
92

Ready to Leap (by Co-Design)?
Join Order Optimisation onQuantum Hardware

MANUEL SCHÖNBERGER, Technical University of Applied Sciences Regensburg, Germany

STEFANIE SCHERZINGER, University of Passau, Germany

WOLFGANG MAUERER, Technical University of Applied Sciences Regensburg and Siemens AG,

Corporate Research, Germany

The prospect of achieving computational speedups by exploiting quantum phenomena makes the use of

quantum processing units (QPUs) attractive for many algorithmic database problems. Query optimisation,

which concerns problems that typically need to explore large search spaces, seems like an ideal match for

quantum algorithms. We present the first quantum implementation of join ordering, one of the most in-

vestigated and fundamental query optimisation problems, based on a reformulation to quadratic binary

unconstrained optimisation problems. We empirically characterise our method on two state-of-the-art ap-

proaches (gate-based quantum computing and quantum annealing), and identify speed-ups compared to the

best know classical join ordering approaches for input sizes conforming to current quantum annealers. Yet,

we also confirm that limits of early-stage technology are quickly reached.

Current QPUs are classified as noisy, intermediate scale quantum computers (NISQ), and are restricted by a

variety of limitations that reduce their capabilities as compared to ideal future QPUs, which prevents us from

scaling up problem dimensions and reaching practical utility. To overcome these challenges, our formulation

accounts for specific QPU properties and limitations, and allows us to trade between achievable solution

quality and problem size.

In contrast to all prior work on quantum computing for query optimisation and database-related challenges,

we go beyond currently available QPUs, and explicitly target the scalability limitations: Using insights gained

from numerical simulations and our experimental analysis, we identify key criteria for co-designing QPUs

to improve their usefulness for join ordering, and show how even relatively minor physical architectural

improvements can result in substantial enhancements. Finally, we outline a path towards practical utility of

custom-designed QPUs.

CCS Concepts: • Hardware→ Quantum computation; • Information systems→ Join algorithms.

Additional Key Words and Phrases: quantum computing, query optimisation, join ordering

ACM Reference Format:
Manuel Schönberger, Stefanie Scherzinger, and Wolfgang Mauerer. 2023. Ready to Leap (by Co-Design)? Join

Order Optimisation on Quantum Hardware. Proc. ACM Manag. Data 1, 1, Article 92 (May 2023), 27 pages.

https://doi.org/10.1145/3588946

1 INTRODUCTION
In recent years, quantum computing has attracted substantial attention in many fields of research,

driven by the desire to benefit from quantum advantage in complex computations. While quantum

computing has been studied for decades, the increase in interest aligns with the accelerating

Authors’ addresses: Manuel Schönberger, Technical University of Applied Sciences Regensburg, Regensburg, Germany,

manuel.schoenberger@othr.de; Stefanie Scherzinger, University of Passau, Passau, Germany, stefanie.scherzinger@uni-

passau.de; Wolfgang Mauerer, Technical University of Applied Sciences Regensburg and and Siemens AG, Corporate

Research, Regensburg/Munich, Germany, wolfgang.mauerer@othr.de.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike Interna-

tional 4.0 License.

© 2023 Copyright held by the owner/author(s).

2836-6573/2023/5-ART92

https://doi.org/10.1145/3588946

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

https://doi.org/10.1145/3588946
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3588946

92:2 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

development of quantum computing hardware over the recent years, provided by vendors like

IBM [36], Rigetti [66], or D-Wave [50], among many others. Moreover, cloud access to quantum

systems has made quantum computing more accessible to researchers, enabling first experiments

on real quantum processing units (QPU).
In contrast to CPUs, QPUs work with quantum bits, or qubits. Their mathematical state is expo-

nentially larger than for classical bits, and they can realise phenomena like quantum superposition,
quantum entanglement or quantum interference [58]. It is widely believed, given accepted complexity

theoretic assumptions, that quantum systems offer increased computational power over classical

systems [4, 7]. Speedups have been proven for multiple quantum algorithms [27, 70], and a seminal

experiment [5] has demonstrated quantum advantage on real hardware, even if on an artificially

constructed problem.

Quantum computers (QCs) are also believed to excel at optimisation problems that need to

determine elements with specific properties in (exponentially large) search spaces, which is a

commonly occurring problem in database systems, and particularly relevant for database query

optimisation. However, QCs have so far seen only meagre adoption in DB research, and multi-query

optimisation (MQO) [20, 74] is the only application in query optimisation that we are aware of, to

the best of our knowledge.

We attribute this to the lack of practical utility of current prototypical QPUs, which are severely

limited in various aspects. Given these limits, we cannot expect meaningful results for practical

problems on current QPUs, which are classified as so-called noisy intermediate scale quantum
(NISQ) devices [62]. The goal of this paper is therefore not to demonstrate any practically relevant

speedups for industrially relevant scenarios (neither was this achieved, to the best of our knowledge,

by any of the prior research on using QPUs for databases or any other purpose).

One common assumption in previous work is that the performance of quantum approaches

automatically improves with future universal QPUs. Unfortunately, this assumption is not a given [8,

62]: Firstly, universal large-scale, fully error-corrected QPUs are not expected within at least the

next decade [34]. Secondly, as we show in this paper, the feasibility of employing QC is closely tied to

an alignment of problem and QPU architecture. Even future universal QPUs will not automatically

exhibit the required properties to achieve optimal quantum speedups for a specific problem, and

will not automatically scale to the required problem dimensions without further ado.

Consequently, we quantitatively argue that one of the most pressing prerequisites to achieving

near- and mid-term quantum advantage is the custom co-design of QPUs for specific problems. We

outline a concrete path towards near-term DB-QPU utility that goes much beyond mere problem

mappings. Rather than waiting on the sidelines, we actively aid QPU development, as we identify

problem formulations with careful consideration of QPU properties, and derive design criteria that

shape future QPUs as special purpose devices tailored to database applications.

We are the first to follow this QPU co-design principle for database problems. Specifically,

we investigate the aptitude of quantum computing for the classic join ordering (JO) problem,

which is one of the most extensively researched and fundamental problems in the field of query

optimisation [25, 31, 43, 45, 52–54, 56, 57, 72, 75, 81], yet so far not addressed by prior quantum

computing research. Since it is not possible to simply deploy existing classical algorithms on QPUs,

we reformulate JO into a mathematical description that is unaccustomed in traditional programming,

which allows us to use suitable quantum algorithms. Following our co-design principle, we account

for specific QPU limitations, provide a formal analysis of bounds, experimentally analyse the

achievable performance on multiple NISQ machines, and suggest physical improvements for future

QPUs that benefit query optimisation workloads.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:3

Contributions. In detail, our contributions are as follows:

(1) We show how join ordering problems can be solved on QPUs, providing novel mathematical

reformulations that account for their specific properties and restrictions. Our approach is partly

based on existing problem transformations, yet it is their non-trivial combination that allows

us to identify and address subtle, yet considerable key issues.

(2) We conduct an extensive experimental analysis for join ordering on real QPUs, where we

comprehensively consider two state-of-the-art architectures. We analyse the potential of our

approach by identifying possible speedups over classical CPU-based state-of-the-art results.

We also show that problem scalability is limited to small instances on contemporary QPUs.

However, our experiments provide directional advice for QPU co-design, and identify specific

parameter configurations that provide no issues in a classical context, but have a major impact

on the feasibility of using QPUs for join ordering.

(3) We formally derive an upper bound for qubit resource scaling, which allows us to give recom-

mendations for qubit capacitiy sufficient for practical queries on future QPUs.

(4) We specify recommendations for DB-QPU co-design, which has so far not been addressed by

prior database research. We conduct numerical simulations for tailored custom QPU designs,

and suggest small architectural improvements that can substantially enhance the feasibility of

using QPUs for join ordering, and thereby address the bottlenecks identified by our experiments

on current QPUs. Our results can be used to accelerate the development of QPUs to reach

near-term utility for databases.

The rest of the paper is structured as follows: We give a very brief overview on quantum

computing foundations in Sec. 2. Considering architectural limitations of QPUs, we present our

approach for implementing join ordering on QPUs in Sec. 3. We experimentally evaluate our

approach on early-stage QPUs in Sec. 4. In Sec. 5, we formally derive an upper bound for the

number of qubits required to encode JO problems. In Sec. 6, we use insights gained from our

experimental analysis for QPU co-design, and discuss tailored QPU improvements that greatly

enhance near-term DB-QPU utility. We present related work in Sec. 7, and conclude in Sec. 8.

2 QUANTUM FOUNDATIONS
Quantum computing is a relatively new computational paradigm, and prototypical hardware has

only recently become available. It is impossible to provide a complete introduction to the field

here. For a compact refresher focused on the quantum techniques used in this paper, we provide

optional supplementary material. This section summarises the essential knowledge for our quantum

approach. Detailed reviews on quantum computing (e.g., Refs. [8, 58]), annealing (e.g., Refs [2, 50]),
and the utilised algorithms like QAOA [6, 21, 22, 29, 30, 32] are available in the literature.

Quantum Algorithms. Today, the biggest hurdle for using quantum computing is given by its

incompatibility with classical algorithms. To solve JO on QPUs, we have to rely on quantum
algorithms. Since quantum computation is inherently probabilistic, typical quantum algorithms

aim to produce an optimal or near-optimal result with high probability. To obtain a statistical

distribution, algorithms are executed tens to thousands of times, and an execution is referred to as

shot.
Quantum algorithms require specific problem encodings. A typical formulation is the quadratic

unconstrained binary optimisation (QUBO) encoding [9, 46], which (1) only allows quadratic, or
pairwise, interactions between variables, (2) is unconstrained (i.e., does not allow for formulating

explicit constraints), (3) only uses binary variables, and (4) encodes optimisation problems. Phys-

ically, we may interpret a QUBO problem as an energy formula, where we seek to determine the

variable configuration corresponding to the minimum energy that encodes an optimal solution.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

https://github.com/lfd/sigmod23-reproduction/blob/main/Quantum_Foundations.pdf

92:4 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

Mathematically, QUBO problems are based on the multivariate polynomial

𝑓 (®𝑥) =
∑︁
𝑖

𝑐𝑖𝑖𝑥𝑖 +
∑︁
𝑖≠𝑗

𝑐𝑖 𝑗𝑥𝑖𝑥 𝑗 , (1)

where 𝑥𝑖 ∈ {0, 1} are variables, and 𝑐𝑖 𝑗 ∈ R coefficients (it holds that 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖). Finding a JO-QUBO

encoding, which we achieve in Sec. 3, allows us to solve JO with quantum algorithms.

The experimental analysis in Sec. 4 considers two algorithms that allow us to solve JO on two

fundamentally different QPU architectures: (1) We run the quantum approximate optimisation
algorithm (QAOA) [21], which is an iteration-based, hybrid quantum-classical algorithm, to solve

JO on gate-based QPUs. (2) We solve JO on quantum annealers [50], which allows us to draw a

comparison of our JO approach to prior results for MQO [74] on this class of machines. While both

problems are related to query optimisation, JO and MQO are structurally different, and known

MQO to QUBO transformations do not apply for JO.

An important QAOA parameter is the chosen number of gate repetitions, typically denoted 𝑝 . As

shown by Farhi et al. [21], the approximation quality improves as 𝑝 increases. However, even for

𝑝 = 1, QAOA shows promising experimental results for some problems [21, 22], and it is know that

an efficient classical algorithm for sampling the output distribution of QAOA with 𝑝 = 1 would

imply a collapse of the polynomial hierarchy [23], which is seen as clear indicator of possible

quantum advantages.

Gate-based QPUs. For DB-QPU co-design in Sec. 6, we are mainly concerned with solving JO

with QAOA on gate-based QPUs, as they allow for more design flexibility. As implied by the name,

quantum gates perform operations on qubits in a quantum circuit, and thereby change their state to

produce optimal or near-optimal solutions.

While in theory, QAOA solution quality increases for larger 𝑝 , the required additional gates

are detrimental on contemporary QPUs: A fundamental property of a quantum circuit is its depth
(i.e., the longest sequence of operators in a circuit). Deeper circuits lead to a longer execution

time, which is problematic: Unlike classical CPUs, QPU execution time is indirectly limited by the

coherence time [58] of the hardware, which is, roughly speaking, the time during which quantum

properties can be upheld. Increasing circuit depth increases the probability of decoherence errors

because of quantum information loss due to environment interaction [65].

Circuit depth is therefore one of the most crucial metrics that we use to evaluate quantum

computing feasibility, and is moreover substantially impacted by the properties of the QUBO

encoding. For instance, to run the algorithm, the quantum circuit encoding the logical QUBO needs

to be embedded, or transpiled, onto the physically realised QPU architecture, where connections

between qubits are scarce. If the encoding requires connections between non-adjacent qubits,

missing connections are established by inserting additional gates, thereby increasing depth. This

interplay between problem encoding and QPU architecture remains characteristic for quantum

computing, and further motivates QPU-DB co-design. We carefully consider such constraints for

encoding JO in Sec. 3.

