
Quantum-Inspired Digital Annealing for Join Ordering
Manuel Schönberger

Technical University of Applied

Sciences Regensburg

Regensburg, Germany

manuel.schoenberger@othr.de

Immanuel Trummer

Cornell University

Ithaca, NY, USA

itrummer@cornell.edu

Wolfgang Mauerer

Technical University of Applied

Sciences Regensburg

Siemens AG, Corporate Research

Regensburg/Munich, Germany

wolfgang.mauerer@othr.de

ABSTRACT
Finding the optimal join order (JO) is one of the most import-

ant problems in query optimisation, and has been extensively

considered in research and practise. As it involves huge search

spaces, approximation approaches and heuristics are commonly

used, which explore a reduced solution space at the cost of solution

quality. To explore even large JO search spaces, we may consider

special-purpose software, such as mixed-integer linear program-

ming (MILP) solvers, which have successfully solved JO problems.

However, even mature solvers cannot overcome the limitations of

conventional hardware prompted by the end of Moore’s law.

We consider quantum-inspired digital annealing hardware, which
takes inspiration from quantum processing units (QPUs). Unlike

QPUs, which likely remain limited in size and reliability in the

near and mid-term future, the digital annealer (DA) can solve large

instances of mathematically encoded optimisation problems today.
We derive a novel, native encoding for the JO problem tailored

to this class of machines that substantially improves over known

MILP and quantum-based encodings, and reduces encoding size

over the state-of-the-art. By augmenting the computation with a

novel readout method, we derive valid join orders for each solution

obtained by the (probabilistically operating) DA. Most importantly

and despite an extremely large solution space, our approach scales

to practically relevant dimensions of around 50 relations and im-

proves result quality over conventionally employed approaches,

adding a novel alternative to solving the long-standing JO problem.

PVLDB Reference Format:
Manuel Schönberger, Immanuel Trummer, and Wolfgang Mauerer.

Quantum-Inspired Digital Annealing for Join Ordering. PVLDB, 14(1):

XXX-XXX, 2020.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/lfd/vldb24.

1 INTRODUCTION
Query optimisation involves solving complex NP-hard problems,

where obtaining sufficiently good solutions can be difficult. One

of the most fundamental query optimisation problems is given by

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

the join ordering (JO) problem, whose general form features an

extremely large search space. While exhaustive dynamic program-

ming (DP) approaches can obtain optimal solutions for small-scale

queries, they fail once queries reach moderate or large sizes. Hence,

query optimisers tend to substitute polynomial-time heuristics for

DP approaches once queries reach certain dimensions. However,

these typically involve trade-offs to reduce the search space. Ac-

cordingly, solution quality can suffer in comparison to optimal

solutions for less restricted JO search spaces. Large queries regu-

larly occur in real-world workloads [9, 38, 56]. For such complex

queries, the difference in execution time between good and aver-

age plans can reach several orders of magnitude [38]. In particular

when executing such queries on large data, investing time into

sophisticated query optimisation approaches is well worthwhile if

it avoids sub-optimal plan choices due to heuristic optimization.

Special-Purpose Solvers. To efficiently explore even large JO solu-

tion spaces, we can, for instance, rely on highly optimised special-

purpose solvers: Trummer and Koch [54] formulated JO as a mixed

integer linear programming (MILP) problem, allowing the use of

mature MILP solvers, which have been optimised over decades,

and are likely to further improve in the future. However, the per-

formance of such optimisation software is naturally tied to the

executing hardware (HW). As the development of conventional

general-purpose HW begins to stagnate with the end of Moore’s

law, even the most highly optimised software will likely fail to

mitigate the bottlenecks arising due to physical limitations.

Special-Purpose Hardware. As a logical next step, we consider the
potential of special-purpose HW, whose design is tailored to specific

algorithms. To address the limits of conventional systems, research

in many fields, including database (DB) research [12, 31, 35, 60],

has begun to explore the potential of HW-SW co-design, which

may be among the only adequate means to accomplish significant

performance increases going forward. Tailored systems provide a

sustainable, energy-efficient alternative to general-purpose systems,

for which energy efficiency is an increasing challenge.

Quantum Hardware. One of the most highly anticipated kinds of

special-purpose HW are quantum processing units (QPU), which

can inherently address the limitations faced by the manufacture of

conventional systems, as they are able to exploit quantum-mechanical

phenomena to achieve speedups impossible for conventional sys-

tems. To solve optimisation problems on QPUs, they have to be

transformed into specific mathematical encodings. Schönberger et
al. [41] derived such an encoding for the JO problem, allowing the

use of QPUs for JO optimisation. However, contemporary QPUs,

given their early-stage prototypical nature, are restricted in several

https://doi.org/XX.XX/XXX.XX
https://github.com/lfd/vldb24
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX


ways, and hence unable to harvest the potential of quantum com-

putation for practical problems. As such, only small-scale queries

can be optimised on contemporary quantum systems. In addition,

the performance of QPUs is heavily tied to the conformance of the

mathematical problem encoding and the QPU architecture [41],

which further motivates HW-SW co-design.

To arrive at QPU-DB maturity, we next outline two methods

by which we improve over Schönberger et al. [41]. Specifically,
we (a) consider quantum-inspired HW, rather than pure QPUs, to

determine QPU potential today, and to assess whether co-design
efforts are worthwhile. Further, we (b) derive a novel JO encoding

that is highly tailored to quantum and quantum-inspired HW.

