devices, the so-called heavy-hex-geometry [24]. The
native gate set corresponds to that of IBM-Q, containing the
following gates: Rotation RZ , phase shift SX , Pauli (Not) X ,
and controlled X (C–X). In principle, also the influence of
noise on the transpilation process could be modelled in Qiskit,
which is, however, not in the scope of this work.

We investigate the depth and number of SWAP gates of the
transpiled circuits depending on the connectivity and size of
the backend. The circuit depth measures the overall length of
the circuit, taking into account also parallel execution of gates.
The SWAP gate counts are derived by mapping each circuit a
second time using an extended native gate set including the
SWAP gate. This prevents the latter from being decomposed
into other gates.

The connectivity of the backend is measured in terms of a
connectivity density

c =
NC

NC,max
, (5)

with NC denoting the total number of edges in the hardware
graph and NC,max = N(N − 1)/2 the maximal number of
edges for N qubits. While c = 1 describes a device with
all-to-all connectivity such as in ideal simulations, the heavy-
hex-geometry has a connectivity density of c ≈ 1.8%. This
value corresponds to each qubit having on average 2.27 nearest
neighbours. In the experiments presented below, the connec-
tivity density is increased by randomly adding connections
between pairs of qubits until the desired value is reached. The
average number of nearest neighbours per qubit grows linearly
with the connectivity density.

B. Problem Mapping

All problems in NP can be reduced to Quadratic Uncon-
strained Binary Optimisation (QUBO) problems. The QUBO
formulations in this work follows the Ising formulations given
by Lucas [25].

1) Maximum Cut: MaxCut can be cast using binary vari-
ables xi, where xi = 1 indicates that node i belongs to the
first subset, and xi = 0 indicates that it belongs to the second
subset. If an edge connecting nodes i and j is part of the
cut, then one of xi and xj is equal to zero and the other one
is equal to one, resulting in Hij = (xi + xj − 2xixj) being

Number Partitioning Travelling Salesperson

Maximum 3-SAT Maximum Cut

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

2

4
6
8

2

4
6
8

Connectivity Density

C
ir

cu
it

D
ep

th
[k

,s
qr

t]

Qubits

6

9

16

36

49

64

81

100

Fig. 1. Span of achievable circuit depths for the subject problems in different sizes, plotted over varying degrees of connectivity. Data points for each density
are slightly displaced horizontally to make point ranges visible; connecting lines do not provide a fit to the data, but are only used to guide the eye.

1, whereas Hij equals 0 if xi = xj . The goal is to find the
MaxCut by maximising the sum of Hij over all edges of the
graph or in other words minimising the sum over −Hij . The
optimal solution is the ground state of the Hamiltonian

HP =
∑

(i,j)∈E
(2xixj − xi − xj) (6)

which serves as the objective function for the QAOA algorithm
to find the minimum solution.

Setup: The MaxCut problem graphs G = (V,E) were
characterised by their number of nodes N = |V |, and the
graph density d, defined as the ratio of the number of edges
|E| to the maximum possible number of edges |Emax| in a
clique comprising |V | nodes. The value of d ranges from 0
to 1 and is set to d = 0.7 for the experiments in this work.
Each node in the graph is represented by one qubit, so the
problem size given in numbers of qubits directly corresponds
to the number of nodes.

2) Number Partitioning: NumPart can be reformulated as
a QUBO problem using binary variables xi where xi = 1
indicates that ai belongs to subset S and if xi = 0, ai belongs
to subset T. The objective is given by the Hamiltonian

HP =
(n∑
i=1

aixi

)2
−
(n∑
i=1

ai

)2
(7)

which represents the difference between the sums of S and T.
The goal is to find the minimum value of the Hamiltonian,
which corresponds to the optimal partitioning of the set.

Setup: The NumPart problem was generated as a list of
length n ∈ N. Each number was generated randomly, and the
corresponding field index is represented by one qubit.

3) Travelling Salesperson: The objective function of the
TSP, describing the total length of the tour, is given by the

following Hamiltonian:

HC =

N∑
i,j∈E,i6=j

cij

N∑
k=1

xi,kxj,k+1 (8)

where ci,j is the distance between nodes i and j; xi,k is
a binary variable that is equal to 1 if node i is visited at
position k in the tour (and 0 otherwise); and N denotes the
total number of nodes in the TSP instance. The sum over k
enforces the ordering of the nodes in the tour. Note that xi,N+1

is equivalent to xi,1, so the tour loops back to the starting node
and in our case ci,j = cj,i. To ensure that each city is visited
exactly once in the tour and that at each position in the tour
there is exactly one city, the corresponding penalty terms are
added to comprise the final Hamiltonian:

H = A

n∑
j=1

(1−
N∑
k=1

xj,k)
2+A

n∑
k=1

(1−
N∑
j=1

xj,k)
2)+HC , (9)

where A controls the strength of the penalty.
Setup: The TSP problem graphs were represented as a

complete, undirected graph (so ci,j = cj,i), where the nodes
represent the cities and the edges represent the distances be-
tween them. A randomly generated distance matrix determines
the distances between the cities. For N nodes, we have N2

qubits and a N × N distance matrix. The graph density for
TSP is defined analogously to MaxCut and also set to d = 0.7.