QPU Metrics Summary. Evaluating approaches for QPUs requires mastering a set of new metrics.

To evaluate performance on contemporary QPUs, and to analyse the potential achievable by

co-designed quantum systems, we consider the following metrics:

(1) The overall QPU time required to obtain an optimal or near-optimal result with high probability;

(2) For gate-based QPUs, the depth of the QAOA circuit determines execution time, but is also

essential w.r.t. other QPU limits;

(3) The number of qubits required by the QUBO encoding that needs to be fit onto QPUs.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:5

3 JOIN ORDERING ON QPUS
For the JO-QUBO encoding, it is crucial to find a formulation that is well adapted to the constraints

of QPUs. Fig. 1 gives an overview on all steps of our problem reformulation, where we

(1) express JO as mixed integer linear programming (MILP) problem,

(2) carefully adjust the MILP formulation to form a binary integer linear programming (BILP) model,

(3) transform BILP into QUBO, suitable for QPU processing.

In QUBO form, we can embed JO on QPUs, using established heuristic tools, and run quantum

algorithms to find solutions. Owing to the probabilistic nature of quantum computing, we nee to

run thousands of shots, generating batches of results. In a final postprocessing step, we filter out

invalid solutions, and read out the join order from valid ones.

Query MILP BILP QUBO QPU Result Batch Join Order[75]

• Encode join ordering as

mixed integer linear program

• Approximate cardinalities

with threshold values

• Convert BILP to quadratic

formulation (unconstrained)

• Encode BILP constraints

with energy penalties

• Perform gate-based quantum

computation/annealing

• Sample tousands of shots

as results batch

• Convert inequalities

to equalities

• Approximate continuous

variables by discretisation

• Find embedding tailored

to Quantum Processing Unit

• Transfer embedding onto QPU

• Postprocess results from QPU

• Read join order from optimal

variable configuration

R

S T

Z

Z

R S

T

Fig. 1. Overview on all steps required to solve join ordering with quantum computing.

3.1 Formal Model
A JO problem is given by a set of relations 𝑅0, ..., 𝑅𝑛 , where 𝑛𝑖 denotes the cardinality of relation

𝑅𝑖 , and a query graph, where each node represents a relation. An edge between relations 𝑅𝑖 and

𝑅 𝑗 is labeled by a predicate 𝑝𝑖 𝑗 with selectivity 𝑓𝑖 𝑗 , where 0 < 𝑓𝑖 𝑗 ≤ 1 [16, 53]. Since our JO-QUBO

transformation entails the JO-MILP formulation by Trummer and Koch [75] for classical solvers

(but is unrelated to their work on MQO on QPUs), our approach follows their classification for JO:

The approach seeks optimal left-deep join trees and allows cross products, without restrictions on

the query graph (known to be NP-complete [16]).

We consider the classic cost function𝐶𝑜𝑢𝑡 [16], which is given by𝐶𝑜𝑢𝑡 (𝑛𝑖 , 𝑛 𝑗) := 𝑛𝑖𝑛 𝑗 𝑓𝑖 𝑗 . Following

Cluet and Moerkotte [16] to find the optimal join order for a sequence 𝑠 of 𝑛 relations 𝑠1, ..., 𝑠𝑛 , the

cost function becomes

𝐶 (𝑠) :=

𝑛∑︁
𝑖=2

𝐶𝑜𝑢𝑡 (|𝑠1...𝑠𝑖−1 |, |𝑠𝑖 |), (2)

where |𝑠1...𝑠𝑖−1 | denotes the cardinality of the intermediate join result after joining 𝑠1, ..., 𝑠𝑖−1.

Model Extensions. As we focus on near-term QPU-DB utility, we seek to keep qubit requirements

as small as possible, to decrease the load on the limited capacity of contemporary QPUs. Therefore,

we restrict our approach to the most basic MILP elements proposed in Ref. [75]. The problem

remains NP-complete for this model.

Multiple extensions to the model are discussed in Ref. [75]. However, these require additional

variables, which translate to higher qubit requirements. While we refrain from incorporating these

for now, they can be freely added in the future alongside QPU advancements, to cover even more

complex scenarios. For instance, it is possible to model more sophisticated cost functions for a

variety of operators, such as hash join and sort-merge join. Further extensions allow modelling

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

92:6 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

correlations between predicates, which we, for now, assume to be uncorrelated. Finally, an extension

to bushy trees may be possible. However, such an extension has yet to be found, and would likely

yield a substantial qubit overhead.

3.2 MILP Model and Pruning
In the first step, we encode JO as MILP. The original MILP model in Ref. [75] introduces additional

variables to improve comprehensibility, relying on redundant variable elimination by the solver.

Since additional variables non-linearly translate to additional qubits, we need to reduce the model

up-front to retain feasibility on restricted hardware. Modern MILP solvers can, to some extent,

detect and prune redundancies [1]. However, as model size is crucial on QPUs, we manually ensure

their removal. Additionally, precise knowledge of the influence of variables and constraints is

important for the formal analysis in Sec. 5.

Table 1. Overview of the MILP model, including all variables and constraint descriptions, for each step.

Modelling Step Var
s

Variable Semantics Required Constraints

1 Valid join

order

tiitj
tiot0

Is table 𝑡 in the inner operand of

join 𝑗 / outer operand of join 0?

Each join tree leaf represents exactly

one relation (Eq. 3).

2 Intermediate

operands

tiotj Is table 𝑡 in the outer operand of

an intermediate join 𝑗 (𝑗 ≥ 1)?

Include joined relations in all sub-

sequent joins (Eq. 4).

A relation cannot be part of both op-

erands of a join (Eq. 5).

3 Predicates paopj Is predicate 𝑝 is applicable in the
outer operand of join 𝑗?

A predicate may only be applied

if no associated relation is missing

(Eq. 6).

4 Cardinality

approxima-

tion

ctorj Is cardinality threshold 𝑟

reached by the outer operand of

join 𝑗?

A threshold is added to the join costs

if it is exceeded by the logarithmic

cardinality of the intermediate oper-

and (Eq. 8).

3.2.1 Overview. The JO-MILP model contains many variable types and constraints, and may be

hard to follow. We nonetheless discuss it, to lay the foundation for subsequent sections. To aid

the reader, Table 1 gives an overview of all MILP modelling steps. A running example moreover

illustrates each modelling step in detail.

In essence, solving aMILP problem entails determining a value assignment for variables of integer

or continuous domains, such that a given linear objective function is optimised [17]. For valid

solutions, the variables need to satisfy a given set of linear constraints. For JO, MILP constraints

are set to enforce a valid configuration of variables that represent various join ordering elements

(e.g., join tree leaves, intermediate results and predicates).

Table 1 depicts the four modelling steps: (1) Enforce an unambiguous assignment of join tree

leaves, and thereby a valid join order. To evaluate the join order, all subsequent steps contribute

towards calculating the join costs. (2) Determine the outer operands, or intermediate results, for all

joins. (3) Restrict the use of predicates if relations are missing from join operands. (4) Based on the

intermediate results and predicate applicability, approximate the join cardinalities, or costs. The

MILP objective function is set to minimise the approximated costs, to find the optimal join order.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:7

Approximation is required since directly encoding the cost function into the MILP objective

function is not possible due to the required product operations in𝐶𝑜𝑢𝑡 , which cannot be represented

in the linear objective function with linear constraints. To circumvent this issue, Trummer and

Koch [75] propose to use logarithmic cardinalities, as log(∏𝑖 𝑎𝑖) =
∑

𝑖 log𝑎𝑖 . Cardinalities are

approximated via an arbitrary number of threshold variables. For quantum formulations, this

results in a trade-off between better approximation and more qubits that requires great care.

3.2.2 Modelling Valid Join Orders. We follow approach and naming conventions of Ref. [75]. For

each of the𝑇 relations and 𝐽 joins, we distinguish between inner and outer operand in the left-deep

join tree (outer operands are the result of preceding joins). The binary variables tiitj (Table In Inner
join operand) and tiotj (Table In Outer join operand) indicate if relation 𝑡 with 0 ≤ 𝑡 ≤ 𝑇 − 1, 𝑡 ∈ N0

is part of the inner or outer operand of join 𝑗 with 0 ≤ 𝑗 ≤ 𝐽 − 1, 𝑗 ∈ N0. We add 2𝑇 𝐽 such variables

to the model (while only tio𝑡 𝑗 variables for 𝑗 = 0 are relevant for this step, we already add tio𝑡 𝑗
variables for the remaining joins 1 ≤ 𝑗 ≤ 𝐽 − 1, for the next modelling step). To enforce solution

validity, constraints (the latter added for each join 𝑗)∑︁
𝑡

tio𝑡0 = 1,
∑︁
𝑡

tii𝑡 𝑗 = 1, (3)

ensure that each leaf of the join tree corresponds to exactly one relation, which enforces a valid

join order.

Example 3.1. Let indexes 0 ≤ 𝑡 ≤ 2 correspond to relations 𝑅, 𝑆 and 𝑇 respectively. For each join
0 ≤ 𝑗 ≤ 1, we introduce tio𝑡 𝑗 and tii𝑡 𝑗 . The constraints unambiguously assign the relations to the join
tree leaves: For instance, for the outer operand of join 0, either tio𝑅0, tio𝑆0 or tio𝑇 0 must be set to 1,
whereas the two remaining variables must equal 0, since exactly one relation must represent a join
tree leaf. The same holds for the remaining leaf variables tii𝑡0 and tii𝑡1 for each relation 𝑡 . For this
running example, we henceforth assume the join order (𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇 , corresponding to the set of active
(i.e., with value 1) variables (tio𝑅0, tii𝑆0, tii𝑇 1).

3.2.3 Modelling Intermediate Join Operands. For each join 𝑗 > 0 and relation 𝑡 , the constraint

tio𝑡 𝑗 = tii𝑡 (𝑗−1) + tio𝑡 (𝑗−1) (4)

enforces that a relation will be part of the outer operands of all subsequent joins once it is initially

included in a join. Additional constraints ensure that the same relation cannot be part of both

operands of a join. For all except the final join, these constraints are redundantly accounted for

by the constraints in Eq. (4). It suffices to include such constraints for the final join and for each

relation 𝑡 :

tio𝑡 (𝐽 −1) + tii𝑡 (𝐽 −1) ≤ 1. (5)

Example 3.2. (cont’d) Consider again our example for the join order (𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇 , represen-
ted by the active variables (tio𝑅0, tii𝑆0, tii𝑇 1). The newly added constraints enforce tio𝑅1 = 1, since
tio𝑅1 = tii𝑅0 + tio𝑅0 = 0 + 1 = 1. The same holds for tio𝑆1. As such, the outer operand for join 1
corresponds to the intermediate result after 𝑅 ⊲⊳ 𝑆 . We add the newly activated variables to our set
of active variables: (tio𝑅0, tii𝑆0, tii𝑇 1, tio𝑅1, tio𝑆1).

3.2.4 Modelling Predicates. Consider binary predicates for joining two relations.
1
For each predic-

ate 𝑝 with 0 ≤ 𝑝 ≤ 𝑃 − 1, 𝑝 ∈ N0, where 𝑃 denotes the overall number of predicates, and for each

join 𝑗 > 0, we introduce a variable paopj (Predicate Applicable in Outer join operand). It indicates
whether predicate 𝑝 can be evaluated for the outer operand of join 𝑗 , requiring both associated

1
We restrict our consideration to uncorrelated predicates for lower qubit requirements, but an extension of the model to

correlated predicates is discussed in Ref. [75].

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

92:8 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

relations as part of the outer operand of join 𝑗 . For predicate 𝑝 and join 𝑗 > 0, this is enforced by

the constraints

pao𝑝 𝑗 ≤ tio𝑇1 (𝑝) 𝑗 , pao𝑝 𝑗 ≤ tio𝑇2 (𝑝) 𝑗 , (6)

where 𝑇1 (𝑝) and 𝑇2 (𝑝) denote the first and second relation for predicate 𝑝 . The original model

includes variables paop0 , which we prune, since the outer operand of the first join contains only a

single relation. In total, we add 𝑃 (𝐽 − 1) many paopj variables.

Example 3.3. (cont’d) So far, (tio𝑅0, tii𝑆0, tii𝑇 1, tio𝑅1, tio𝑆1) contains our active variables. We now
consider the inclusion of join predicate 𝑝𝑅𝑆 for relations 𝑅 and 𝑆 . One additional variable pao01 is
required to denote whether 𝑝𝑅𝑆 (indexed by 0) can be applied for join 1. The pruned model omits the
superfluous variable pao00 for join 0. Two constraints pao

01
≤ tio𝑅1 and pao

01
≤ tio𝑆1 enforce that

pao
01
may only be set to one if both 𝑅 and 𝑆 are included in the outer operand of join 1. This is the

case in our running example, as pao
01

≤ tio𝑅1 = tio𝑆1 = 1, allowing pao
01

= 1. The predicate may
therefore be applied for the cardinality calculation. Similarly, we may add a predicate 𝑝𝑅𝑇 or 𝑝𝑆𝑇 for
the relation 𝑇 . If no predicate is provided, this necessitates a cross product for 𝑇 . Adding the newly
activated variable, our set of active variables becomes (tio𝑅0, tii𝑆0, tii𝑇 1, tio𝑅1, tio𝑆1, pao01

).