Quantum-Inspired Hardware. Instead ofwaiting formatureQPUs,

we rely on quantum-inspired HW, such as the high-performance

Fujitsu Digital Annealer (DA) [3, 13], which mimics the principles

of QPUs to solve mathematically encoded optimisation problems.

The DA’s performance can be considered a lower bound for actual

quantum HW, and provides first insights into the potential of ma-

ture QPUs. However, we do not consider quantum-inspired systems

as temporary substitutes, as they allow us to solve large NP-hard

optimisation problems beyond the capabilities of conventional HW,

and can be brought into immediate use. Indeed, speedups over con-

ventional methods by orders of magnitude have been reported in

other domains [3, 28], motivating DA evaluation for DB issues.

Tailored Encoding. Wederive a novel, native JO encoding, tailored

to quantum and quantum-inspired HW that improves over the

baseline JO encoding proposed by Schönberger et al. [41], which is

a faithful transformation of the JO-MILP formulation by Trummer

and Koch [54], and hence inherits all MILP limitations. Firstly, our

novel encoding more efficiently approximates solution cost, by re-

fining the approximation method proposed in [41] with previously

unconsidered quadratic operations. Secondly, applying entirely

novel strategies, our encoding (1) more efficiently encodes solution

validity, (2) ensures validity for all solutions, unlike the baseline, (3)
drastically reduces variables, and (4) conforms significantly better

to DA HW, outperforming the baseline encoding [41] in all aspects.

Thereby, we exhaust the full capabilities of the Fujitsu DA, to solve

large JO problems far beyond conventional sizes.

Contributions. In detail, our contributions are as follows:

(1) We derive a novel, native encoding for JO problems tailored to

special-purpose quantum and quantum-inspired hardware. We

thereby address several drawbacks of the existing MILP and

QPU encodings, optimising the scalability of our method.

(2) We propose a novel readout method tailored to our JO encoding,

allowing us to derive valid join orders for each solution obtained

by the annealer. In contrast to both, the MILP method and

baseline encoding used on QPUs, where optimisation may fail

to yield any solution, our method thereby guarantees to obtain

a specifiable number of join orders.

(3) We analyse the resource requirements for our novel encoding,

and demonstrate a significant reduction in variables over the

baseline QUBO encoding, thereby further improving scalability.

(4) We compare our method against a variety of competing ap-

proaches. Using the quantum-inspired Fujitsu Digital Annealer,

we experimentally demonstrate the practical utility and scalab-

ility of our novel annealing method on large queries joining

up to 50 relations, which far exceeds typical query dimensions.

Our approach identifies complex solutions within a large JO

search space, which often beat the best join orders obtainable

within the restricted search space of competing methods.

Table 1 further highlights our contributions, by summarising key

criteria where our novel, native method for the Fujitsu DA improves

on the existing MILP approach by Trummer and Koch [54] and the

baseline QPU method by Schönberger et al. [41].

Table 1: Comparison of the MILP [54], baseline JO QPU [41],
and our novel JO digital annealing (DA) approach.

MILP QPU DA

Special-purpose HW support ✗ ✓ ✓

Mature SW/HW ✓ ✗ ✓

Efficient native encoding ✓ ✗ ✓

Predictable optimisation time ✗ ✓ ✓

Guaranteed result ✗ ✗ ✓

The remainder of this paper is structured as follows: We explain

the properties of the Fujitsu DA hardware, and fundamentals on

the required encoding, in Sec. 2. We describe our JO model in

Sec. 3. We derive a novel JO-encoding for quantum and quantum-

inspired HW in Sec. 4. We discuss our readout method in Sec. 5,

and experimentally analyse our DA method in Sec. 6. Finally, we

discuss related work in Sec. 7 and conclude in Sec. 8.

2 DIGITAL ANNEALING FUNDAMENTALS
Solving combinatorial optimisation problems is typically complex,

given highly non-linear solution landscapes. To avoid local minima,

simulated annealing takes inspiration from physical annealing of

crystalline solid: Its search strategy is dynamically altered based on

a gradually cooling temperature. In this section, we outline, and con-

trast, the three annealing paradigms simulated annealing (Sec. 2.1),

quantum annealing (Sec. 2.2), and quantum-inspired digital anneal-
ing (Sec. 2.3). Finally, contemporary quantum and quantum-inspired

HW require a specific quadratic problem encoding, which we de-

scribe in Sec. 2.4.

2.1 Simulated Annealing
The original simulated annealing (SA) algorithm is a metaheur-

istic for solving combinatorial optimisation problems [3, 22]. Al-

gorithm 1, taken from Aramon et al. [3], shows the overall steps of
the SA algorithm. Starting from a random initial state at a high tem-

perature𝑇 ,𝑇 is gradually lowered by performing monte carlo (MC)

updates, which involves flipping bits of variables. Ideally, after the

algorithm terminates, the resulting low-temperature variable con-

figuration corresponds to an optimal, or near-optimal, solution.

Rather than only running the algorithm once, a large batch of runs,

or shots (typically involving hundreds or thousands of runs), is

performed. The number of runs can be specified, and provides a

trade-off between solution quality and computation time.