4) Maximum 3-Satisfiability: To formulate this problem as
a QUBO, we introduced three binary variables yi, yj and yk,
where each variable can take the value 0 or 1. The Hamiltonian
for this problem is given by

H =

m∑
i=1

(1− 1

2
(yi + yj + yk − 1) (10)

where m is the number of clauses. The Hamiltonian is min-
imised when the number of satisfied clauses is maximised.

Setup: The values for each variable were generated ran-
domly. The number of clauses added to the number of vari-
ables equals the number of qubits necessary to represent our
QUBO formulation. In our experiments we use a fixed number
of 3 variables per clause. According to Figure 6, the ratio
between the number of clauses and number of variables has
little to no effect on the circuit depth, suggesting it can be
disregarded in the experiments.

C. Circuit Mapping

The hardware backend is described by a connectivity graph
given in the form of tuples and a native gate set. The transpila-
tion process in Qiskit consists of several steps: First, the circuit
is optimised, for instance by summarising several single-qubit
gates into a single one. Then, all gates which do not belong to
the native gate set, such as gates with more than 2 qubits, are
decomposed into the native gate set. The next step is to find
an optimal placement of the logical qubits in the circuit to the
physical qubits of the hardware, which corresponds to a direct
mapping of the problem (or algorithm) graph to the hardware
graph. Thereby, SWAP gates are inserted, if necessary, and the
mapping is determined to minimise the number of SWAP gates.
For the circuits presented here, the standard mapping method
of Qiskit has been used, which includes a stochastic placement
of SWAP gates. After the mapping, the inserted SWAP gates are
being translated into the native gate set (if necessary), and the
circuit is optimised once more, accounting e.g., for possible
concatenations of gates.

The aggressiveness of circuit depth optimisation varies
between four levels [26] (level n includes all measures of
levels k < n):
• 0 (off): Map without optimisation.
• 1 (light): Collapse adjacent gates that cancel each other.
• 2 (medium): Noise-adaptive layout, gate cancellation

based on gate commutation relationships.
• 3 (heavy): Replace blocks of gates with (different, yet

semantically equivalent) optimised gate sequences.
Our numerical experiments were performed at optimisation

level 2, which provides a good trade-off between result opti-
mality and required computational effort. This choice is further
justified in Section VI.

V. EVALUATION

We commence to discuss the outcomes of our numerical
simulations in the following, and then find common patterns
in the data using statistical analysis techniques.

A. Numerical Results

1) Circuit Depth and SWAP gate Count: The depth of
quantum circuits is a quantum analogue to classical runtime—
the more gates are involved in a circuit, the longer a quan-
tum computation takes—, but also key to understanding the
capabilities of NISQ machines, as increasingly deep circuits
are subject to growing amounts of noise and decoherence,
eventually leading to entirely stochastic results that do not
provide information about the problem at hand. Recall that

quantum circuits generated for specific problem formulations
are produced by a uniform generation mechanism, but vary
with instance size and characteristics of the individual in-
stances.

As one of our goals is to understand the effects of varying
degrees of connectivity in (hypothetical) QPUs, first consider
Fig. 1, which shows the achievable circuit depths for a given
degree of (extended) connectivity for the subject problems
in various instance sizes given by the amount of required
qubits. Since mapping between logical and physical circuits
is performed by a stochastic algorithm, we obtain a range
of depths for varying connectivity densities and qubit count
and the data points in Figure 1 represent mean values over
20 compilation runs. It is immediately apparent that even
small increases in circuit depth over the base connectivity of
IBMQ’s heavy hex topology lead to considerable reduction of
the circuit depth in a similar way for all of the problem types
considered here. Likewise, we observe considerably greater
result variability towards smaller degrees of connectivity. Both,
strength of variability and circuit depth, converge for densities
exceeding 25%.

Figure 2 shows the amount of SWAP gates that are required
for a given connectivity density (we address the inset in
Sec. V-B below). Since SWAP gates are necessary to bring
qubits into physical adjacency when multi-qubits operations
must be applied on topologically not adjacent qubits, they can
be seen as overhead that arises from restricted connectivity
densities. As the figure shows, zero SWAP gates are required
when the density reaches 1.0, as the need to logically move
qubits by swapping them around in the circuit does not
arise in this case. Similar to circuit depth, we can observe a
steep decline in SWAP gate count with increasing connectivity
density, and a plateauing of the count form densities of about
30% onwards.

B. Statistical Modelling

While it is immediately obvious from Figures 1 and 2
that even slightly improved connectivity density results in
substantial reductions on circuit depth independent of the
specific problem, it is pertinent to further characterise this
empirical observation. To find simple models that accurately
describe the observed phenomena, we fit statistical models to
the available data.