3.2.5 Cost Function and Cardinality Approximation. Finally, based on the prior modelling steps for

intermediate operands and predicates, we can approximate the associated costs for the join order.

Estimating intermediate cardinalities can be encoded as a MILP problem, based on a logarithmic

representation [75]. 𝑐 𝑗 denotes the logarithmic cardinality for the outer operand of join 𝑗 by

𝑐 𝑗 =
∑︁
𝑡

log(Card (t))tiotj +
∑︁
𝑝

log(Sel(𝑝))pao𝑝 𝑗 , (7)

where Card (𝑡) ≥ 1 is the cardinality of relation 𝑡 , and 0 < Sel(𝑝) ≤ 1 is the selectivity of predicate

𝑝 . The cardinalities for each outer join operand are approximated using 𝑅 threshold values. For

each threshold value 𝑟 with 0 ≤ 𝑟 ≤ 𝑅 − 1, 𝑟 ∈ N0 and each join 𝑗 , a variable ctorj (Cardinality
Threshold reached by Outer operand) is added to indicate if the intermediate logarithmic cardinality

for the outer operand of join 𝑗 exceeds the threshold value 𝑟 . If ctorj = 1, the threshold value is

added to the objective function min

∑𝑅−1

𝑟=0

∑𝐽 −1

𝑗=1
cto𝑟 𝑗\𝑟 , where \𝑟 denotes the 𝑟 -th threshold value.

Since we use the cost function outlined in Eq. 2 and only consider intermediate cardinalities, we

prune the variables ctor0 for join 0. Therefore, 𝑅(𝐽 − 1) variables of type ctorj are required. This is
an upper bound, since some cases allow us to prune variables.

To ensure that variables are assigned correct values,

𝑐 𝑗 − cto𝑟 𝑗 · ∞𝑟 𝑗 ≤ log(\𝑟) (8)

enforces that ctorj is activated if the logarithmic cardinality 𝑐 𝑗 exceeds the threshold value, since

the inequality can then only be satisfied by setting ctorj = 1, thereby subtracting the (sufficiently

large) constant ∞𝑟 𝑗 from the left-hand side of the inequality. Contrary to the original model, 𝑐 𝑗 is

not included, but is merely used for convenience, abbreviating the calculation shown in Eq. (7).

We observe that in Eq. (8), variable ctorj can be pruned if the maximum value of the logarithmic

intermediate cardinality for the outer operand of join 𝑗 (which we specify in Lemma 5.2) does not

exceed log(\𝑟). This may occur for large \𝑟 and early joins. In these cases, subtracting ctorj · ∞𝑟 𝑗 is

never required to satisfy the constraint, rendering both variable and constraint obsolete.

Example 3.4. (cont’d) We conclude our example by approximating the join costs, which, for three
relations, merely consist of the cardinality resulting from the first join. We assume input cardinalities
as 𝐶𝑎𝑟𝑑 (𝑅) = 𝐶𝑎𝑟𝑑 (𝑆) = 𝐶𝑎𝑟𝑑 (𝑇) = 100 and 𝑆𝑒𝑙 (𝑝𝑅𝑆) = 0.1. For this simple scenario, optimal
join orders are clearly given by (𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇 and (𝑆 ⊲⊳ 𝑅) ⊲⊳ 𝑇 , corresponding to the join costs

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:9

𝐶𝑎𝑟𝑑 (𝑅) ·𝐶𝑎𝑟𝑑 (𝑆) · 𝑆𝑒𝑙 (𝑝𝑅𝑆) = 1,000. However, for the MILP approach, we must approximate these
costs using threshold values, which we assume to be \0 = 100 and \1 = 1,000. We add variables cto01
and cto11 for each threshold and for join 1, which has the intermediate result 𝑅 ⊲⊳ 𝑆 as the outer
operand. As we use the cost function outlined in Eq. (2) and therefore only consider intermediate results,
we do not add variables for join 0. For both variables, we add a constraint as given in Eq. (8). For 𝑐 𝑗 ,
we obtain 𝑐 𝑗 = log(𝐶𝑎𝑟𝑑 (𝑅))tioR1 + log(𝐶𝑎𝑟𝑑 (𝑆))tioS1 + log(𝐶𝑎𝑟𝑑 (𝑇))tioT1 + log(𝑆𝑒𝑙 (𝑝𝑅𝑆))pao01 =
2 ·1+2 ·1+2 ·0−1 ·1 = 3. Since 3 > log(\0) = log(100) = 2, cto01 = 1 to satisfy the constraint. However,
since 3 ≤ log(\1) = log(1,000) = 3, cto01 = 0 satisfies the constraint. Therefore, only \0 = 100 is added
to the costs, which is far from the true intermediate cardinality for 𝑅 ⊲⊳ 𝑆 . The approximation can be
improved by adding more threshold variables. Evidently, the choice of threshold values greatly impacts
the accuracy. This requires careful consideration for QPUs, where finding a balance between sufficient
accuracy and qubit count is crucial.

Table 2. Savings of pruned over
original MILP model.

Expression Saving

C
o
n
s
t
r
a
i
n
t tio𝑡 𝑗 + tii𝑡 𝑗 ≤ 1 𝑇 (𝐽 − 1)

pao𝑝 𝑗 ≤ tio𝑇1 (𝑝) 𝑗 𝑃

pao𝑝 𝑗 ≤ tio𝑇2 (𝑝) 𝑗 𝑃

𝑐 𝑗 − cto𝑟 𝑗 · ∞𝑟 𝑗 ≥ 𝑅

≤ log(\𝑟)
V
a
r paopj 𝑃

ctorj ≥ 𝑅

Table 2 summarises savings in variables and constraints by prun-

ing the original MILP model of Ref. [75]. The importance of these

savings will be highlighted by the following sections, which de-

scribe how variables and constraints translate to qubit requirements

and further QPU load, which decisively influences the feasibility

on NISQ machines.

3.3 BILP Formulation
To transform MILP to QUBO, as required by QPUs, we build on an

intermediate BILP
2
step, since efficient transformations from BILP

to QUBO are known [47], at least for problems restricted to binary

variables and equality constraints. The prunedMILPmodel includes

inequality constraints that we turn into equality constraints by

adding additional variables [17], typically called slack variables. For instance, converting the

constraint in Eq. (8) by adding a slack variable 𝑠𝑟 𝑗 gives

𝑐 𝑗 − cto𝑟 𝑗 · ∞𝑟 𝑗 + 𝑠𝑟 𝑗 = log(\𝑟). (9)

However, a binary domain for 𝑠𝑟 𝑗 is insufficient to ensure the transformed equality is functionally

equivalent to the original inequality. Instead, continuous values are required for 𝑠𝑟 𝑗 , which violates

the restriction to binary variables. We therefore approximate 𝑠𝑟 𝑗 by discretising with multiple

binary slack variables, since an integer bounded by 𝐶 can be expressed using 𝑛 = ⌊log
2
(𝐶)⌋ + 1

binary variables [13]. This gives 𝑠𝑟 𝑗 ≈ 𝜔
∑𝑛

𝑖=1
2
𝑖−1𝑏𝑖 , where 𝜔 denotes the discretisation precision,

and 𝑏𝑖 ∈ {0, 1}. This results in
𝑛 = ⌊log

2
(𝐶/𝜔)⌋ + 1 (10)

binary variables, which, again, leads to a trade-off: More binary variables for the discretisation

(smaller 𝜔) lead to higher precision, which is costly given the limited number of qubits. However,

without any remaining inequality constraints, the BILP problem can now be trivially cast as QUBO

suitable for QPUs.

3.4 QUBO Formulation
Encoding. Unlike BILP, QUBO problems cannot include explicit constraints to enforce validity.

Instead, we need to ensure that a solution with minimum value inherently corresponds to a valid

2
Given a vector of 𝑛 binary variables 𝑥 ∈ {0, 1}𝑛 and a cost vector 𝑐 ∈ R𝑛 , an optimal solution assigns variables to minimise

𝑐 · 𝑥 and adheres to to𝑚 constraints by satisfying 𝑆𝑥 = 𝑏, where 𝑆 ∈ R𝑚×𝑛
and 𝑏 ∈ R𝑚 . A valid solution satisfies to

constraints, but is not optimal.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

92:10 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

solution. Lukas [47] provides a conversion that turns BILP problems with 𝑁 variables into QUBOs

with 𝑁 qubits of the form

𝐻 = 𝐻𝐴 + 𝐻𝐵 = 𝐴

𝑚∑︁
𝑗=1

(
𝑏 𝑗 −

𝑁∑︁
𝑖=1

𝑆 𝑗𝑖𝑥𝑖

)
2

︸ ︷︷ ︸
𝐻𝐴

+𝐵
𝑁∑︁
𝑖=1

𝑐𝑖𝑥𝑖︸ ︷︷ ︸
𝐻𝐵

, (11)

where 𝐻𝐴 ensures valid, and 𝐻𝐵 optimal solutions.

𝐻𝐴 encodes the BILP constraints 𝑆𝑥 = 𝑏. The inner quadratic term evaluates to 0 iff no constraint

is violated. Invalid solutions are penalised by 𝐴, and cannot correspond to the minimum value.

Through the discretisation of continuous variables, 𝑏 𝑗 −
∑𝑁

𝑖=1
𝑆 𝑗𝑖𝑥𝑖 may only be close, but not

equal to 0 even for valid solutions. To circumvent this problem, we round the coefficients 𝑆 𝑗𝑖
according to the discretisation precision 𝜔 . Term 𝐻𝐵 encodes the cost.

Weights 𝐴 and 𝐵 in Eq. (11) must be suitably assigned. Since we prioritise valid and non-optimal

solutions over optimal but invalid ones, 𝐴 ≫ 𝐵 needs to hold. The weights cannot be set to

arbitrarily large values, as high penalty weights are known to cause issues like slowdowns [59].

We therefore choose the smallest possible weights such that violating a single constraint by the

smallest possible amount already leads to a sufficiently large penalty such that the solution cannot

correspond to the minimum energy.

To determine this smallest possible violation, first consider constraints with only binary variables.

The minimum violation is 1 in this case—for instance, in constraint 1 − 𝑥1 + 𝑥2 = 0, with binary

variables, the configuration 𝑥1 = 𝑥2 = 1 leads to a violation by 1, and contributes penalty 𝐴 · 1
2 = 𝐴.

In contrast, constraint 𝑐−1.1 = 0 with continuous variable 𝑐 discretised at precision𝜔 = 0.1 delivers

a minimal violation for 𝑐 = 1.2 or 𝑐 = 1.0, contributing a penalty of 𝐴(0.1)2 = 𝐴(𝜔)2
. Therefore, the

smallest violation is given by 𝜔 , and hence, 𝐴 = 𝐶/𝜔2 + 𝜖 for 𝐵 = 1, where 𝜖 is some small value

and 𝐶 =
∑𝑁

𝑖=1
𝑐𝑖 . Violating a constraint in 𝐻𝐴 to save costs that would otherwise be added in 𝐻𝐵 is

thereby discouraged, as it will always lead to the same or even larger costs.

Quadratic Contributions. So far, we only addressed how to limit the number of qubits by reducing

the number of variables in the problem model. Equally important properties like circuit depth for

gate-based QPUs are strongly influenced by the required pairwise, or quadratic, qubit interactions.

Consequently, understanding the genesis of quadratic contributions to Eq. (11) is required.

Only 𝐻𝐴, encoding constraints, can entail quadratic interactions. A quadratic contribution arises

for each pair of variables that appears in at least one constraint. Of all constraints derived in Sec. 3.2,

cardinality approximation in Eq. (8)—required for every join and every threshold value—contains the

most variables (other constraints contain at most three binary variables, including slack variables).

For Eq. (8), quadratic contributions arise for all variables tio𝑡 𝑗 , tio𝑡 𝑗 and pao𝑡 𝑗 associated with join

𝑗 . Pairs between these variables and variable cto𝑟 𝑗 , as well as all binary variables needed to express

the slack variable 𝑠𝑟 𝑗 , are required.

Choosing Approximation Precision. As discussed above, a higher precision via increasing the

number of threshold values comes at the expense of higher qubit requirements. It also leads to

an increasing amount of quadratic contributions in Eq. (11), as it impacts the number of required

cardinality approximation constraints. The discretisation precision of continuous slack variables

has a similarly large impact, as it influences the amount of binary slack variables in each of these

constraints.

QPU limitations should be considered when choosing suitable threshold values. For instance,

QPU load can be reduced by setting integer logarithmic thresholds, since these do not require value

discretisation, and not only save qubits for encoding larger problems, but also reduce quadratic

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:11

QUBO contributions. In general, rather than applying an abundance of thresholds, high QPU utility

can be best achieved by choosing few, yet carefully selected values, which may be based on available

empirical knowledge on intermediate cardinality sizes, to cover a broad range of common scenarios.