2



Algorithm 1 Simulated Annealing

1: for each run do
2: initialise to random initial state

3: for each temperature do
4: for each MC sweep at this temperature do
5: for each variable do
6: propose a flip

7: if accepted, update the state and effective fields

8: update the temperature

2.2 Quantum Annealing
While SA seeks to determine the variable configuration minim-

ising an optimisation problem, quantum annealing (QA) attempts

to determine the ground state of a Hamiltonian operator, which

describes the energy of a quantum system [1], and encodes the

optimisation problem to be solved. While both approaches address

similar problems, the processes behind are quite different.

2.2.1 Annealing Process. Beginning with an initial Hamiltonian

whose ground state is known, theHamiltonian is gradually transitioned

towards the actual problem Hamiltonian representing the optimisa-

tion problem. A sufficiently slow interpolation is known preserve

the ground state, in accordance to the adiabatic theorem [1]. Once

the process terminates, one can obtain an optimal solution by read-

ing out the ground state. Quantum effects such as tunneling enable

QA to avoid local minima in concave energy landscapes, providing

a potential computational advantage over classical approaches.

2.2.2 State-of-the-art. The first QA systems have become commer-

cially available; the most advanced ones like the D-Wave Advantage
feature over 5,000 physical quantum bits (qubits) [29]. Current sys-

tems only support limited connectivity between qubits—to solve

problems with many interacting variable pairs, sets of physical

qubits are combined into logical qubits via chains of qubits.
This leads to multiple issues: (1) Combining physical qubits into

chains effectively reduces the amount of available qubits represent-

ing variables; (2) problems are required to be embedded onto the

hardware graph of the quantum annealer, which is an NP-complete

problem itself [27, 59]; and (3) longer chains increase the likelihood

of chain break errors (mismatched qubits in a chain).

Solution quality further degrades via the influence of noise and
quantum decoherence (i.e., a gradual decay of the quantum state

due to interactions with the environment). The culminated impact

of these issues severely limits the practical utility of contempor-

ary quantum annealers, as previously analysed by Schönberger et
al. [41] for the JO problem. Given these issues, practical quantum

systems likely remain out of reach for the foreseeable future.

2.3 Digital Annealing
The Fujitsu digital annealer (DA) method is inspired by quantum

phenomena as discussed above, yet is implemented using classical

technology. Its capabilities can be seen as lower bound on future

QPUs, but also as HW accelerator for computational tasks.

2.3.1 State-of-the-art. In contrast to available QA systems, the

Fujitsu DA features HW with fully connected bits. Several DA gen-

erations are available: Second generation systems provide full con-

nectivity for 8,192 bits [13], supporting problems with up to 8,192

variables. In contrast, third and fourth generation devices feature

a software intervention layer for automating problem conversion

steps and penalty weight calculation (details discussed below) [36].

However, due to additional optimisation time overhead, and to

make our approach compatible with future quantum or classical

annealing devices, we consider the second generation DA for our

paper, which is closest in nature to current quantum devices.

As a classical device, the DA is unaffected from detrimental

effects like quantum decoherence. While it cannot utilise quantum

effects for speedups, its massive parallelisation capacity, combined

with a SA variant tailored to exploit these, allows the DA to solve

complex optimisation problems that may exceed conventional HW.

2.3.2 Annealing Process. The Fujitsu DA operates based on the SA

algorithm, modified to include quantum-inspired enhancements

to exhaust its full parallelisation capabilities. Its specific steps are

featured in Algorithm 2, taken from Aramon et al. [3].

Algorithm 2 Digital Annealing

1: initial_state← an arbitrary state

2: for each run do
3: initialise to initial_state
4: Eoffset ← 0

5: for each MC step (iteration) do
6: if due for temperature update, update the temperature

7: for each variable 𝑗 , in parallel do
8: propose a flip using Δ𝐸 𝑗 − Eoffset
9: if accepted, record

10: if at least one flip accepted then
11: choose one flip uniformly at random amongst them

12: update the state and effective fields, in parallel

13: Eoffset ← 0

14: else
15: Eoffset ← Eoffset + offset_increase_rate

While SA starts off a randomised state, each DA execution com-

mences in a known state , thus avoiding to initialise effective fields

for each randomised run. Using a parallel trial scheme and the highly
connected DA HW, flips for all individual variables are evaluated in

parallel in each MC ste. If at least one flip is recorded as accepted,

one out of all recorded flips is uniformly selected and applied, up-

dating the effective fields of all neighbors in parallel in constant time
regardless of the number of neighbors. Plain SA considers only single

bit flips at a time, and the time required for updating neighboring

fields grows linearly in the number of neighbors.

Instead of tunneling to escape local minima, the DA employs a

dynamic offset escape method to increase the chance of accepting

bit flips if none were accepted in the previous iteration. For more

details on DA, we refer to Aramon et al. [3].
3



2.4 Problem Encoding
It is not possible to run arbitrary code on quantum and quantum-

enhanced systems. Instead, problems require specific encodings,

and have to be cast as quadratic unconstrained binary optimisa-
tion (QUBO) problems, which (1) only allow quadratic interactions
between bits, or variables, (2) are unconstrained, and hence do not

support including explicit constraints, (3) only support binary vari-

ables, and (4) solve optimisation problems. Physically, QUBOs may

be interpreted as an energy formula, where the minimum energy

solution corresponds to an optimal solution of a problem reduced

to QUBO. They are given by the multivariate polynomial

𝑓 ( ®𝑥) =
∑︁
𝑖

𝑐𝑖𝑖𝑥𝑖 +
∑︁
𝑖≠𝑗

𝑐𝑖 𝑗𝑥𝑖𝑥 𝑗 , (1)

where 𝑥𝑖 ∈ {0, 1} are variables, and 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖 ∈ R coefficients.