The sharp decrease of circuit depth with increasing connec-
tivity density, modelled in general by a functional dependency
of the form d(%) = fP(%) (where P denotes specialisation for a
specific problem) suggests an inverse (f(%) ∼ 1/%) or negative
exponential (f(%) ∼ exp(−%)) relationship. The empirical
results for these ansätze (linear univariate regression [27] for
the inverse relationship, non-linear regression [28] for the
negative exponential), together with a linear regression fit
based on a Box-Cox transformation [29] of the data,2 is shown

2The transformation uses a maximum-likelihood estimate to determine
an optimal non-linear transformation to minimise the standard deviation of
regression residuals, which could suggest desirable other forms of functional
dependencies than the two considered variants.

0

2

4

6

0% 25% 50% 75% 100%
Connectivity Density

#
Sw

ap
G

at
es

[k
]

Qubits
49

64

81

100
Problem

Maximum 3-SAT

Maximum Cut

Number Partitioning

Travelling Salesperson

0

2500
5000
7500

10000

25 50 75 100
Qubits

E
st

im
at

e
[s

qr
t]

R0 δ R∞

Fig. 2. Outer: Empirical observation of SWAP gate count decrease with increasing connectivity density (points), together with fits obtained by the negative
exponential model (solid lines) for the subject problems. Inset: Corresponding model coefficients. We exclude

Number Partitioning Travelling Salesperson

Maximum 3-SAT Maximum Cut

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

1

2

3

1

2

3

0.0

0.5

1.0

1.5

2.0

2.5

1

2

3

4

Connectivity Density

C
ir

cu
it

D
ep

th
[k

]

Type
Box-Cox

Exponential

Inverse

Measured

Fig. 3. Comparing models (inverse, Box-Cox, negative exponential; solid
lines) against the empirically measured data (points). The graph shows
problem instances each requiring 64 qubits; graphs for other sizes exhibit
similar characteristics and are available on the supplementary website.

in Fig. 3. From visual inspection, it is obvious that the linear
regression based approaches result in a sub-optimal match
between model and data, whereas the negative exponential
ansatz

d(%) = R∞ + (R0 −R∞) · e− exp(δ)·% (11)

describes the data very well.3 Based on the data for each
subject problem, parameters R0, R∞ and δ are obtained
for varying connectivity densities. R∞ denotes the horizontal
asymptote towards large values of the connectivity density,
R0 is the (extrapolated) circuit depth estimate for vanishing
connectivity density at % = 0, offset by R∞. Coefficient
δ represents the natural logarithm of the exponential rate
constant, and characterises the speed of decline with increasing
connectivity density.

1

10

100

1000

25 50 75 100
Qubits

C
oe

ffi
ci

en
t

E
st

im
at

e
[l

og
]

Problem
Maximum 3-SAT

Maximum Cut

Number Partitioning

Travelling Salesperson

Coefficent R0 δ R∞

Fig. 4. Coefficients for the non-linear negative exponential fit described by
Eq. 11 to the circuit depths for all subject problems over varying instance
sizes. Connecting lines have no significance, and are only used to guide the
eye.

3A straightforwards logarithmic transformation of the data, which would
allow us to deploy a simpler linear univariate regression model, does not
produce satisfactory results; while the variation of the decay constant is small
across instance sizes for each subject problem, it is nonetheless large enough
to warrant different bases for each log transformation, which would need to
be estimated in a prior modelling step.

https://quantumdoubleblind.github.io/qsw_2023/

Consider Figure 4, which summarises the evolution of
model parameters for the circuit depth with increasing instance
sizes for all subject problems. Note that for each problem and
instance size, we numerically compute circuit depths for a
range of connectivity densities, and then fit Eq. 11 to the data.
Consequently, each combination of problem and instance size
delivers three parameters. The evolution of these parameters
with increasing instance sizes is shown in the figure.

Apart from some smaller variations for NumPart, the rate
constant δ is stable across instance sizes—that means that
exponential improvements in circuit depth with increasing
connectivity density are achieved nearly uniformly across the
full spectrum of instance sizes. The gains are also mostly
independent of the problem, so we hypothesise that this
behaviour holds as a general law for QAOA-based approaches.
Circuit depths in the limits of both, zero and full connectivity,
obviously increase with increasing problem size. It is however
important to observe that the evolution is also very similar
across subject problems, again hinting at a general property
of QAOA circuits.

The inset in Fig. 2 can be interpreted similarly, except
that we use SWAP gate counts instead of circuit density as
dependent quantity for the model in Eq. 11. Since it is an a-
priori invariant that the SWAP gate count needs to reach zero
for full connectivity (qubits do not need to be swapped around
if interactions between any possible pair can be implemented
natively), we fit a restricted form of Eq. 11 where the asymp-
tote R∞ is constrained to vanish. The obtained parameters
show even better agreement across subject problems than for
the circuit depth, which can be explained by the fact that
SWAP gates constitute “overhead” gates to compensate for
connectivity deficiencies. As our results show, this impacts
all problems equally. Yet, the observed strong exponential
decrease with increasing connectivity density underlines our
observation that even small changes have substantial impact
on QC utility.