The strict necessity to carefully choose approximation precision is unaccustomed from classical

approaches, yet characteristic in a quantum context. Our model allows us to freely tune both

precisions (thresholds and discretisation precision). This allows us to influence the amount of

quadratic contributions, and their impact on the QAOA circuit depth.

3.5 Postprocessing
The final QUBOmodel in Eq. (11) can be used to solve JO using both, gate-based QAOA, and quantum

annealing.
3
From either hardware, we obtain a batch of possible QUBO variable assignments

together with the corresponding value of Eq. (11) that indicates solution quality. Each result must be

mapped back to the initial JO problem. Since QPUs can deliver invalid solutions owing to hardware

imperfections, we need to verify solutions in a postprocessing step.

Since non-optimal and invalid solutions are penalised, it is often possible to filter by themagnitude

of the final penalty value. Caused by the multi-step reduction to QUBO, a large penalty indicates an

invalid solution to the BILP problem with at least one constraint violation, but does not necessarily

imply an invalid JO solution.

A solution is valid when an unambiguous, valid join tree can be derived from the assignment of

QUBO variables, even if some constraints (e.g., those relevant for the calculation of intermediate

cardinalities) are violated. Instead of judging a solution by its penalty value, we consider the value

assignments for all 𝑡𝑖𝑖 variables, which indicate the relations selected as the inner join operands, and

verify whether each inner operand is uniquely represented by exactly one input relation. The final

relation, representing the outer operand of the first join, is then given by process of elimination.

To judge solution quality, we calculate costs of the resulting join trees, and determine the best

join order among all valid solutions.

4 ASSESSING STATE-OF-THE-ART QPUS
Contemporary QPUs are not expected to solve practically relevant instances of JO. However,

despite the limitation to small-sized problems, experiments on actual hardware are beneficial for

two reasons: Firstly, they provide the only means to properly evaluate the potential and soundness

of our approach, as resource requirements for simulating larger QPUs to tackle practically sized

problems scale exponentially, quickly rendering simulations infeasible. Secondly, they provide

insights on what limitations should ideally be addressed in future QPUs to gain speedups over

classical approaches.

Prior results for query optimisation on QPUs are based on experiments on D-Wave quantum

annealers [74]. Therefore, we first analyse JO on D-Wave QPUs, and relate our findings for JO to

these prior results for MQO. Like [74], we observe speedups for small problem dimensions, but

point out substantial scalability issues. Comparing JO and MQO results provides evidence for the

potential of co-designing QPUs for DB problems to ensure scalability.

We then commence to analyse JO on current gate-based QPUs, since these are more suitable

for co-design. While these QPUs are similarly limited, and offer no practical utility, we study the

impact of specific problem parameters on quantum computing feasibility, and derive insights for

co-designing future QPUs for JO.

3
Note that the general structure of a QAOA circuit does not depend on the objective QUBO function [21]. Depicting the

resulting quantum circuit for an encoded JO-QUBO is infeasible as it consists of thousands of gates, and would provide no

additional insights. We refer interested readers to Ref. [21] and our quantum fundamentals supplement, where the generic

QAOA circuit structure is discussed.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

92:12 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

4.1 Experimental Setup
For quantum annealing experiments, we resort to the D-Wave Advantage [50] system (around 5000

qubits, recently improved with a performance update, Pegasus topology).

For gate-based QAOA, we consider the IBM Q Auckland (27 qubits, Falcon r5.11 topology) QPU.

At the time of writing, IBM Q Washington (127 qubits, Eagle r1 topology) is the largest IBM Q

system in terms of qubits, but with marked disadvantages in coherence time. Our results for circuit

embeddings confirm that these disadvantages outweigh the benefits. We restrict QPU performance

analysis to the smaller, more stable Auckland QPU.

Algorithmic Setup. Our approach, implemented in Python, prepares QUBO formulations for a

given JO problem, and handles interaction with the QPUs. It relies on library gurobipy [28] for
formulating MILP and BILP problems. Packages docplex [35] (for IBM Q) and qubovert [64] (for

D-Wave), are used to formulate QUBO representations, which are then processed and passed to the

QPU by IBM Qiskit [38] (IBM) and D-Wave Ocean [18].

For our experiments on the D-Wave Advantage system, we determine suitable embeddings using

the heuristic minorminer tool provided in the D-Wave Ocean library [19]. The QPU runtime, or

annealing time, is a parameter for D-Wave QPUs. We conduct experiments for varying annealing

times 𝑡 , to study their impact on the solution quality. Since the number of allowed shots decreases

with increasing annealing time per shot, we perform 10,000 shots for 𝑡 < 10 `s and 900 shots for

𝑡 ≥ 10 `s. Other parameters include the chain strength, which groups physical qubits into a chain

representing a logical qubit (for detailed information, see Ref. [40]). We experimentally determine

suitable chain strengths, depending on JO problem sizes. The exact values can be found in our

reproduction package. Remaining parameters are set to their default values.

The Qiskit QAOA library is used to generate quantum circuits that can be embedded onto IBM Q

using the Qiskit transpiler (optimisation level 1). We run QAOA with 𝑝 = 1, where 𝑝 denotes

the number of QAOA operator repetitions, since larger values for 𝑝 lead to circuit depths beyond

machine capability. Classical optimisation is performed with the Qiskit analytic quantum gradient

descent optimiser (AQGD). We sample 1,024 shots for each circuit executed on the QPU. Remaining

parameters are set to their defaults.

Queries. Our goal is to find bounds on the dimension of JO problems for which QPUs determine

viable solutions. QPU performance is influenced by a multitude of complex factors, both algorithmic

and physical, and deteriorates quickly for increasingly sized problems. That is why we place

particular emphasis on the generation of input data: On the one hand, we want to isolate effects of

QPU imperfections; on the other hand, we need address scenarios with realistic characteristics.

Input data for the JO problem does not consist of SQL statements, but comprises (statistical) data

derived from the relations and predicates involved in an SQL statement. Specifically, input data

consists of a query graph (annotated with cardinalities), applicable join predicates with (estimates

of) their selectivities, and the threshold values for approximating intermediate cardinalities.

Input data with realistic, representative workload characteristics can be created in two ways: (1)

Starting from SQL statements, we can extract required statistical information, and then generate

the input query graph. (2) We can directly generate input query graphs alongside a distribution of

representative relation cardinalities, predicates and selectivities. The latter method has, for instance,

been employed to evaluate the JO-MILP approach of Ref. [75].

Input for the JO problem is, in each case, given by a query graph. To avoid parsing SQL, statistical

estimation, and other non-quantum tasks, we apply approach (2). We consider both, multiple

generation methods (seminal and recent) for realistic query loads, and state-of-the-art JO algorithms

executed on recent classical hardware.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

https://www.dwavesys.com/solutions-and-products/systems/
https://quantum-computing.ibm.com/composer/docs/iqx/manage/systems/processors#falcon
https://quantum-computing.ibm.com/composer/docs/iqx/manage/systems/processors#eagle
https://github.com/lfd/sigmod23-reproduction

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:13

Weuse (a) the query generation from Ref. [73], which creates queries based on the seminal method

of Steinbrunn, Moerkotte and Kemper from VLDB’97 [72] for benchmarking JO approaches. Their

implementation supports generating chain, star and cycle queries. Additionally, we (b) generate

clique queries (i.e., queries with join predicates for each pair of relations) to compare our approach

to recent classical JO results presented by Mancini et al. [48], and generate queries using the

exact same method as in their paper.
4
. Since the methods considered in Ref. [48] do not allow for

considering cross products, whereas our approach does, we base our comparison on clique graphs.

All join pairs in this case are valid, which is equivalent to a cross-join scenario without the need

for explicit cross join support in the base method. We find this to enable the fairest comparison.

For cases (a) and (b), we generate sets of 20 queries for different problem size scenarios, where

we consider between two and five relations (we find below that larger queries exceed the limited

capacity of our subject QPUs).

Additionally, we (c) generate input data with cardinalities, selectivities and threshold values

hand-crafted that try to minimise the expected influence of imperfections of current QPUs on

solution quality: As pointed out in Sec. 3, current QPUs require discretising continuous variables, at

the expense of reducing QPU capacity for increasing precision. We restrict this set of input data to

integer logarithmic cardinalities, predicate selectivities and threshold values, as they do not require

value discretisation. Data and code for all methods are supplied in the reproduction package.

Limitations of larger IBM Q machines, as explained above, necessitate restricting experiments

to 27 qubit (Auckland) machines. We can process basic queries that join at most three relations.

Experiments do not reach practically relevant dimensions, but we provide qubit requirements for

realistic problems on future QPUs in Sec. 6. Compared to IBM Q, the D-Wave Advantage system

allows for embedding larger queries, although limits are also reached quickly, as shown below.

Even with the restriction to three relations, we can study JO problems with varying properties on

IBM Q systems. For instance, we generate problems that consider different numbers of predicates:

For a query joining three relations, this provides us with four scenarios in total, where the number of

predicates ranges between zero and three. As a result, for queries with less than two join predicates,

cross products are required. For the remaining two scenarios with two and three predicates, we

generate a chain query and a cycle query. These scenarios translate into varying qubit requirements,

from 18 qubits for zero predicates up to 27 qubits for three predicates. This allows us to judge the

impact of increasing problem dimensions, even with the restriction to three relations. Similarly,

instead of increasing the number of predicates, we can vary the precision for discretising continuous

variables, and generate problems of different dimensions, ranging from 18 to 27 qubits. This allows

us to compare specific parameter settings, to identify parameter-specific bottlenecks.

4.2 Experimental Results
We next discuss the experimental evaluation on state-of-the-art QPUs, focusing on (a) run-time, (b)

result quality, and (c) maximal problem sizes (qubit count, circuit depth).

4.2.1 Join Ordering on D-Wave.

Experimental Results. For QA, runtime is a parameter: If it is too small, the probability for a

non-optimal or invalid solution increases; if it is too large, this is obviously counter to speedups.

The overall QPU runtime essentially depends on the annealing time per shot Δ𝑡 and the number
of shots 𝑛 required until an optimal solution is found; Tab. 3 shows observed experimental values.

Since 𝑛 is a statistically distributed quantity, we compute the average value 𝑛 to determine the

4
We appreciate that the authors have provided their source code to allow for an exact reproduction.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

https://github.com/lfd/sigmod23-reproduction

92:14 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

average runtime 𝑇 = 𝑛 · Δ𝑡 . As expected intuitively, increasing Δ𝑡 reduces 𝑛. 𝑇 is minimal for a

(short) annealing time of Δ𝑡 = 0.5`s, which we use in the following experiments.

10
-3

10
-2

10
-1

10
0

10
1

2 3 4 5

Relations

O
p
t
i
m
i
s
a
t
i
o
n
T
i
m
e
[
m
s
]
(
l
o
g
)

DPCCP

DPE

DPsize

DPsub

MPDP

Postgres

CPU

GPU

QPU (Hand-Crafted)

QPU (Mancini et al.)

QPU (Steinbrunn)

Fig. 2. Potential analysis of QA-JO by comparing QPU optimisation time results with best-in-class CPU/GPU
approaches obtained at SIGMOD’22 [48].

To evaluate the potential of our JO-QPU approach, we need to compare it against an established

baseline. However, the criteria for fair QPU-CPU comparisons are subject of scientific debate [51].

Therefore, we can neither demonstrate universal speedups over all parameter ranges, nor show

practical utility. At the same time, such comparisons are vital to demonstrate the potential of QPU

advantages to the DB community.

Mancini et al. [48] have, at SIGMOD’22, presented a massively parallel, efficient JO algorithm that

they compare to some of the fastest known state-of-the-art JO approaches (Postgres, DPCCP [54],

DPE [31], DPSub [52], DPSize [52]—it is beyond the scope of this paper to discuss these classical

algorithms in detail). To the best of our knowledge, this is the only reference in the literature with a

sole focus on join-ordering that is (a) very recent, (b) addresses an input data scenario comparable

to ours, (c) covers a broad selection of JO algorithms, and (d) gives quantitative optimisation

time measurements. We compare our QPU results inferred for all input data scenarios to their

corresponding classical results.

Fig. 2 compares our quantum results against their published classical numbers. Since our approach

is inherently stochastic, we provide the runtime distribution as compared to the mean values

reported by Mancini et al. [48] for state-of-the-art classical algorithms. The middle vertical line in

the boxplots represent our observed median results.

To identify the impact of discretisation costs on QPUs, we compare solution time for queries

with integer logarithmic values, which do not require any variable discretisation, against solution

time for Steinbrunn and Mancini queries, which capture realistic scenarios, where we set the

discretisation precision to two decimal positions, which we determined as the best choice (i.e.,
resulting in the highest solution quality) for the considered queries after preliminary testing.