Since enforcing valid solutions is not possible using explicit

constraints, our goal is to transform the JO problem in such a

way that minimising its energy formula inherently ensures valid

solutions, by penalising any invalid solution with a positive energy

cost. Achieving this goal allows us to optimise queries on the Fujitsu

DA. We next discuss the specific characteristics of our considered

JO problem class, for which we present a novel transformation

method into a JO-QUBO in Sec. 4.

3 JOIN ORDERING MODEL
A variety of classifications exist for the JO problem. As we are

interested in evaluating the aptitude of DA for the NP-complete

case, it is important to pick sufficiently hard instances.

A JO problem is classified by (a) problem input, (b) solution space,
and (c) a cost function assigning costs to each solution. We classify

our approach according to these elements below.

3.1 Problem Input
The JO input is given by a query graph𝑄 = (𝑉 , 𝐸), where each node

𝑣𝑖 , 0 ≤ 𝑖 ≤ |𝑉 |, corresponds to a relation 𝑟𝑖 with cardinality 𝑛𝑖 to be

joined, and an edge 𝑒𝑖 𝑗 represents a join predicate 𝑝𝑖 𝑗 for relations

𝑖 and 𝑗 . Edges are further labeled by a respective join selectivity

𝑓𝑖 𝑗 , where 0 < 𝑓𝑖 𝑗 ≤ 1. While some JO methods require graphs

with certain properties, e.g., acyclic query graphs [18, 23], our DA

approach allows general query graphs with no restrictions.

Query Graph Archetypes. Since the query graph shape impacts JO

behavior and complexity, we consider commonly used archetypes,

as exemplified in Fig. 1.

Chain Cycle Star Tree

Figure 1: Examples for common query graph archetypes.

These archetypes represent scenarios commonly found in JO lit-

erature and real workloads (i.e., star queries correspond to OLAP ap-
plications). Further, the shape impacts JO behavior: For star queries,

the central relation is ideally joined within the first join operations,

to allow the application of join predicates. Optimal join orders for

star graphs hence only rarely include cross products (defined below),
which may be useful for other scenarios, e.g., linear chain and cycle

graphs, to skip and postpone joining unfavourable relations.

We consider these archetypes for our experimental evaluation

in Sec. 6, to generate large, synthetic queries for common scenarios,

suited to comprehensively assess the scalability of our method.

3.2 Solution Space
A solution to the JO problem is given by a join tree, where leaf nodes
correspond to base relations, and intermediate nodes represent join

operations. Therefore, the size of the solution space depends on (a)

the possible join tree shapes, and (b) the possible leaf permutations.

Join Tree Shapes. Tree shapes can be broadly summarised by

two scenarios: Trees with no restrictions are referred to as bushy
trees, contrasting linear trees, where at least one base relation is an

operand for each join. The latter includes left-deep, right-deep and

zig-zag trees. The restriction to linear trees is a common heuristic,

motivated by a more efficient exploration of a reduced solution

space. Like the existing MILP [54] and QA approaches, our DA

method considers left-deep join trees.

Leaf Permutations. A join tree is moreover characterised by its

assignment of leaf nodes, with the number of possible assignments

given by 𝑛! for a query joining 𝑛 relations. Given the large amount

of possibilities, many JO approaches consider a restricted set of

permutations, excluding the possibility of cross products, i.e., joining
two intermediate join trees not sharing any join predicates. How-

ever, as we will show empirically, the cost overhead for excluding

cross products can be quite substantial. Our DA method hence

considers cross products, enabling cheaper plans in many cases.

3.3 Cost Function
Finally, a cost function assigns costs to each join tree. For our

DA method, we consider the classic cost function Cout (𝑛𝑖 , 𝑛 𝑗 ) =
𝑓𝑖 𝑗𝑛𝑖𝑛 𝑗 [8]. Applied on a sequence of relations, it evaluates join

orders based on the sizes of intermediate results. Following Cluet

and Moerkotte [8], the cost function for a sequence 𝑠 of relations

𝑠1, ..., 𝑠𝑛 is given by

𝐶 (𝑠) :=
𝑛∑︁
𝑖=2

𝐶𝑜𝑢𝑡 ( |𝑠1 ...𝑠𝑖−1 |, |𝑠𝑖 |), (2)

where |𝑠1 ...𝑠𝑖−1 | denotes the result size after joining 𝑠1, ..., 𝑠𝑖−1.
Typically, sets of join predicates feature correlations, which beget

discrepancies between the cost provided by Cout , and the true cost

including such correlations.While we plan to include them in future

research, this paper focuses on the base model without correlations.

Summary. OurDAmethod (a) considers general query graphs, (b)
left-deep join trees, (c) cross products, and (d) the cost function Cout .
This JO classification features an extremely large solution space

with factorial growth in the number of relations, and is moreover

known to be NP-complete [8], making the task of obtaining suffi-

ciently good solutions for large queries challenging.