C. Implications for Co-Design

In the previous section we have seen that the circuit depth as
well as the number of inserted SWAP gates is already reduced
by a significant amount when increasing the connectivity
density to intermediate values of about 30%. This value
increases slightly with the problem size, but does not depend
on the problem type, as shown in Fig. 4. Overall, we can state
that full connectivity is not essential to decrease the resource
requirements for the considered QAOA circuits.

In general, a quantum computing device with connectivity
density between 10% to 50% would be an appropriate choice
for all of the four problem types. The SWAP gate overhead
might be reduced further, if also the geometric layout of the
hardware graph directly matches that of the problem graph,
opposed to randomly adding connections as done in this work.
A connectivity density of c = 10% corresponds to each
qubit being connected to 15 nearest neighbours on average,
for c = 50% this increases to 64 neighbours. Apart from
the reduced number of gates in the circuit, a higher qubit

connectivity is also desirable for implementing efficient error-
correction schemes which need in turn a lower overhead in the
number of physical qubits needed to encode a logical qubit,
such as low-density parity check (LDPC) codes [18], [30].

The connectivity of currently available quantum comput-
ers depends on the type of quantum hardware being used.
Architectures based on superconducting qubits, such as the
devices built by IBM and Google, are currently limited to
nearest neighbour connectivity (so c ≈ 3.2%) [14], [31], [32].
There exist several ideas to increase the connectivity. One
common approach is to couple several qubits to a quantum
bus, either directly via tuning their frequencies in and out of
resonance with the bus [33], or indirectly via additional flux
qubits [31], which are variably tuned. The latter architecture
has the advantage of lower cross-talk and longer coherence
times, since the data qubits can be operated at their optimal
frequencies. Other ideas include using sparse connections but
with non-trivial topologies, extending the architecture to 3D
or using long cables to connect distant qubits [18]. With the
quantum bus setup proposed in [31], the connectivity could
theoretically be increased such that two-qubit-gates can be
performed between all pairs of qubits, superseding the inser-
tion of SWAP gates at all. Nevertheless, realising such a setup
with only an intermediate connectivity, as suggested by our
findings, will in any case benefit the practical implementation.

In general, increasing the number of connections between
qubits can lead to a higher probability for crosstalk. This term
describes unwanted interaction between qubits or between
qubits and the control signals, which means that a gate pulse
can effect other than the target qubit(s) or local gate operations
are disturbed by other gate operations applied in parallel.
These effects are especially detrimetal for implementing error
correction, which assumes that gate errors only affect the
state of the target qubits. For superconducting qubits, crosstalk
can be reduced by using qubits with tunable frequencies
(see [31]) and / or tunable couplers to switch connections
dynamically on and off. In addition, optimizing the pattern
of tunable qubit frequencies and gate schedules via software
can also lead to substantial improvements [34]. On the other
hand, architectures like those of IBM-Q with fixed-frequency
qubits and fixed couplers that do not allow for these kinds
of optimisation suffer from fewer sources of noise. In this
case, optimised gate schedules are being used to minimise
crosstalk [35].

Quantum computers based on cold neutral atoms and
Rydberg-interactions already feature a higher connectivity of
about 1:10 to 1:20 in 2D- and 3D-layouts [17], which would
correspond to c ≈ 8-16% for the heavy-hex-based layout.
The connectivity can be further increased by using higher
energy levels for the Rydberg interaction, which, however,
might lead to a higher susceptibility to noise and become tech-
nically challenging. Another approach is shuttling of atoms
during the computation to allow for two-qubit-gates between
arbitrary pairs of qubits [36]. In general, crosstalk is quite
low for neutral atom qubits [37], [38], since their distances
can be made large enough to avoid unwanted excitations of

spectator qubits. Also, increasing the qubit connectivity is not
necessarily related to higher crosstalk for this platform.

In contrast to the two previous examples, trapped ion
quantum computers are characterized by an all-to-all connec-
tivity, which means that two-qubit gates can be performed
between each pair of qubits, but also up to 20 qubits can
be entangled [39]. On the other hand, ion trap setups are
more difficult to scale to larger numbers of qubits. The
most common technique stores ions in a linear string and is
limited to qubits numbers in the range of 50. This has to be
compared to superconducting qubits and neutral atoms, which
currently offer up to ≈ 400 [40] and ≈ 100 [17], [36] qubits,
respectively, and, in the latter case, are also easier to scale. Ion
strings with larger number of ions are expected to suffer from
lower gate speeds, higher crosstalk and background noise [41].
To realise trapped-ion devices with larger number of qubits,
mainly two different approaches exist: coupling several linear
traps via photonic interconnects or shuttling of ions in a 2D
trap. While the first approach is more simple to realise, it is
affected by higher crosstalk due to residual illumination of
ions which are not targeted by a gate operation. Crosstalk can
be reduced by careful design of pulse sequences or improved
laser focusing, as well as by using refocusing schemes [42].
While the first option can be broadly attributed to the software
domain, the latter two options are deeply intertwined with the
core physical realisation of QPUs.