For small problem dimensions, we observe pronounced speedups—encompassing multiple orders

of magnitude!—over all classical algorithms provided in Ref. [48]. While not considering these

results direct evidence, as we stress again, for the practical feasibility of our approach, we do see

them as a promising indication.

These speedups are almost equally pronounced for both, integer logarithmic queries, and themore

general Steinbrunn and Mancini queries, and the impact of discretisation costs seems negligible for

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:15

the considered small-scale problems: QPUs can attain optimal solutions despite the higher QPU

load due to discretisation. Neither do the specific query cardinalities and selectivities seem to exert

much impact on QPU performance.

It therefore suffices to consider one set of input data in the following, and we choose integer

logarithmic queries. This allows us to identify upper bounds independent of QPU discretisation

costs, and also reduces the pecuniary impact of QPU access somewhat.

While we find the results for small-scale queries very promising, great care needs to be applied

when interpreting the observations, and especially when extrapolating to larger instances. Table 3

lists the probabilities of reaching valid and optimal solutions for the more common chain, star and

cycle graphs with up to five relations (minimal discretisation precision, one inequality threshold

value). Solution quality is not much influenced by query graph topology, but declines quickly with

an increasing number of relations (the impact of annealing times is minimal, which agrees with

previous observations in the literature [44, 69]). In general, it suffices if one annealing shot delivers

a (near-)optimal solution; this is the case for three and four relations. However, for five relations,

almost none of the 900 shots include a valid, and none an optimal solution—independent of query

graph type and annealing time. This is likely attributable to the magnitude of perturbations in a a

fully utilised annealer [51].

Another impediment is that technical issues like communication between QPU and CPU must

be taken into account. While these could be reduced to negligible levels, they can—depending on

the actual setup—exceed the sampling time by orders of magnitude larger than the sampling time.

This must be taken into account when evaluating indiscriminately optimistic claims on possible

QPU speedups, as seen in the literature.

We conclude that while our results indicate substantial potential, solving JO problems with more

than four relations is infeasible for current D-Wave QPUs. Unfortunately, simulating large, noisy

quantum systems as would be required to provide an estimate of the performance of future QAs in

the absence of real hardware is itself an NP-complete problem that is beyond reach [8] (if simulating

such systems were feasible, there would be no need to build quantum annealers in the first place).

Table 3. Average fraction of valid and optimal solutions obtained in 1,000 annealing runs (DWave) over 20 JO
experiments, depending on annealing time (Δ𝑡) and query graph.

Query Δ𝑡 3 Relations 4 Relations 5 Relations

Graph [`s] Valid Opt. Valid Opt. Valid Opt.

Chain

10 31.00% 8.69% 1.23% 0.07% 0.12% 0%

100 37.01% 8.22% 1.53% 0.19% 0.07% 0%

1000 41.25% 10.30% 1.78% 0.14% 0.15% 0%

Star

10 - - 2.16% 0.33% 0.03% 0%

100 - - 2.01% 0.29% 0.02% 0%

1000 - - 2.48% 0.43% 0.04% 0%

Cycle

10 27.52% 11.46% 3.32% 0.41% 0.02% 0%

100 31.10% 14.36% 3.77% 0.46% 0.02% 0%

1000 34.58% 16.89% 4.21% 0.36% 0.04% 0%

Context. Let us set these results into context with the findings of the only previous study on

using a quantum annealer for query optimisation. Trummer and Koch [74] also compare a quantum

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

92:16 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

approach against classical benchmarks, but for a different problem (MQO instead of JO). They

find advantages for larger problems which albeit far from reaching practical dimensions, surpass

solvable problem sizes in our case.

A fundamental difference between thee approaches explains this discrepancy: In contrast to

using heuristic tools to determine embeddings for JO, the MQO-QUBO is mapped to the physical

hardware using a hand-crafted embedding. Most importantly, the fixed patterns of MQO agree well

with the QPU connectivity structure.

It is not possible to enjoy these benefits for JO (and most other problems): It is only suitable for

problems with predictable and fixed structures independent of the input, whereas pairwise qubit

interactions in JO depend on the problem instance. Restricting problems to fixed structures also

restricts generality and scalability. Also, the embedding problem is NP-complete [49, 82], and any

manual approach is deemed to quickly become infeasible. However, the MQO results suggest a

pronounced link between solution quality and problem alignment with quantum hardware.

Instead of trying to align different problems with unique requirements to QPUs with fixed
architecture, we instead suggest to tailor QPUs to DB problems via DB-QPU co-design. Since

gate-based QPUs offer more design flexibility [8] they are better suited to co-design than quantum

annealers. Consequently, we next analyse the performance of our approach on gate-based IBM-Q

QPUs, and then consider how co-design can improve their performance toward practical utility in

Sec. 6.

4.2.2 Join Ordering on IBM Q. For IBM Q hardware, we analyse circuit depths for varying JO

problems and QPUs in addition the the observables considered in the previous section. The depth

of a circuit on a gate-based QPU crucially impacts feasibility; with increasing depth, quantum

coherence is lost, and result quality degrades.

Varying Property Varying Topology

18 21 24 27 18 21 24 27

200

300

400

500

Qubits

C
i
r
c
u
i
t
D
e
p
t
h

Property

Precision

Predicates

System

Auckland

Washington

Fig. 3. Circuit depths of various scenarios, IBM Q devices.

Circuit Depths. While the number of required qubits is a metric for problem size, the circuit
depth can be seen to quantify the impact of specific problem parameters. These require varying
interactions between qubits, and lead to different depths. Therefore, two problems with identical

size (in qubits) may produce substantially different circuit depths, which can likewise substantially

impact the solution feasibility on a QPU.

This scenario is depicted in Fig. 3, which shows the distribution of circuit depths (based on 20

transpilations) necessary to embed QAOA circuits on two IBM Q devices using the heuristic Qiskit

transpiler. The left hand side of Fig. 3 compares circuit depths for problems with three relations

and one threshold value, but different numbers of predicates and approximation precisions. By

varying the discretisation precision (striped boxplots) from zero to three decimal places (using zero

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:17

predicates), we arrive at problems that can be mapped to 18, 21, 24 and 27 qubits. By varying the

amount of predicates (dotted boxplots) from zero to three (using a discretisation precision of 0

decimal positions), we arrive at the same qubit requirements. We see that the increase in median

circuit depth, but also in variance is considerably more pronounced for increasing precision than for

increasing amounts of predicates. Equally interesting, the transpilation heuristic alone contributes

substantial variance in the 24 and 27 qubit cases. Increasing the discretisation precision therefore

not only limits the feasible instance size (as fewer qubits are available for encoding relations or

predicates), but also greatly impacts the circuit depth, thereby increasing the probability for gate

errors and decoherence errors, and reducing result quality.

The results suggest that qubit connectivity offered by current QPUs is a major impediment to

scalability, since a higher discretisation precision demands more qubit interactions. Our co-design

simulations of improved QPU architectures in Sec. 6 confirm this hypothesis.

The right hand side of Fig. 3 compares embeddings of JO problems with an increasing number of

predicates on IBM Q Auckland (27 qubits, Falcon r5.11 topology) and Washington (127 qubits, Eagle

r1 topology) QPUs to analyse the impact of different qubit topologies on circuit depth. The increase

is comparable to varying predicates on the left hand side, and we observe up to 70% difference

depending on the slight variations of the topology for one single vendor (interestingly, the larger

connectivity graph in terms of qubits leads to higher circuit depths).

We need to put these results in context by considering coherence times and average gate time

gavg—the cumulative gate times form a lax upper bound for practical utility, because for longer

computation times, random results are to be expected. At the time of running the experiment,
5

the systems report coherence times of 𝑇1 = 151.13`s, 𝑇2 = 138.72`s (Auckland), and 𝑇1 = 92.81`s,

𝑇2 = 93.36`s (Washington). Average gate times are reported as 472.51ns (Auckland) and 550.41ns

(Washington). Given these parameters, the approximate maximum depth 𝑑 of a circuit to not exceed

𝑇1 or 𝑇2 is given by 𝑑 = ⌊min(T1,T2)/𝑔avg⌋. We thereby get dA = 293 for the Auckland QPU

and dW = 168 for the Washington QPU. Even for scenarios with less discretisation precision, the

maximum depth is quickly reached for Washington, where we therefore cannot expect meaningful

results, outweighing its size benefits. This, again, shows that waiting for QPUs with higher qubit

capacity does not guarantee more favourable system-global properties, and rather motivates us to

better align problems and topologies.
6
Even for Auckland, problems with a high precision exceed

this depth. For experimentally analysing QPU performance, we therefore only analyse JO problems

at the minimum precision, using the Auckland QPU.

Table 4. Solution quality for 𝑛 QAOA
iterations (three relations).

Predicates/Qubits

𝑛 0/18 1/21 2/24 3/27

V
a
l
i
d

s
o
l
n 20 13% 11% 7% 13%

50 12% 8% 10% 13%

O
p
t
.

s
o
l
n 20 4% 3% 2% 5%

50 3% 3% 5% 3%

QAOA Performance. Following the stability considerations
from above, we restrict our performance experiments to the

27-qubit Auckland QPU, which allows for working JO prob-

lems with three relations before the available qubit capacity

is exhausted. Table 4 shows QAOA results for 1,024 shots,

for queries with increasing predicate numbers, and provides

the fraction of measurement shots that represent valid or

optimal solutions.

For all considered problems, optimal solutions are determ-

ined by the QPU. Interestingly, for increasing problem di-

mensions, we do not observe a consistent decrease in the

5
IBM QPUs undergo periodic recalibration operations to optimise𝑇1 and𝑇2, so the values are not stable across different

experiments.

6Quantum volume [55] has been suggested as more balanced measure that weighs various characteristics of QPUs; interest-

ingly, it is 64 for both QPUs in our experiments.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

https://quantum-computing.ibm.com/composer/docs/iqx/manage/systems/processors#falcon
https://quantum-computing.ibm.com/composer/docs/iqx/manage/systems/processors#eagle
https://quantum-computing.ibm.com/composer/docs/iqx/manage/systems/processors#eagle

92:18 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

ratios of either valid or optimal solutions. Likewise, increas-

ing the number of QAOA iterations has no consistent impact on solution quality. Due to current

QPU limitations, it remains an open question how the solution quality scales for larger search

spaces (i.e., more relations).

Finally, consider the time 𝑡𝑠 required to perform the actual circuit sampling for one QAOA

iteration. For 0 predicates, 𝑡𝑠 = 77.9ms. The time increases to 𝑡𝑠 = 113.70ms for three predicates.

Given that the average number of classical QAOA iterations steps (using the COBYLA optimiser)

required until convergence is 28.5, it is obvious that this type of QPU is currently unable to

compete with the classical approaches summarised in Fig. 2, and is not practically useful to solve

JO problems. Limited amounts of qubits, limited connectivity, and lack of robustness against noise

reduce capabilities and performance. These issues will eventually (likely in the very long term [42])

be addressed by error-corrected, perfect QPUs.

To progress towards earlier QPU utility, we pursue two strands: First, we derive an upper bound

on the amount of required qubits for JO; this allows us to make suggestions for qubit capacities

sufficient for realistic queries, yet also leaves room to address additional limitations like circuit

depth. Using insights gained from our experimental analysis, we then address the question of which

properties of QPUs should be improved to progress towards practical utility via co-design (recall

that we have argued above why gate-based QPUs are a better candidate for co-design efforts than

annealers).

5 FORMAL ANALYSIS
We now derive upper bounds on the amount of logical qubits based on the BILP model, where each

variable corresponds to one qubit.

Slack variables, as required to handle inequalities, contribute substantially to the overall number

of qubits. Before we can derive an upper bound for the number of binary slack variables, we need

to bound the value of a continuous slack variable:

Lemma 5.1. The value for a continuous slack variable 𝑠𝑟 𝑗 is bounded by 𝑠𝑟 𝑗 ≤ 𝑐 𝑗max , where 𝑐 𝑗max

denotes the maximum logarithmic cardinality of the outer operand of join 𝑗 .

Proof. By Eq. (9), an upper bound for 𝑠𝑟 𝑗 is given by

log(\𝑟) + ∞𝑟 𝑗 ≥ log(\𝑟) + ctorj∞𝑟 𝑗 − 𝑐 𝑗 = srj . (12)

Since our model assumes uncorrelated predicates, the fraction of surviving tuples after joining

multiple relations is given by the product of selectivities of all applicable predicates. Since 𝑆𝑒𝑙 (𝑝) > 0,

an intermediate result contains at least one tuple, hence 𝑐 𝑗 ≥ 0. The upper bound depends on the

constant∞𝑟 𝑗 , which needs to be sufficiently large to satisfy the constraint by activating ctorj , but
can otherwise be freely chosen.