Limitations. We consider the NP-complete JO classification out-

lined above sufficiently complex for providing a first evaluation

4



of the aptitude of special-purpose HW such as the DA. However,

the restriction to left-deep join trees and the inability to consider

predicate correlations are clear limitations. While extensions to gen-

eral, bushy trees are desirable, their encoding remains challenging,

given the constraints of contemporary hardware. The limitation to

quadratic interactions requires a considerable overhead, and greatly

impacts the scalability of the method for current systems [43].

While co-designing annealing HW tailored to such other classes

of JO problems may be promising, we first need to understand

whether such approaches are worth pursuing. This requires insights

into the aptitude of DA for JO problems conforming well to devices

available today, which is the goal of this paper.

4 QUBO ENCODING
To solve JO on the Fujitsu DA, we have to transform the JO base

problem into QUBO form. For the existing JO-QUBO, Schönberger

et al. [41] apply a faithful transformation of the MILP method [54]

into QUBO. However, the resulting JO-QUBO inherits all limitations

of the original MILP method, without making use of extended

QUBO functionality not supported by MILP solvers. Rather than

transforming an existing encoding, we propose an encoding tailored

to the QUBO formalism, which fully exhausts hardware capabilities.

To encode JO as QUBO, we have to specify variables and con-

straints in such a way that (1) we receive valid join trees as solutions,
and (2) the annealer seeks out solutions evaluated favorably by our
cost function. Hence, we show a new, lightweight method to enforce

valid join trees in Sec. 4.1, and propose a novel method for encoding

solution cost in Sec. 4.2, inspired by the baseline encoding [41], re-

lying, however, on quadratic operations unsupported by MILP, and

unconsidered by the baseline. Finally, we combine the intermediate

QUBO encodings into an overarching JO-QUBO in Sec. 4.3.

4.1 Encoding Valid Join Trees
We begin by introducing variables expressing the join tree. Let the

binary variable rojrj (Relation is Operand for Join), introduced for

each relation 𝑟 and join 𝑗 , indicate whether 𝑟 is an operand for 𝑗 .

Our goal is to ensure that value assignments for these variables

conform to valid join trees. Hence, let us next consider the two

validity conditions that must hold for variable assignments:

(a) Starting at two relations, the number of relations serving as

operands for a join strictly increases by one with each additional

join. The validity of this condition is shown by Theorem 4.1.

(b) Once used as an operand for a join 𝑗 , a relation must moreover

serve as an operand for all joins directly or indirectly succeeding 𝑗 .

This condition follows from the very definition of a join.

Theorem 4.1. The number of relations serving as operands for a
join strictly increases by one with each additional join.

Proof. The validity of the theorem can be quickly deduced

from the definition of a left-deep join tree, which considers at

least one input relation as an operand for each join. The first join

takes two input relations as operands, whereas any intermediate

join considers all relations used for its preceding join, and one

not previously joined input relation as operands. Starting at two

relations, the number of relations used as operands hence increases

by one for each additional join. □

Next, we show how to encode both conditions in QUBO. Recall

that the annealer seeks out variable configurations minimising

the energy of the QUBO formula. We can enforce valid solutions

by designing QUBO terms that increase the energy for invalid

solutions, and only evaluate to 0 for valid solutions.

4.1.1 Condition (a). We begin with condition (a), which can be

enforced by the following QUBO term:

HVa =

𝐽∑︁
𝑗=1

(
𝑏 𝑗 −

𝑅∑︁
𝑟=1

rojrj

)2
,

where 𝑏 𝑗 = 𝑗 + 1. To minimise the energy, the inner sum has to

correspond to the value 𝑏 𝑗 for each join 𝑗 , such that the quadratic

term evaluates to 0. This requires the correct amount of roj variables
to be active, depending on the join index 𝑗 . For instance, for 𝑗 = 1

(i.e., the very first join), 𝑏 𝑗 = 𝑗 +1 = 1+1 = 2. As such, two variables

rojr1j and rojr2 j , corresponding to any pair of input relations (𝑟1, 𝑟2),
need to be active to avoid an energy penalty, whereas all remaining

variables must equal 0. Therefore, as the annealer minimises the

energy, exactly two relations are selected as operands for join 1.

The same applies mutatis mutandis for all subsequent joins, for

increasing numbers of required relations.

Example 4.1. To illustrate the effectiveness of HVa, let us con-
sider a query joining three relations 𝐴, 𝐵 and 𝐶 , using two joins 𝑖
and 𝑗 , where 𝑖 precedes 𝑗 . Accordingly, we introduce six variables
rojAi, rojBi, rojCi, rojAj, rojBj, rojCj , to express the join tree. Let us fur-
ther consider a solution with active variables rojAi = rojBi = rojCi = 1.
Clearly, this solution is invalid, since all three relations have been
assigned as operands to join 𝑖 , and no relation is assigned to 𝑗 . Ac-
cordingly, the energy penalty HVa = (2 − (rojAi + rojBi + rojCi))2 +
(3 − (rojAj + rojBj + rojCj))2 = (−1)2 + (3)2 = 10 is added.

In contrast, successful energy minimisation via annealing may
activate the variables rojAi = rojBi = rojAj = rojBj = rojCj = 1, where
HVa = (0)2 + (0)2 = 0. Indeed, this solution corresponds to the valid
join order (𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶 .

4.1.2 Condition (b). While HVa enforces the correct number of

relations to be present for each join, it alone does not yet ensure

valid variable assignments, since a relation may be part of a join 𝑗 ,

yet not be present for all joins succeeding 𝑗 . As such, we proceed

by encoding condition (b) as follows:

HVb =

𝑅∑︁
𝑟=1

𝐽∑︁
𝑗=2

rojrj−1 (1 − rojrj) .