Finally, to find the most suitable platform to execute a
quantum program, a trade-off between several properties such
as the connectivity, number of qubits or error-rates has to be
made.

VI. THREATS TO VALIDITY

In the following, we consider threats to internal and external
validity.

A. External Validity

Our scope is limited to the Qiskit compiler and the base
topology of IBM-Q devices. It is important to note that using
different compilers may result in varying circuit properties
(see Salm et al. [43]), which means that our findings may
not be applicable to other compilers. Additionally, different
topologies may yield different outcomes. Furthermore, we
only consider QAOA. There are other (variational) quantum
algorithms as well as different types of the QAOA algorithms,
that tackle NP optimisation problems [44]. While it is possible
to model the impact of noise on the transpilation process in
Qiskit, which would effect the circuit depth, it falls outside
the scope of this work [45].

B. Internal Validity

Our observations rely on controlled numerical experiments
that depend on explicit parameters, but may also be influenced
by confounding factors. In the following, we consider various
possible confounding factors, and find that they pose moderate
to no risk to the validity of our study.

25
100

0.0138950.03 0.05 0.1 0.2 0.4 0.5 0.6 0.8 0.9 1

0.2
0.3
0.4
0.5
0.6

2

4

6

Connectivity Density

C
ir

cu
it

D
ep

th
[k

]

Optimisation Level 1 2 3

Fig. 5. Distribution of circuit depth for two instance sizes (25 and 100
qubits) over connectivity density for varying optimisation levels obtained with
the Qiskit compiler 0.41.1, see the replication package on the supplementary
website for details) for the travelling salesperson problem.

1) Influence of Mapping Optimisation: Since the circuit
mapping (transpilation) problem is known to be NP-complete
by itself (see, e.g., [45]), it is unavoidable to use approxi-
mation techniques that cannot guarantee optimal results in
feasible time, and therefore require precise characterisation.
In particular, there is the risk that the technical choice of opti-
misation level could impact our general conclusions; likewise,
different compiler/mapping approaches could lead to different
behaviour.

Consider Figure 5, which compares mapping results with
different optimisation levels for medium and large problem
instances requiring 25 and 100 qubits for the TSP (identical
observations can be made for the other subject problems). All
levels follow the exponential decrease pattern, with relatively
small improvements of optimisation level 3, although it is also
clear that the highest optimisation level does not guarantee
smallest circuits, neither averaged nor overall. As the highest
optimisation level implies considerably increased simulation
times (days instead of hours), we find our choice of optimisa-
tion level 2 justified. While there are many other approaches
to circuit compilation that we cannot compare in detail in the
scope of this work, the results of Salm et al. [43], together with
results that take differences for mapping practical problems
between the most widespread compilers into account [46],
indicate that the risk of observing a qualitatively different
scaling behaviour is absolute minor, though.

2) Influence of Instance Properties: Quantum circuits for a
given problem are constructed using a uniform mechanism
that depends on problem size, but also on the properties
of the instance itself. As the observed exponential decrease
in circuit depth might depend on the latter properties, we
explore a varying set of parameters for problem MAX-3SAT.
Boolean satisfiability is known to exhibit marked differences in
computational complexity depending on the ratio α = |C|/|V |
between the number of variables |V | and clauses |C| (see,
e.g., Refs [47]). Fig. 6 shows how the circuit depth decreases
with increasing connectivity density for random instances of
the problem that are constrained to a given value of α. We

https://quantumdoubleblind.github.io/qsw_2023/
https://quantumdoubleblind.github.io/qsw_2023/

scan across values of α that represent regions where instances
are either trivially to solve by guessing (α ∈ [0, 3.5]) or
finding contradictory assignments that show non-solubility
(α ∈ [4.9, 11]), as well as the region around α ≈ 4.2 that
is known to contain computationally hard problem instances.

The inset shows that all three model coefficients R0, R∞
and δ as given in Eq. 11 are are in good agreement with a
constant value for each across the whole spectrum of α, thus
indicating no influence of the specific instance. Consequently,
we deem this risk minor to negligible. For this particular
assessment, it was not necessary to test other problem sizes,
due the ratio α determining the complexity of the Max3Sat
problem.

200

400

600

0% 25% 50% 75% 100%
Connectivity Density

C
ir

cu
it

D
ep

th

Ratio α = |C|
|V |

0.64

0.89

1.25

2.6

4.14

8

0.00
0.25
0.50
0.75
1.00

3 6 9
α

C
oe

ffi
ci

en
t

[k
]

R0 δ R∞

Fig. 6. Empirically observed circuit depth degradation for MAX-3SAT on
36 variables, with varying degrees of α (outer plot; see the main text for an
explanation of this parameter), and the coefficients obtained for Eq. 11 (inset).
The outer plot shows mean circuit depths obtained with 20 samples per data
point and omit ranges to reduce visualisation clutter, while the model fit is
obtained from the full data set. Connecting lines are used to guide the eye.