Since we seek the smallest upper bound for srj , we next specify a lower bound for∞𝑟 𝑗 . Following

Eq. (8), this lower bound is given by∞𝑟 𝑗 ≥ 𝑐 𝑗max
− log(\𝑟) ≥ 𝑐 𝑗 − log(\𝑟). Setting∞𝑟 𝑗 to its lower

bound, and inserting it into Eq. (12), produces 𝑠𝑟 𝑗 ≤ 𝑐 𝑗max
. □

Lemma 5.2. The maximum logarithmic cardinality 𝑐 𝑗max for the outer operand of join 𝑗 is given by
𝑐 𝑗max =

∑𝑗+1

𝑡=0
log(Card (𝑡)), where ∀𝑘 < 𝑙 : Card (𝑘) ≥ Card (𝑙).

Proof. The logarithmic cardinality 𝑐 𝑗 for join 𝑗 is given by 𝑐 𝑗 =
∑

𝑡 log(Card (t))tiotj+
∑

𝑝 log(Sel(𝑝))pao𝑝 𝑗 .
The cardinality may be reduced by applying predicates, since 0 < 𝑆𝑒𝑙 (𝑝) ≤ 1, making the logar-

ithmic values negative. Since we consider the maximum cardinality, we set all variables pao𝑝 𝑗 = 0,

disregarding any predicates. The outer operand of join 𝑗 contains exactly 𝑗 + 1 relations. The

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:19

logarithmic intermediate cardinality is then maximised if the outer operand for join 𝑗 contains the

first 𝑗 + 1 relations out of a list of relations sorted in descending order by cardinalities. □

Theorem 5.3. Given 𝑇 relations, 𝐽 joins, 𝑃 predicates and 𝑅 threshold values, an upper bound for
the number of variables is given by 𝑛 ≤ 2𝑇 𝐽 + (3𝑃 + 𝑅) (𝐽 − 1) +𝑇 + 𝑅

∑𝐽 −1

𝑗=1

(⌊
log

2

(𝑐 𝑗
𝜔

) ⌋
+ 1

)
, where

𝜔 is the discretisation precision for the continuous slack variables.

Proof. The number of binary variables is𝑛pec+𝑛sl, where𝑛pec is the number of problem-encoding

variables given in Sec. 3.2, and 𝑛sl counts slack variables for equality conversion.

First, we specify an upper bound for 𝑛pec. As explained in Sec. 3.2, variables tiitj and tiotj are
added 𝑇 · 𝐽 times, whereas variables paopj and ctorj are added 𝐽 − 1 times for 𝑃 predicates and 𝑅

threshold values. Depending on the concrete JO problem, we may be allowed to prune variables.

A variable ctorj is unnecessary if the logarithmic cardinality of the outer operand for join 𝑗 can

never exceed the logarithmic threshold value log(\𝑟). We therefore prune every variable ctorj if
𝑐 𝑗max

≤ log(\𝑟). The number of variables when no pruning is possible then gives the upper bound

𝑛pec ≤ 2𝑇 𝐽 + (𝑃 +𝑅) (𝐽 −1). To specify an upper bound for 𝑛sl, consider that one binary slack variable
is needed for each inequality constraint expressed by Eqs. (5),(6). As such,𝑇 +2𝑃 (𝐽 −1) variables are
required in these cases. In turn,multiple binary slack variables are needed to approximate continuous

slack variables for constraints expressed by Eq. (8). Following from Lemma 5.1 and Eq. (10), an

upper bound for the number of binary slack variables 𝑛𝑏 required to discretise all continuous slack

variables for 𝐽 − 1 joins and 𝑅 threshold variables is given by 𝑛𝑏 ≤ 𝑅
∑𝐽 −1

𝑗=1

(
⌊log

2

(
𝑐 𝑗max

/𝜔
)
⌋ + 1

)
.

Note that we specify an upper bound, since a constraint is only required if the corresponding

variable ctorj has not been pruned. Considering the other inequality constraints, the upper bound

for 𝑛sl is given by 𝑛sl ≤ 𝑇 + 2𝑃 (𝐽 − 1) + 𝑛𝑏 , which leads to the upper bound for the overall number

of binary variables 𝑛 = 𝑛pec + 𝑛sl, or qubits, as

𝑛 ≤ 2𝑇 𝐽 + (3𝑃 + 𝑅) (𝐽 − 1) +𝑇 + 𝑅

𝐽 −1∑︁
𝑗=1

(⌊
log

2

(𝑐 𝑗max

𝜔

)⌋
+ 1

)
.

□
6 DB-QPU CO-DESIGN FOR JOIN ORDERING
We now commence to deriving recommendations for future QPU designs customised towards

serving as co-processors in databases, using insights gained from our experimental and formal

analysis.

6.1 Qubit Recommendations
Given the formal analysis in Sec. 5, we first address problem scalability by deriving recommendations

for qubit capacity. Fig. 4 thereby visualises upper qubit bounds, based on our formal analysis, for a

variety of JO problems with up to 64 relations and different discretisation precisions. We choose

cycle queries, as they require one additional join predicate compared to chain and star graphs.

The upper bound for the required logical qubits scales quadratically with the number of relations,

the dominating scaling factor. Increase in discretisation precision has comparatively little impact

on the upper bound compared to the number of relations, even if the difference in terms of qubits

can reach more than 50% in some scenarios (top right). Nonetheless, as we have shown in the

experimental analysis, this seemingly minor influence can have a decisive impact on the feasibility

on current QPUs.

While qubit capacity for solving the largest problems considered with classical MILP solvers [75],

where queries with 60 relations are joined, is difficult to achieve in the near-term (requiring a QPU

with more than 20,000 qubits), such queries are on the upper end of the spectrum w.r.t. JO problem

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

92:20 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

sizes. Aiming for near-term DB-QPU utility, we instead recommend aiming for qubit capacity

sufficient for typical query loads, where we consider queries as contained in the JO benchmark

by Leis et al. [45] as representatives. These join between 3 and 16 relations. Our method requires

approx. 1,000 qubits (depending on approximation and discretisation precision) for queries with up

to 13 relations, which is roughly equal to the typical query load. Vendor roadmaps predict such

QPUs within very few years [34]. This provides an optimistic outlook w.r.t. the impact of qubit

requirements on the problem scalability.

1
6
T
h
r
e
s
h
.
V
a
l
u
e
s

1
2
T
h
r
e
s
h
.
V
a
l
u
e
s

8
T
h
r
e
s
h
.
V
a
l
u
e
s

4
T
h
r
e
s
h
.
V
a
l
u
e
s

20 40 60 20 40 60 20 40 60 20 40 60

0

10

20

30

40

Relations

#
L
o
g
i
c
a
l
k
Q
u
b
i
t
s

Precision [Decimal Positions] 0 2 4

Fig. 4. Upper bounds for logical qubits for JO with varying approximation (thresh. values) and discretisation
precisions.

6.2 Topology Recommendations
Based on our experimental results, which emphasized the need to address QPU limitations beyond

just qubits, we now analyse the feasibility of solving JO problems on hypothetical improved QPU

topologies, depending on the resulting circuit depths.

Scenarios. We extrapolate new topologies in three ways: By increasing the qubit capacity (and

thereby, solvable problem dimensions) based on a structural extension of the available connectivity

graph, by adding additional qubit connections, and by using different quantum gate sets. To ascertain

a representative selection of larger queries with an increasing amount of relations and varying

query graph types (chain, star and cycle queries), we rely on the method of Steinbrunn et al. [72],
using the query generator code by Trummer [73]. We consider problems with two threshold values,

and minimal discretisation precision (i.e., 𝜔 = 1).

Size Extrapolation. We consider baseline designs from IBM [36] (127 qubitWashington), IonQ [37],

and Rigetti [66] (80-qubit Aspen-M), that is, their topologies and native gate sets. Similarly to IBM Q,

Rigetti QPUs are based on superconducting qubits, whereas IonQ QPUs are based on trapped

ions. This physical principle features stable, universally connected qubits, but slow gate times.

Superconducting qubits offer less connectivity and stability, but faster gates [8, 58]. The repeating

patterns of IBM and Rigetti topologies allow for straightforward extrapolation to larger numbers

of qubits.

Density Extrapolation. Our experimental results suggest a large impact of connectivity limita-

tions on JO feasibility, indicating great potential for improvement. As such, we augment existing

topologies by adding new connections between previously non-adjacent qubits. A fully connected

topology with 𝑛 qubits contains 𝑁 = 𝑛(𝑛 − 1)/2 edges. When the baseline topology includes 𝑀

edges, we quantify the extended connectivity as 𝑑 =𝑚/(𝑁 −𝑀), where𝑚 denotes the amount of

added notes. 𝑑 lies in the interval [0, 1], and interpolates between the baseline topology (𝑑 = 0)

and a complete mesh (𝑑 = 1). We assume connections between non-adjacent qubits in topological

proximity are more likely in future QPUs than between far-distant qubits. Instead of uniformly

sampling from the set of all missing connections, we favour extending the connectivity between

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:21

non-adjacent, but close qubits. Given the set of connections 𝐶𝛿 between qubits with distance 𝛿 , we

uniformly add connections sampled from 𝐶𝛿 starting with 𝛿 = 2, until reaching the desired density,

or all elements of 𝐶𝛿 have been added. Restart from 𝐶𝛿+1 in this case.

Results. Fig. 5 shows the depths of the quantum circuits for combinations of randomly generated

join ordering problems, QPU architectures (varying topology and gate set), and transpilation

methods. Concerning gate sets, we study the impact of transpilation onto the native set, which
involves replacing any unsupported gate operation with an effectively equivalent chain of native

operations, versus unrestricted gate sets, where we assume the QPU to natively support any possible

gate operation. For density 0 (i.e., baseline topology), we notice a substantial increase in circuit

depth for an increasing number of relations (notice the graph is in log scale!) that quickly exceeds

NISQ capabilities. However, even very moderately increased densities (0.05 to 0.1) lead do much

smaller circuit depths (up to one order of magnitude for the native gate sets). On IBM Q, relative

differences in circuit depth are about identical between density 0 and 0.05, and 0.75 and 1–albeit a

fully meshed network with density 1 is obviously impossible using planar graphs.

Therefore, rather than improving qubit numbers beyond capacities sufficient for the bulk of

practical queries, we heavily recommend improving qubit connectivity, since even a small amount

of extra connections, which we deem achievable by future QPUs, can substantially impact the

utility of QPUs for JO problems. Similar observations, albeit not as pronounced, hold for Rigetti.

IBMQ IonQ Rigetti

Native Unrestricted Native Unrestricted Native Unrestricted

Q
iskit

T
ket

0
0.05 0.1

0.15 0.2
0.25 0.5

0.75 1 0
0.05 0.1

0.15 0.2
0.25 0.5

0.75 1 0
0.05 0.1

0.15 0.2
0.25 0.5

0.75 1 0
0.05 0.1

0.15 0.2
0.25 0.5

0.75 1 0
0.05 0.1

0.15 0.2
0.25 0.5

0.75 1 0
0.05 0.1

0.15 0.2
0.25 0.5

0.75 1

100

300

1000

3000

100

1000

10000

Extended Connectivity Density

C
irc

ui
t D

ep
th

 [l
og

]

Relations 4 5 6 7

Fig. 5. Circuit Depths for hypothetical future QPUs on varying join order instances. Experiments are per-
formed with different query graph topologies, but these are not visualised since no relevant differences arise.

Transpiling a circuit onto the native gate sets (compared to unrestricted gates) also significantly

increases depth as compared to a (hypothetical) unrestricted gate set for the Rigetti QPU, but does

not significantly impact IBM Q. Nonetheless, judiciously expanding the set of supported native

operations may also enhance problem feasibility of future QPUs as an alternative to improved

topologies.

Circuit synthesis has gained recent attention for QPUs (see, e.g., Refs. [3, 12, 77]), for instance,
for noise reduction [79] or approximate circuits [78]. Our experiments consider two (sufficiently

mature) transpilation approaches, Qiskit [38] and tket [71].While the scaling behaviour is essentially

identical for increased connectivity density, we observe an overhead of typically 100% for tket over

Qiskit for the superconducting platforms. Both produce comparable results for complete meshes

(IonQ), so we conclude heir capabilities are similar for boundary cases, but need to be carefully

evaluated otherwise.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

92:22 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

The IonQ platform features full connectivity between qubits as baseline, and is therefore not

subjected to experiments with increasing density. The resulting circuit depths seem ideal compared

to the superconducting platforms. Yet, the amount of qubits that can be supported by this physical

technology is limited by the amount of individual ions that can be caught in a trap; current

technology allows for tens of ions [24], and major improvements are not to be expected. Considering

the predictions of Fig. 4, the advantages in circuit depth are therefore compensated by the lack of

qubits.

7 RELATEDWORK
Join ordering is among the most studied problems in database research [25, 31, 43, 45, 52–54, 56, 57,

72, 75, 81]. While join ordering on modern hardware, e.g., GPUs [48], is intensively being researched,

no published work exists for JO with QCs, to the best of our knowledge. Very few endeavours

address the use of QCs in databases, in stark contrast to the growing interest in quantum computing

in other fields [14, 15, 33, 39, 41, 60, 61, 63, 67, 68, 76, 80].