HVb enforces that rojrj−1 = 1 always implies rojrj = 1, as otherwise,

the inner term in 𝐻𝑏 evaluates to 1, contributing a positive value

to the overall energy. Therefore, if relation 𝑟 is an operand for join

𝑗 − 1, it must also serve as an operand for the succeeding join 𝑗 .

Example 4.2. (cont’d) We continue our example of joining three
relations 𝐴, 𝐵 and 𝐶 , using joins 𝑖 and 𝑗 , where 𝑖 precedes 𝑗 . Let
us again consider the invalid solution with active variables rojAi =
rojBi = rojCi = 1. Disregarding the violation of condition (a), which
was outlined above, this configuration moreover violates condition
(b), since neither of the three relations is present for join 𝑗 , after se-
lected as an operand for the preceding join 𝑖 . Accordingly, energy

5



penalty HVb = rojAi (1 − rojAj) + rojBi (1 − rojBj) + rojCi (1 − rojCj) =
1(1 − 0) + 1(1 − 0) + 1(1 − 0) = 3 is added.

In contrast, for the valid variable assignment rojAi = rojBi =

rojAj = rojBj = rojCj = 1, representing the join order (𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶 ,
no penalty is added, as HVb = 1(1 − 1) + 1(1 − 1) + 0(1 − 1) = 0.

Finally, we combine the discussed penalty terms into an over-

arching validity term for left-deep join trees

HV = HVa + HVb .

We later combine this validity term with the QUBO term for cost

assignment, which we discuss next.

4.2 Encoding Join Order Costs
Having enforced join tree validity, our next goal is to assign a join

tree a corresponding cost value, in accordance to our cost function

𝐶𝑜𝑢𝑡 , which evaluates intermediate join result sizes. Herein lies

one of the greatest hurdles for optimising join orders with MILP

or annealing, as neither approach supports the product operations

required by 𝐶𝑜𝑢𝑡 . Instead, MILP is confined to linear operations,

whereas QUBO supports both, linear and quadratic operations.

For their MILP approach, Trummer and Koch [54] therefore

substitute sums of logarithmic cardinalities and selectivities for

the required product operations, as the logarithm of a product

equals the sum of logarithms of its factors. Based on the logarithmic

intermediate results, they approximate actual cardinalities using

an arbitrary number of threshold values, as illustrated below.

For the existing JO-QUBO encoding, Schönberger et al. [41]
conducted a faithful transformation of the original MILP approach,

and hence incorporated this approximationmethod. However, as we

discuss in detail below, this approximation does not conform well

to contemporary annealing devices. To improve on this baseline cost
approximation approach, we hence propose a novel quadratic cost
approximation method, which makes use of quadratic operations

unsupported by MILP, and not utilised by the existing JO-QUBO,

and is hence natively tailored to contemporary annealers.

We first discuss how to encode the logarithmic cost of intermedi-

ate join results. Next, we describe the baseline cost approximation

as applied by Schönberger et al. [41] in detail. Finally, we discuss

our novel quadratic cost approximation method.

4.2.1 Encoding Logarithmic Cost. To encode logarithmic costs for

a join, we require information on both, relations and join predicates

present for the join. The former are already encoded by variables roj.
Similarly, let the binary variables pajpj (Predicate is Applicable for
Join) denote whether predicate 𝑝 can be applied for join 𝑗 . For valid

configurations of paj variables, we need to enforce that pajpj = 1

only holds if both relations associated with predicate 𝑝 are operands

for join 𝑗 . Deriving this information from the corresponding roj
variables, we achieve this by adding the following term:

𝐻𝑝 = paj𝑝 𝑗 (2 − roj𝑅𝑒𝑙1 (𝑝 ) 𝑗 − roj𝑅𝑒𝑙2 (𝑝 ) 𝑗 ),

where 𝑅𝑒𝑙𝑖 (𝑝), 1 ≤ 𝑖 ≤ 2, corresponds to the first or second relation

associated with 𝑝 . As such, setting pajpj = 1 without activating

both roj𝑅𝑒𝑙1 (𝑝 ) 𝑗 and roj𝑅𝑒𝑙2 (𝑝 ) 𝑗 leads to an energy penalty.

Based on the roj and paj variables, the following function gives

the logarithmic intermediate cardinality for join 𝑗 :

LogIntCard (j) =
𝑅∑︁
𝑟=1

LogCard (r)rojrj +
𝑃∑︁

𝑝=1

LogPredSel(p)pajpj,

where LogCard (r) and LogPredSel(p) are variable coefficients, provid-

ing the logarithmic cardinality for relation 𝑟 and the logarithmic

selectivity for predicate 𝑝 respectively.

Example 4.3. (cont’d) To illustrate the logarithmic cost calculation,
we continue our example of joining three relations 𝐴, 𝐵 and 𝐶 with
joins 𝑖 and 𝑗 , where 𝑖 precedes 𝑗 . Let 𝑛𝐴 = 𝑛𝐵 = 𝑛𝐶 = 2 denote the
logarithmic cardinalities for the three relations. Let us further assume
two join predicates, 𝑝1 for relations 𝐴 and 𝐵, and 𝑝2 for relations 𝐵
and 𝐶 , with logarithmic selectivities 𝑓1 = 𝑓2 = −1. Accordingly, we
add four variables paj1i , paj1j , paj2i and paj2j .