3) Influence of Backend Size: Our numerical experiments
are performed using a constant backend size of 127 qubits, so
the ratio of the problem size to the backend size varies. If the
problem is much smaller than the backend, several mappings
of logical to physical qubits are possible. We empirically study
whether this influences the circuit depth by uniformly scaling
the backend size, while retaining the connectivity structure
of the heavy-hex geometry, which is composed of a certain
number of rows and columns containing interconnected rings.
Figure 7 shows circuit depths for varying backend sizes, whose
geometry has been consistently extended from the IBM-Q
Washington architecture with 127 qubits. Backend sizes are
specified in the form [n,m], where n denotes the number of
rows, and m the number of columns (details in the replication
package on the supplementary website). This creates backends
ranging from 143 (6× 4) to 297 (8× 6) qubits.

For none of the problems, the exponential decrease for
increasing connectivity density changes; there is practically
no influence of the increased backend size for Max 3-SAT
and TSP. For MaxCut and NumPart, the asymptotes vary
moderately depending on backend size, yet the differences

0

2

4

6

0% 25% 50% 75% 100%
Connectivity Density

C
ir

cu
it

D
ep

th
[k

]

Problem
Maximum 3-SAT

Maximum Cut

Number Partitioning

Travelling Salesperson

Backend Size
[6, 4]

[6, 5]

[6, 6]

[8, 4]

[8, 5]

[8, 6]

0
2
4
6

R0δR∞C
oe

ffi
ci

en
t

[k
]

Fig. 7. Empirical observations for circuit depth for problems with constant
size of 36 qubits with varying backend sizes (geometrically extrapolated
from the IBM-Q heavy-hexa backend), together with nonlinear regression
fits of the model in Eq. 11 (we augment the empirical observations with a
slight horizontal jitter to reduce overplotting. Inset: Distribution of regression
coefficients.

are only relevant for connectivity densities exceeding 50%.
However, since the models overestimate the connectivity den-
sities compared to empirical observations, we err—if at all—
on the side of caution. These observations are also backed
by the regression model coefficients, whose distribution for
each subject problem is shown in the inset. Especially the rate
parameter is extremely narrowly distributed, which means that
the exponential decrease with increasing connectivity density
is independent of the base backend size. Consequently, we
deem this threat minor.

VII. DISCUSSION & OUTLOOK

In conclusion, our results show that an all-to-all connectivity
is not necessary to achieve near-optimal circuit depth for
all subject problems. Even small changes to the density can
lead to significant improvements, particularly across different
problem sizes and types. Lower connectivity between qubits,
lower circuit depth and lower gate counts can help scale
quantum systems, as the number of interactions between
qubits, the number of quantum gates required to execute algo-
rithms and the overall complexity of the system is decreased.
Therefore it becomes easier to maintain coherence and reduce
the probability of errors and decoherence, which are crucial
factors in building scalable quantum computing systems [48].
We have identified an underlying effective model, which ex-
hibits an exponential decrease in circuit depth with increasing
connectivity uniformly across all instance sizes. This suggest
that our findings may be applicable to other problem domains.
Our results also point towards the construction of better
problem-adapted QPUs as a possible step towards practical
applications of quantum computing. The fact that all problems

https://quantumdoubleblind.github.io/qsw_2023/

demonstrate a consistent exponential decrease in circuit depth
as connectivity density rises is a highly encouraging and
promising observation. This trend is true for all investigated
problems. Further research is required to explore the full
potential of our findings and understand the optimal topologies
as well as the effects on scalability for specific problems and
problem classes. This includes a comprehensive analysis of the
effects of noise and different topology layouts. Moreover, it
is important to incorporate more refined physical models that
better capture the physical trade-offs involved. Finally, it is
important to emphasise the importance of hardware-software
co-design for achieving scalability in quantum computing. As
we continue to explore new algorithms and applications, it will
be necessary to develop hardware and software in tandem to
ensure that they are optimised for each other.

Acknowledgements This work is supported by the XXX
XXX Ministry of XXX within the funding program XXX,
contract numbers XXXXXXXX (XX) and XXXXXXXX (XX,
XX, XX).

REFERENCES

[1] I. Sax, S. Feld, S. Zielinski, T. Gabor, C. Linnhoff-Popien, and
W. Mauerer, “Approximate approximation on a quantum annealer,” in
Proceedings of the 17th ACM International Conference on Computing
Frontiers, ser. CF ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 108–117.

[2] V. T. Paschos, “An overview on polynomial approximation of NP-
hard problems,” The Yugoslav Journal of Operations Research, vol. 19,
no. 37, pp. 3–40, 2009.