DB transaction scheduling was studied by Groppe and Groppe [26], and Bittner and Groppe [10,

11]. The MQO problem was analysed by Trummer and Koch [74] for quantum annealing at the

VLDB conference. They experimentally compare QA performance with classical approaches. Due to

the hardware limitations, they had to focus on small-scale problems, where they achieved promising

results by aligning specific problems to the available hardware. Fankhauser et al. [20] addresses
MQO for gate-based QPUs.

Our method differs in several ways. JO and MQO problems are structurally different. While JO is

concerned with deriving optimal join orders for a query plan, MQO seeks optimal plan combinations

for multiple queries. We cannot reuse existing transformations for MQO, and propose a novel

method to obtain a JO-QUBO formulation. The JO-QUBO transformation entails formulating JO as

MILP, following Ref. [75], where Trummer and Koch solve JO with classical MILP solvers. However,

we substantially adjust their formulation to arrive at a JO-QUBO encoding, and are the first to solve

JO on QPUs, even gaining some quantum advantage.

Ref. [20, 74] analysed MQO on existing QPUs, without practical utility. For near-term utility, we

derive DB-QPU co-design recommendations, and identify improvements tailored to JO.

8 DISCUSSION AND CONCLUSION
Quantum computing promises—grounded on theoretical insights and guarantees [8], but also based

on first experimental results [5]—speedups for computational problems over classical approaches.

The technology is apt for many aspects of database systems, including query optimisation. So far,

the use of QCs for DB is extremely underexplored. Yet, our work is Janus-faced: On the one hand,

we show that current NISQ-systems are far away from producing practical benefits, or handling

realistically sized instances. This paints a more sober picture than initial optimistic evaluations

of the technology. On the other hand, we show that with relatively minor adaptations, QPU-DB

performance can be substantially enhanced. This prompts to use co-design approaches to create

QPU-DB accelerators, given the commercial importance of databases.

Our results and predictions show that a multitude of factors influence the performance of QC

approaches on DB problems, ranging from unusual problem formulations in QUBO form that

massively diverge from traditional implementation techniques, to unfavourable scaling caused

by subtle issues like discretisation precision, to a complex interplay of physical implementation

properties. This makes it impossible to delay QC integration into databases until sufficiently

evolved hardware is available, but prompts the co-design of database accelerators. Simulating

perfect quantum computers entails solving NP-hard problems, and adding the effects of noise

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:23

and imperfections causes additional complexities. Co-design efforts should be based on step-wise

empirical refinement leveraging expert knowledge from QC, DB, and systems engineering.

We lay the ground: Our approach enables the experimental exploration on two major classes of

QCs, and identifies key factors that inhibit scalability and practical utility. We provide directions on

designing QPUs favourable for JO. Nonetheless, many open research problems remain, from efficient

circuit generation respecting noise, to more targeted extensions of topologies that transcend our

semi-stochastic approach, to considering alternative information encoding schemes that might

alleviate discretisation problems.

Yet such approaches are challenged by major physical and algorithmic obstacles, and require

truly interdisciplinary research.

Acknowledgements. MS andWMwere supported by the German Federal Ministry of Education and Research

(BMBF), funding program “Quantum Technologies—from Basic Research to Market”, grant number 13N15645.

MS and WM also acknowledge support by the Open Access Publication Fund of the Technical University of

Applied Sciences Regensburg, and the High-Tech Agenda of the Free State of Bavaria.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

92:24 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

REFERENCES
[1] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger. 2020. Presolve Reductions

in Mixed Integer Programming. INFORMS Journal on Computing 32, 2 (2020), 473–506. https://doi.org/10.1287/ijoc.

2018.0857

[2] Tameem Albash and Daniel A. Lidar. 2018. Adiabatic quantum computation. Rev. Mod. Phys. 90 (Jan 2018), 015002.

Issue 1. https://doi.org/10.1103/RevModPhys.90.015002

[3] Carmen G. Almudéver, Lingling Lao, Robert Wille, and Gian Giacomo Guerreschi. 2020. Realizing Quantum Algorithms

on Real Quantum Computing Devices. In 2020 Design, Automation & Test in Europe Conference & Exhibition, DATE
2020, Grenoble, France, March 9-13, 2020. IEEE, 864–872. https://doi.org/10.23919/DATE48585.2020.9116240

[4] S. Arora and B. Barak. 2006. Computational Complexity: A Modern Approach. Cambridge University Press. https:

//theory.cs.princeton.edu/complexity/book.pdf

[5] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,

Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William

Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob

Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent

Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian

Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik

Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel

Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric

Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel

Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin

Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019.

Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (01 Oct 2019), 505–510.
https://doi.org/10.1038/s41586-019-1666-5

[6] Boaz Barak and Kunal Marwaha. 2022. Classical Algorithms and Quantum Limitations for Maximum Cut on High-Girth

Graphs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.ITCS.2022.14

[7] Ethan Bernstein and Umesh Vazirani. 1997. Quantum Complexity Theory. SIAM J. Comput. 26, 5 (1997), 1411–1473.
https://doi.org/10.1137/S0097539796300921 arXiv:https://doi.org/10.1137/S0097539796300921

[8] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias

Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek,

and Alán Aspuru-Guzik. 2022. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94 (Feb 2022), 015004.
Issue 1. https://doi.org/10.1103/RevModPhys.94.015004

[9] Zhengbing Bian, Fabián Chudak, William Macready, and Geordie Rose. 2010. The Ising model: Teaching an old problem
new tricks. Technical Report. D-Wave Systems Inc.

[10] Tim Bittner and Sven Groppe. 2020. Avoiding Blocking by Scheduling Transactions Using Quantum Annealing. In

Proceedings of the 24th Symposium on International Database Engineering & Applications (Seoul, Republic of Korea)
(IDEAS ’20). Association for Computing Machinery, New York, NY, USA, Article 21, 10 pages. https://doi.org/10.1145/

3410566.3410593

[11] Tim Bittner and Sven Groppe. 2020. Hardware Accelerating the Optimization of Transaction Schedules via Quantum

Annealing by Avoiding Blocking. Open Journal of Cloud Computing (OJCC) 7, 1 (2020), 1–21.
[12] Lukas Burgholzer, Sarah Schneider, and Robert Wille. 2022. Limiting the Search Space in Optimal Quantum Circuit

Mapping. In 27th Asia and South Pacific Design Automation Conference, ASP-DAC 2022, Taipei, Taiwan, January 17-20,
2022. 466–471. https://doi.org/10.1109/ASP-DAC52403.2022.9712555

[13] Cristian S. Calude and Michael J. Dinneen. 2017. Solving the broadcast time problem using a D-Wave quantum

computer. In Advances in Unconventional Computing: Volume 1: Theory. Springer International Publishing, Cham,

439–453.

[14] Yudong Cao, Shuxian Jiang, Debbie Perouli, and Sabre Kais. 2016. Solving Set Cover with Pairs Problem Using Quantum

Annealing. Scientific Reports 6 (08 2016). https://doi.org/10.1038/srep33957

[15] Guillaume Chapuis, Hristo Djidjev, Georg Hahn, and Guillaume Rizk. 2019. Finding Maximum Cliques on a Quantum

Annealer. Journal of Signal Processing Systems 91 (03 2019). https://doi.org/10.1007/s11265-018-1357-8

[16] Sophie Cluet and Guido Moerkotte. 1995. On the complexity of generating optimal left-deep processing trees with

cross products. In Database Theory — ICDT ’95. Springer Berlin Heidelberg, Berlin, Heidelberg, 54–67.

[17] Michele Conforti, Gérard Cornuéjols, andGiacomoZambelli. 2014. Integer programming. Graduate Texts inMathematics,

Vol. 271. Springer International Publishing, Cham.

[18] D-Wave Systems Inc. 2022. Documentation for the Ocean SDK for solving problems on D-Wave quantum computers.

https://docs.ocean.dwavesys.com/en/stable/

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.23919/DATE48585.2020.9116240
https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.4230/LIPICS.ITCS.2022.14
https://doi.org/10.1137/S0097539796300921
https://arxiv.org/abs/https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1109/ASP-DAC52403.2022.9712555
https://doi.org/10.1038/srep33957
https://doi.org/10.1007/s11265-018-1357-8
https://docs.ocean.dwavesys.com/en/stable/

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:25

[19] D-Wave Systems Inc. 2022. Minorminer library for embedding Ising problems onto quantum annealers. https:

//docs.ocean.dwavesys.com/en/stable/docs_minorminer/source/intro.html

[20] Tobias Fankhauser, Marc E. Solèr, Rudolf M. Füchslin, and Kurt Stockinger. 2021. Multiple query optimization using a

hybrid approach of classical and quantum computing. (July 2021). arXiv:2107.10508

[21] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. (Nov.

2014). arXiv:1411.4028

[22] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approximate Optimization Algorithm Applied

to a Bounded Occurrence Constraint Problem. (Dec. 2014). arXiv:1412.6062

[23] Edward Farhi and Aram W Harrow. 2016. Quantum Supremacy through the Quantum Approximate Optimization

Algorithm. https://doi.org/10.48550/arxiv.1602.07674 arXiv:1602.07674

[24] Nicolai Friis, Oliver Marty, Christine Maier, Cornelius Hempel, Milan Holzäpfel, Petar Jurcevic, Martin B. Plenio, Marcus

Huber, Christian Roos, Rainer Blatt, and Ben Lanyon. 2018. Observation of Entangled States of a Fully Controlled

20-Qubit System. Phys. Rev. X 8 (Apr 2018), 021012. Issue 2. https://doi.org/10.1103/PhysRevX.8.021012

[25] Frederico A.C.A. Gonçalves, Frederico G. Guimarães, and Marcone J.F. Souza. 2014. Query join ordering optimization

with evolutionary multi-agent systems. Expert Systems with Applications 41, 15 (2014), 6934–6944. https://doi.org/10.

1016/j.eswa.2014.05.005

[26] Sven Groppe and Jinghua Groppe. 2021. Optimizing Transaction Schedules on Universal Quantum Computers via

Code Generation for Grover’s Search Algorithm. In 25th International Database Engineering & Applications Symposium
(Montreal, QC, Canada) (IDEAS 2021). Association for Computing Machinery, New York, NY, USA, 149–156. https:

//doi.org/10.1145/3472163.3472164

[27] Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing - STOC ’96. ACM, New York, New York, USA, 212–219.

[28] Gurobi Optimization, LLC. 2022. Gurobi optimizer reference manual. https://www.gurobi.com

[29] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G. Rieffel, Davide Venturelli, and Rupak Biswas. 2019. From

the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms 12, 2
(2019). https://doi.org/10.3390/a12020034

[30] Stuart Hadfield, Zhihui Wang, Eleanor G. Rieffel, Bryan O’Gorman, Davide Venturelli, and Rupak Biswas. 2017.

Quantum Approximate Optimization with Hard and Soft Constraints. In Proceedings of the Second International
Workshop on Post Moores Era Supercomputing (Denver, CO, USA) (PMES’17). Association for Computing Machinery,

New York, NY, USA, 15–21. https://doi.org/10.1145/3149526.3149530

[31] Wook-Shin Han and Jinsoo Lee. 2009. Dependency-Aware Reordering for Parallelizing Query Optimization in Multi-

Core CPUs. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (Providence,
Rhode Island, USA) (SIGMOD ’09). Association for Computing Machinery, New York, NY, USA, 45–58. https://doi.org/

10.1145/1559845.1559853

[32] David Headley, Thorge Müller, Ana Martin, Enrique Solano, Mikel Sanz, and Frank K. Wilhelm. 2020. Approximating

the Quantum Approximate Optimisation Algorithm. arXiv:2002.12215 https://arxiv.org/abs/2002.12215

[33] Hristo N. Djidjev, Guillaume Chapuis, Georg Hahn, and Guillaume Rizk. 2018. Efficient Combinatorial Optimization

Using Quantum Annealing.

[34] IBM. 2021. IBM’s roadmap for building an open quantum software ecosystem. https://research.ibm.com/blog/quantum-

development-roadmap

[35] IBM. 2022. IBM Decision Optimization CPLEX Modeling for Python. https://ibmdecisionoptimization.github.io/

docplex-doc/

[36] IBM Quantum. 2022. Cloud access to quantum computers provided by IBM. https://quantum-computing.ibm.com

[37] IBM Quantum. 2022. IonQ technology. https://ionq.com/technology

[38] IBM Quantum. 2022. Qiskit: An Open-source Framework for Quantum Computing. https://qiskit.org/

[39] K. Ikeda, Y. Nakamura, and T. S. Humble. 2019. Application of Quantum Annealing to Nurse Scheduling Problem. Sci
Rep (2019). https://doi.org/10.1038/s41598-019-49172-3

[40] D-Wave Systems Inc. 2020. Programming the D-Wave QPU: Setting the Chain Strength. https://www.dwavesys.com/

media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf

[41] Hirotaka Irie, Goragot Wongpaisarnsin, Masayoshi Terabe, Akira Miki, and Shinichirou Taguchi. 2019. Quantum

Annealing of Vehicle Routing Problem with Time, State and Capacity. In Quantum Technology and Optimization
Problems, Sebastian Feld and Claudia Linnhoff-Popien (Eds.). Springer International Publishing, Cham, 145–156.