Recall the valid variable configuration rojAi = rojBi = rojAj =

rojBj = rojCj = 1, expressing the join order (𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶 . To minimise
cost, the annealer seeks to activate as many paj variables as possible, to
apply their corresponding predicates. Ideally, paj1i = paj1j = paj2i =
paj2j = 1. However, since paj2i (2 − rojBi − rojCi) = 1(2 − 1 − 0) = 1,
the energy penalty 𝐻𝑝 = 1 is added, as relation 𝐶 is not an oper-
and for join 𝑖 , invalidating the activation of paj2i . Hence, to min-
imise cost, the annealer will only activate the remaining variables
paj1i = paj1j = paj2j = 1

1.
Finally, the logarithmic cardinality resulting from join 𝑖 is then

given as LogIntCard (i) = 𝑛𝐴rojAi + 𝑛𝐵rojBi + 𝑛𝐶 rojCi + 𝑓1paj1i +
𝑓2paj2i = 2 + 2 + 0 − 1 − 0 = 3, and for join 𝑗 as LogIntCard (j) =
𝑛𝐴rojAj +𝑛𝐵rojBj +𝑛𝐶 rojCj + 𝑓1paj1j + 𝑓2paj2j = 2 + 2 + 2− 1− 1 = 4.

Having derived the logarithmic intermediate result sizes for the

join tree, our next goal is to approximate their actual cardinalities.

4.2.2 Baseline Cost Approximation. To apply the baseline cost ap-

proximation following Trummer and Koch [54], a set of threshold

values is added to the model. The more thresholds are applied,

the more accurate the cost approximation becomes. Let the binary

variables trjtj (Threshold is Reached by Join), introduced for every

threshold value 1 ≤ 𝑡 ≤ 𝑇 and join 1 ≤ 𝑗 ≤ 𝐽 , denote whether

a logarithmic threshold value log(𝜃t ) has been exceeded by the

logarithmic size of the intermediate result produced by join 𝑗 . If

exceeded, the threshold value 𝜃𝑡 will be added to the overall costs

accordingly. This is achieved by the following cost term:

HC =

𝑇∑︁
𝑡=1

𝐽∑︁
𝑗=1

trjtj𝜃𝑡 . (3)

In MILP, the following inequality constraint ensures that trjtj = 1 if

log(𝜃𝑡 ) has been reached by join 𝑗 :

LogIntCard (j) − trjtj · ∞𝑡 𝑗 ≤ log(𝜃𝑡 ). (4)

If LogIntCard (j) > log(𝜃𝑡 ), the only way to satisfy the inequality is
to activate trjtj , which subtracts the sufficiently large constant∞𝑡 𝑗 .

1
For simplification, we omitted one detail in our example, as the benefit of activating

the invalid predicate variable may, in general, still outweigh the induced energy penalty,

and doing so may hence yield the minimum energy. The solution is to properly balance

the validity and cost terms, as we discuss in detail in Sec. 4.3.

6



However, expressing the inequality given by Eqn. 4 in QUBO

poses an issue, since inequality operations are not inherently sup-

ported. Therefore, Schönberger et al. [41] convert the inequalities
to equalities, by adding a continuous variable 𝑠𝑡 𝑗 , which gives

LogIntCard (j) − trjtj · ∞𝑡 𝑗 + 𝑠𝑡 𝑗 = log(𝜃𝑡 ) .

This engenders further issues, as QUBO only supports binary, rather

than continuous variables. Following Schönberger et al. [41], we
hence need to approximate 𝑠𝑡 𝑗 as 𝑠𝑡 𝑗 ≈ 𝜔

∑𝑛
𝑖=1 2

𝑖−1𝑏𝑖 , discretising
the continuous variable using multiple binary variables 𝑏𝑖 . Further,

𝜔 = (0.1)𝑑 denotes a discretisation precision, where𝑑 is the number

of allowed decimal positions. We require 𝑛 = ⌊log
2
(𝑐 𝑗𝑚𝑎𝑥

/𝜔)⌋ + 1
binary variables for the discretisation of 𝑠𝑡 𝑗 , where 𝑐 𝑗𝑚𝑎𝑥

is the

maximum logarithmic cardinality possible for join 𝑗 . Hence, the

smaller 𝜔 (i.e., the higher the discretisation precision), the larger

the number of required variables. More detailed explanations on

the discretisation are provided in Schönberger et al. [41].

Example 4.4. (cont’d) To illustrate the baseline cost approxim-
ation, we continue our example of a query joining three relations
𝐴, 𝐵 and 𝐶 with joins 𝑖 and 𝑗 , where 𝑖 precedes 𝑗 . We further con-
sider the previous variable configuration representing the join order
(𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶 , and the logarithmic costs LogIntCard (i) = 3 and
LogIntCard (j) = 4 for joins 𝑖 and 𝑗 , as calculated in Example 4.3. Let
𝜃1 = 100 and 𝜃2 = 1000 denote the threshold values used to approx-
imate the actual cost. Accordingly, we introduce four variables trj1i ,
trj2i , trj1j and trj2j . Attempting to avoid cost, the annealer seeks to
leave trj variables inactive. Ideally, trj1i = trj2i = trj1j = trj2j = 0.
However, since LogIntCard (i) = 3 > 2 = log(𝜃1), the threshold
is exceeded, and trj1i must be active to avoid a penalty. The same
holds for trj1j , as LogIntCard (j) = 4 > 2 = log(𝜃1), and trj2j , since
LogIntCard (j) = 4 > 3 = log(𝜃2). However, no penalty is induced
for trj2i = 0, as LogIntCard (i) = 3 ≤ 3 = log(𝜃2). To minimise cost,
the annealer will hence leave trj2i inactive, bringing the total cost to
HC = 𝜃1trj1i +𝜃1trj1j +𝜃2trj2i +𝜃2trj2j = 100+ 100+ 0+ 1000 = 1200.
Since the approximated cost is quite far from the real cost, given by
10