[3] S. Kumar. Approximate algorithms for NP problems.
[4] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate

optimization algorithm,” 2014.
[5] J. S. Clarke, “An optimist’s view of the 4 challenges to quantum

computing,” Quantum, p. 2, Mar 2019.
[6] K. Wintersperger, H. Safi, and W. Mauerer, “QPU-System Co-Design

for Quantum HPC Accelerators,” in Proceedings of the 35th GI/ITG
International Conference on the Architecture of Computing Systems.
Gesellschaft für Informatik, 8 2022.

[7] G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “On the
co-design of quantum software and hardware,” in Proceedings of the
Eight Annual ACM International Conference on Nanoscale Computing
and Communication, ser. NANOCOM ’21. New York, NY, USA:
Association for Computing Machinery, 2021.

[8] W. Mauerer and S. Scherzinger, “1-2-3 reproducibility for quantum
software experiments,” Q-SANER@IEEE International Conference on
Software Analysis, Evolution and Reengineering, 2022.

[9] K. Temme, S. Bravyi, and G. J. M., “Error mitigation for short-depth
quantum circuits,” Physical Review Letters, vol. 119, no. 18, nov 2017.

[10] V. Akshay, D. Rabinovich, E. Campos, and J. Biamonte, “Parameter
concentrations in quantum approximate optimization,” Physical Review
A, vol. 104, no. 1, jul 2021.

[11] P. C. Lotshaw, T. Thien Nguyen, A. Santana, A. McCaskey, R. Herrman,
J. Ostrowski, G. Siopsis, and T. S. Humble, “Scaling quantum approx-
imate optimization on near-term hardware,” Scientific Reports, vol. 12,
no. 1, july 2022.

[12] L. B. Robert Wille, “MQT QMAP: efficient quantum circuit mapping,”
CoRR, vol. abs/2301.11935, 2023.

[13] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
Chow, and J. M. Gambetta, “Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets,” Nature, vol.
549, no. 7671, pp. 242–246, sep 2017.

[14] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.
Landsman, K. Wright, and C. Monroe, “Experimental comparison of
two quantum computing architectures,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3305–3310, mar 2017.

[15] R. Shaydulin and Y. Alexeev, “Evaluating quantum approximate opti-
mization algorithm: A case study,” in 2019 Tenth International Green
and Sustainable Computing Conference (IGSC). IEEE, oct 2019.

[16] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: Progress and challenges,” Applied Physics
Reviews, vol. 6, no. 2, p. 021314, 2019.

[17] L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O.
Reymond, and C. Jurczak, “Quantum computing with neutral atoms,”
Quantum, vol. 4, p. 327, Sep. 2020.

[18] S. Bravyi, O. Dial, J. M. Gambetta, D. Gil, and Z. Nazario, “The
Future of Quantum Computing with Superconducting Qubits,” Journal
of Applied Physics, vol. 132, no. 16, p. 160902, Oct. 2022.

[19] S. Slussarenko and G. J. Pryde, “Photonic quantum information pro-
cessing: A concise review,” Applied Physics Reviews, vol. 6, no. 4, p.
041303, 2019.

[20] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[21] A. Alridha, A. M. Salman, and A. Sabah Al-Jilawi, “The applications
of np-hardness optimizations problem,” Journal of Physics: Conference
Series, vol. 1818, no. 1, p. 012179, mar 2021.

[22] P. Crescenzi and V. Kann, “A compendium of np optimization problems,”
1994, 2005.

[23] A. tA v, M. S. ANIS, Abby-Mitchell et al., “Qiskit: An open-source
framework for quantum computing,” 2021.

[24] The IBM Quantum heavy hex lattice. https://research.ibm.com/blog/
heavy-hex-lattice.

[25] A. Lucas, “Ising formulations of many np problems,” Frontiers of
Physics in China, vol. 2, pp. 5–, 2014.

[26] Qiskit Transpiler Documentation. https://qiskit.org/documentation/
apidoc/transpiler.html.

[27] L. Fahrmeir, T. Kneib, S. Lang, and B. Marx, Regression: Models,
Methods and Applications. Berlin: Springer-Verlag, 2013.

[28] D. Bates and D. Watts, Nonlinear regression analysis and its applica-
tions, ser. Wiley series in probability and mathematical statistics. New
York: Wiley, 1988.

[29] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S,
4th ed. New York: Springer, 2002, iSBN 0-387-95457-0.

[30] N. P. Breuckmann and J. N. Eberhardt, “Quantum Low-Density Parity-
Check Codes,” PRX Quantum, vol. 2, no. 4, p. 040101, Oct. 2021.

[31] R. Stassi, M. Cirio, and F. Nori, “Scalable quantum computer with su-
perconducting circuits in the ultrastrong coupling regime,” npj Quantum
Information, vol. 6, no. 1, p. 67, Aug. 2020.

[32] R. Acharya, I. Aleiner, R. Allen et al., “Suppressing quantum errors by
scaling a surface code logical qubit,” Nature, vol. 614, no. 7949, pp.
676–681, Feb. 2023.