[42] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang, Simon Gustavsson, and

William D. Oliver. 2020. Superconducting Qubits: Current State of Play. Annual Review of Condensed Matter Physics 11,
1 (2020), 369–395. https://doi.org/10.1146/annurev-conmatphys-031119-050605

[43] Ilya Kolchinsky and Assaf Schuster. 2018. Join Query Optimization Techniques for Complex Event Processing

Applications. (2018). arXiv:1801.09413

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

https://docs.ocean.dwavesys.com/en/stable/docs_minorminer/source/intro.html
https://docs.ocean.dwavesys.com/en/stable/docs_minorminer/source/intro.html
https://arxiv.org/abs/2107.10508
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1412.6062
https://doi.org/10.48550/arxiv.1602.07674
https://arxiv.org/abs/1602.07674
https://doi.org/10.1103/PhysRevX.8.021012
https://doi.org/10.1016/j.eswa.2014.05.005
https://doi.org/10.1016/j.eswa.2014.05.005
https://doi.org/10.1145/3472163.3472164
https://doi.org/10.1145/3472163.3472164
https://www.gurobi.com
https://doi.org/10.3390/a12020034
https://doi.org/10.1145/3149526.3149530
https://doi.org/10.1145/1559845.1559853
https://doi.org/10.1145/1559845.1559853
https://arxiv.org/abs/2002.12215
https://arxiv.org/abs/2002.12215
https://research.ibm.com/blog/quantum-development-roadmap
https://research.ibm.com/blog/quantum-development-roadmap
https://ibmdecisionoptimization.github.io/docplex-doc/
https://ibmdecisionoptimization.github.io/docplex-doc/
https://quantum-computing.ibm.com
https://ionq.com/technology
https://qiskit.org/
https://doi.org/10.1038/s41598-019-49172-3
https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf
https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://arxiv.org/abs/1801.09413

92:26 Manuel Schönberger, Stefanie Scherzinger, & Wolfgang Mauerer

[44] Tom Krüger andWolfgangMauerer. 2020. Quantum annealing-based software components: An experimental case study

with SAT solving. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops.
445–450. https://doi.org/10.1145/3387940.3391472

[45] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann.

2018. Query optimization through the looking glass, and what we found running the join order benchmark. The VLDB
Journal 27 (2018), 643–668.

[46] Mark Lewis and Fred Glover. 2017. Quadratic Unconstrained Binary Optimization Problem Preprocessing: Theory and

Empirical Analysis. (May 2017). arXiv:1705.09844

[47] Andrew Lucas. 2014. Ising formulations of many NP problems. Frontiers in Physics 2 (2014), 5.
[48] Riccardo Mancini, Srinivas Karthik, Bikash Chandra, Vasilis Mageirakos, and Anastasia Ailamaki. 2022. Efficient

Massively Parallel Join Optimization for Large Queries. In SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 122–135.

https://doi.org/10.1145/3514221.3517871

[49] Jirí Matousek and Robin Thomas. 1992. On the complexity of finding iso- and other morphisms for partial k-trees.

Discret. Math. 108 (1992), 343–364.
[50] Catherine McGeoch and Pau Farré. 2020. The D-Wave Advantage system: An overview. Technical Report 14-1049A-A.

D-Wave Systems Inc.

[51] Catherine C. McGeoch. 2019. Principles and Guidelines for Quantum Performance Analysis. In Quantum Technology
and Optimization Problems. Springer International Publishing, Cham, 36–48.

[52] Andreas Meister and Gunter Saake. 2020. GPU-accelerated dynamic programming for join-order optimization. Tech-
nical Report. https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/

TechnicalReport+02_2020-p-8268.pdf

[53] Guido Moerkotte. 2020. Building query compilers. https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf

[54] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One New Dynamic Programming Al-

gorithm for the Generation of Optimal Bushy Join Trees without Cross Products. In Proceedings of the 32nd International
Conference on Very Large Data Bases (Seoul, Korea) (VLDB ’06). VLDB Endowment, 930–941.

[55] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas

Fuhrer, Jay M Gambetta, Marc Ganzhorn, Abhinav Kandala, Antonio Mezzacapo, Peter Müller, Walter Riess, Gian

Salis, John Smolin, Ivano Tavernelli, and Kristan Temme. 2018. Quantum optimization using variational algorithms on

near-term quantum devices. Quantum Science and Technology 3, 3 (jun 2018), 030503. https://doi.org/10.1088/2058-

9565/aab822

[56] Thomas Neumann. 2009. Query Simplification: Graceful Degradation for Join-Order Optimization. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management of Data (Providence, Rhode Island, USA) (SIGMOD
’09). Association for Computing Machinery, New York, NY, USA, 403–414. https://doi.org/10.1145/1559845.1559889

[57] Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization of Very Large Join Queries. In Proceedings of the
2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing

Machinery, New York, NY, USA, 677–692. https://doi.org/10.1145/3183713.3183733

[58] Michael A. Nielsen, Isaac Chuang, and Lov K. Grover. 2002. Quantum computation and quantum information. American
Journal of Physics 70, 5 (April 2002), 558–559.

[59] B. O’Gorman, R. Babbush, A. Perdomo-Ortiz, A. Aspuru-Guzik, and V. Smelyanskiy. 2015. Bayesian network structure

learning using quantum annealing. The European Physical Journal Special Topics 224, 1 (2015), 163–188.
[60] Elijah Pelofske, Georg Hahn, and Hristo Djidjev. 2019. Solving large minimum vertex cover problems on a quantum

annealer. 76–84. https://doi.org/10.1145/3310273.3321562

[61] W. Peng, B. Wang, and F. et al. Hu. 2019. Factoring larger integers with fewer qubits via quantum annealing with

optimized parameters. Sci. China Phys. Mech. Astron. (2019). https://doi.org/10.1007/s11433-018-9307-1

[62] John Preskill. 2018. Quantum Computing in the NISQ era and beyond. Quantum 2 (2018), 79.

[63] Quantum Technology and Application Consortium - QUTAC, Bayerstadler, Andreas, Becquin, Guillaume, Binder, Julia,

Botter, Thierry, Ehm, Hans, Ehmer, Thomas, Erdmann, Marvin, Gaus, Norbert, Harbach, Philipp, Hess, Maximilian,

Klepsch, Johannes, Leib, Martin, Luber, Sebastian, Luckow, Andre, Mansky, Maximilian, Mauerer, Wolfgang, Neukart,

Florian, Niedermeier, Christoph, Palackal, Lilly, Pfeiffer, Ruben, Polenz, Carsten, Sepulveda, Johanna, Sievers, Tammo,

Standen, Brian, Streif, Michael, Strohm, Thomas, Utschig-Utschig, Clemens, Volz, Daniel, Weiss, Horst, and Winter,

Fabian. 2021. Industry quantum computing applications. EPJ Quantum Technol. 8, 1 (2021), 25. https://doi.org/10.1140/

epjqt/s40507-021-00114-x

[64] qubovert. 2022. The one-stop package for formulating, simulating, and solving problems in boolean and spin form.

https://qubovert.readthedocs.io/en/latest/index.html

[65] Eleanor Rieffel and Wolfgang Polak. 2011. Quantum computing: A gentle introduction. MIT Press, Cambridge, MA.

[66] Rigetti Computing. 2022. Rigetti quantum processors. https://qcs.rigetti.com/qpus

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

https://doi.org/10.1145/3387940.3391472
https://arxiv.org/abs/1705.09844
https://doi.org/10.1145/3514221.3517871
https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3310273.3321562
https://doi.org/10.1007/s11433-018-9307-1
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://doi.org/10.1140/epjqt/s40507-021-00114-x
https://qubovert.readthedocs.io/en/latest/index.html
https://qcs.rigetti.com/qpus

Ready to Leap (by Co-Design)? Join Order Optimisation onQuantum Hardware 92:27

[67] S. Feld, M. Friedrich, and C. Linnhoff-Popien. 2018. Optimizing Geometry Compression Using Quantum Annealing. In

2018 IEEE Globecom Workshops (GC Wkshps). 1–6. https://doi.org/10.1109/GLOCOMW.2018.8644358

[68] S. Yarkoni, A. Plaat, and T. Back. 2018. First Results Solving Arbitrarily Structured Maximum Independent Set Problems

Using Quantum Annealing. In 2018 IEEE Congress on Evolutionary Computation (CEC). 1–6. https://doi.org/10.1109/

CEC.2018.8477865

[69] Irmi Sax, Sebastian Feld, Sebastian Zielinski, Thomas Gabor, Claudia Linnhoff-Popien, and Wolfgang Mauerer. 2020.

Approximate Approximation on a Quantum Annealer. In Proceedings of the 17th ACM International Conference on
Computing Frontiers (Catania, Sicily, Italy) (CF ’20). Association for Computing Machinery, New York, NY, USA, 108–117.

https://doi.org/10.1145/3387902.3392635

[70] P. W. Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual
Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press, Santa Fe, NM, USA, 124–134.

[71] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. 2020. t |ket⟩: a
retargetable compiler for NISQ devices. Quantum Science and Technology 6, 1 (nov 2020), 014003. https://doi.org/10.

1088/2058-9565/ab8e92

[72] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. 1997. Heuristic and randomized optimization for the join

ordering problem. The VLDB journal 6 (1997), 191–208.
[73] Immanuel Trummer. 2016. Query Optimizer Library. https://github.com/itrummer/query-optimizer-lib

[74] Immanuel Trummer and Christoph Koch. 2016. Multiple query optimization on the D-Wave 2X adiabatic quantum

computer. Proceedings of the VLDB Endowment 9, 9 (May 2016), 648–659.

[75] Immanuel Trummer and Christoph Koch. 2017. Solving the join ordering problem via mixed integer linear programming.

In Proceedings of the 2017 ACM International Conference on Management of Data. ACM, New York, NY, USA, 1025–1040.

[76] D. Venturelli and A.. Kondratyev. 2019. Reverse quantum annealing approach to portfolio optimization problems.

Quantum Mach. Intell. (2019), 17–30. https://doi.org/10.1007/s42484-019-00001-w

[77] Robert Wille and Rolf Drechsler. 2022. Introduction to the Special Issue on Design Automation for Quantum Computing.

ACM J. Emerg. Technol. Comput. Syst. 18, 1 (2022), 10:1–10:2. https://doi.org/10.1145/3485041

[78] Ellis Wilson, Frank Mueller, Lindsay Bassman, and Costin Iancu. 2021. Empirical evaluation of circuit approximations

on noisy quantum devices. In SC ’21: The International Conference for High Performance Computing, Networking, Storage
and Analysis, St. Louis, Missouri, USA, November 14 - 19, 2021. 96:1–96:15. https://doi.org/10.1145/3458817.3476189

[79] Ellis Wilson, Sudhakar Singh, and Frank Mueller. 2020. Just-in-time Quantum Circuit Transpilation Reduces Noise.

CoRR abs/2005.12820 (2020). arXiv:2005.12820 https://arxiv.org/abs/2005.12820

[80] Max Wilson, Thomas Vandal, Tad Hogg, and Eleanor Rieffel. 2019. Quantum-assisted associative adversarial network:

Applying quantum annealing in deep learning. arXiv preprint arXiv:1904.10573 (2019).
[81] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement Learning with Tree-LSTM for Join Order

Selection. In 2020 IEEE 36th International Conference on Data Engineering (ICDE). 1297–1308. https://doi.org/10.1109/

ICDE48307.2020.00116

[82] Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz. 2020. Embedding algorithms for quantum

annealers with Chimera and Pegasus connection topologies. In High Performance Computing. Springer International
Publishing, Cham, 187–206.

Received July 2022; revised October 2022; accepted November 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 92. Publication date: May 2023.

https://doi.org/10.1109/GLOCOMW.2018.8644358
https://doi.org/10.1109/CEC.2018.8477865
https://doi.org/10.1109/CEC.2018.8477865
https://doi.org/10.1145/3387902.3392635
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
https://github.com/itrummer/query-optimizer-lib
https://doi.org/10.1007/s42484-019-00001-w
https://doi.org/10.1145/3485041
https://doi.org/10.1145/3458817.3476189
https://arxiv.org/abs/2005.12820
https://arxiv.org/abs/2005.12820
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1109/ICDE48307.2020.00116

	Abstract
	1 Introduction
	2 Quantum Foundations
	3 Join Ordering on QPUs
	3.1 Formal Model
	3.2 MILP Model and Pruning
	3.3 BILP Formulation
	3.4 QUBO Formulation
	3.5 Postprocessing

	4 Assessing State-of-the-Art QPUs
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Formal Analysis
	6 DB-QPU Co-Design for Join Ordering
	6.1 Qubit Recommendations
	6.2 Topology Recommendations

	7 Related Work
	8 Discussion and Conclusion
	References