[33] C. Song, K. Xu, H. Li et al., “Generation of multicomponent atomic
schrödinger cat states of up to 20 qubits,” Science, vol. 365, no. 6453,
pp. 574–577, 2019.

[34] Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson, and F. T.
Chong, “Systematic Crosstalk Mitigation for Superconducting Qubits
via Frequency-Aware Compilation,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). Athens,
Greece: IEEE, Oct. 2020, pp. 201–214.

[35] P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari, “Software
mitigation of crosstalk on noisy intermediate-scale quantum computers,”
in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 1001–1016.

[36] D. Bluvstein, H. Levine, G. Semeghini et al., “A quantum processor
based on coherent transport of entangled atom arrays,” Nature, vol. 604,
no. 7906, pp. 451–456, Apr. 2022.

[37] T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz, L. Isen-
hower, and M. Saffman, “Randomized benchmarking of single-qubit
gates in a 2d array of neutral-atom qubits,” Phys. Rev. Lett., vol. 114,
p. 100503, Mar 2015.

[38] T. M. Graham, M. Kwon, B. Grinkemeyer et al., “Rydberg-mediated
entanglement in a two-dimensional neutral atom qubit array,” Phys. Rev.
Lett., vol. 123, p. 230501, Dec 2019.

[39] N. Friis, O. Marty, C. Maier et al., “Observation of entangled states of
a fully controlled 20-qubit system,” Phys. Rev. X, vol. 8, p. 021012, Apr
2018.

[40] IBM Quantum computer with 433 qubits.
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-
Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two.

[41] K. R. Brown, J. Kim, and C. Monroe, “Co-designing a scalable quantum
computer with trapped atomic ions,” npj Quantum Information, vol. 2,
no. 1, p. 16034, Nov. 2016.

[42] P. Parrado-Rodrı́guez, C. Ryan-Anderson, A. Bermudez, and M. Müller,
“Crosstalk Suppression for Fault-tolerant Quantum Error Correction
with Trapped Ions,” Quantum, vol. 5, p. 487, Jun. 2021.

[43] M. Salm, J. Barzen, F. Leymann, B. Weder, and K. Wild, “Automating
the comparison of quantum compilers for quantum circuits,” in Service-
Oriented Computing, J. Barzen, Ed. Cham: Springer International
Publishing, 2021, pp. 64–80.

[44] M. Cerezo, A. Arrasmith, R. Babbush et al., “Variational quantum
algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, aug
2021.

[45] A. Paler, A. Zulehner, and R. Wille, “Nisq circuit compilation is
the travelling salesman problem on a torus,” Quantum Science and
Technology, vol. 6, no. 2, p. 025016, mar 2021.

[46] M. Schönberger, S. Scherzinger, and W. Mauerer, “Ready to leap (by co-
design)? join order optimisation on quantum hardware,” in Proceedings
of ACM SIGMOD/PODS International Conference on Management of
Data, 2023.

[47] T. Krüger and W. Mauerer, “Quantum annealing-based software com-
ponents: An experimental case study with SAT solving,” Q-SE@ICSE,
2020.

[48] D. Reilly, “Challenges in scaling-up the control interface of a quantum
computer,” in Proceedings of 2019 IEEE International Electron Devices
Meeting (IEDM), 12 2019, pp. 31.7.1–31.7.6.

https://research.ibm.com/blog/heavy-hex-lattice
https://research.ibm.com/blog/heavy-hex-lattice
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

[49] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to ibm qx architectures using the minimal number of swap and h
operations,” in Proceedings of the 56th Annual Design Automation
Conference 2019, ser. DAC ’19. New York, NY, USA: Association
for Computing Machinery, 2019.

[50] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington et al.,
“t|ket〉: a retargetable compiler for nisq devices,” Quantum Science and
Technology, vol. 6, no. 1, p. 014003, nov 2020.

[51] Y. A. Kharkov, A. Ivanova, E. A. Mikhantiev, and A. I. Kotelnikov,
“Arline benchmarks: Automated benchmarking platform for quantum
compilers,” ArXiv, vol. abs/2202.14025, 2022.

	Introduction
	Related Work
	Context and Foundations
	Quantum Optimisation with QAOA
	Algorithm

	Translation of algorithms to quantum hardware
	Problem selection
	Maximum Cut
	Number Partitioning
	Travelling Salesperson
	Maximum 3-Satisfiability

	Complexity classes in NP optimisation problems

	Experiments
	Setup
	Problem Mapping
	Maximum Cut
	Number Partitioning
	Travelling Salesperson
	Maximum 3-Satisfiability

	Circuit Mapping

	Evaluation
	Numerical Results
	Circuit Depth and Swap gate Count

	Statistical Modelling
	Implications for Co-Design

	Threats to Validity
	External Validity
	Internal Validity
	Influence of Mapping Optimisation
	Influence of Instance Properties
	Influence of Backend Size

	Discussion & Outlook
	References