3 + 104 = 1000 + 10000 = 11000, we observe that the accuracy of
the approximation highly depends on the applied thresholds.

Example 4.4 demonstrates the great impact of the threshold val-

ues on the approximation accuracy. While it is possible to increase

the approximation quality by adding more thresholds, larger mod-

els typically demand longer optimisation times. Moreover, when

using special-purpose HW, rather than conventional systems with

large memory, we have to consider its size limitations, which re-

strict the number of allowed optimisation variables. To accomplish

scalability to large queries, we hence seek to optimally use the

available variables, and next discuss a novel, more space-efficient

approximation technique. It is tailored to contemporary annealers

by using quadratic operations that are unsupported by MILP.

4.2.3 Novel Quadratic Cost Approximation. To increase the effi-

ciency of the cost approximation, we can rely on quadratic oper-

ations not utilised by the existing JO-QUBO by Schönberger et
al. [41]. Specifically, we can substitute the following quadratic cost

function for the baseline cost method and inequality operation

required to verify if a threshold has been exceeded:

HC =

𝑇∑︁
𝑡=1

𝐽∑︁
𝑗=1

𝜃𝑡
(
Buffertj − LogIntCard (j)

)
2

, (5)

where the term Buffertj is given by

Buffertj =
𝑁∑︁
𝑖=1

(2𝑖−1𝑠𝑡𝑖 𝑗 ), (6)

where 𝑠𝑡𝑖 𝑗 is a binary variable. We set 𝑁 in such a way that Bufferj
can assume any value up to log(𝜃𝑡 ).2

For any LogIntCard (j) ≤ log(𝜃𝑡 ), there exists a variable config-
uration minimising the formula by setting Buffertj = LogIntCard (j),
causing the inner quadratic term in HC to vanish. However, if

LogIntCard (j) > log(𝜃𝑡 ), Buffertj cannot balance out LogIntCard (j),
thus increasing the cost. For integer values, the smallest possible ex-

cess is Buffertj − LogIntCard (j) = −1 (i.e., the threshold is exceeded

by one order of magnitude). Accordingly, 𝜃𝑡 · (−1)2 is added to the

cost. Increasing threshold excess increases the added cost value.

Example 4.5. (cont’d) We complete our running example by il-
lustrating the quadratic cost approximation on the two join orders
𝐽𝑂1 = (𝐴 ⊲⊳ 𝐵) ⊲⊳ 𝐶 and 𝐽𝑂2 = (𝐴 ⊲⊳ 𝐶) ⊲⊳ 𝐵, for our query joining
relations 𝐴, 𝐵 and 𝐶 with joins 𝑖 and 𝑗 , where 𝑖 precedes 𝑗 . For join 𝑖 ,
the former produces logarithmic costs 3, whereas the latter produces
logarithmic cost 𝑛𝑎 + 𝑛𝑐 = 2 + 2 = 4, as no predicate is applicable.
Since costs for the final join 𝑗 are invariant w.r.t. the join order, we
restrict our example to the costs produced by join 𝑖 , where we consider
the single threshold value 𝜃1 = 100, with log(𝜃1) = 2, for the cost ap-
proximation3. Since either join order exceeds the threshold, applying
the baseline approximation does not discriminate between them, as
the threshold is added to the cost in either case.

In contrast, let us now consider the effect of our quadratic cost
approximation. We add a sufficient number of variables to the term
Buffer1i , such that it can assume any value up to log(𝜃1) = 2. Hence, it
can prevent any cost penalty if the threshold is not exceeded. However,
since either join order cost exceeds the threshold, the buffer cannot bal-
ance out the logarithmic cost of join 𝑖 . To minimise cost, the annealer
sets Buffer1i = 2, and we receive 𝜃1 (Buffer1i − LogIntCard (i))2 =

100(2 − 3)2 = 100 for 𝐽𝑂1, and 100(2 − 4)2 = 400 for 𝐽𝑂2. Hence,
even though the threshold is exceeded by both join orders, minimising
the quadratic approximation formula produces the less costly 𝐽𝑂1.

While existing methods for MILP [54] and the baseline annealing

method [41] only test if a threshold has been reached, our novel

approach takes themagnitude of the excess into account, as demon-

strated by Example 4.5. A single threshold value serves as a much

more sophisticated discriminator between join orders differing in

cost by orders of magnitude, which is common for JO. This allows

us to increase the approximation quality for a set of thresholds, or

2
We may alternatively apply a one-hot encoding for Buffertj , which allows arbitrary

threshold values at the cost of needing one variable for each possible value Bufferj
may assume. In contrast, our applied binary encoding can express specific thresholds
much more efficiently, but only allows thresholds as values (2𝑖 · 𝜔 ) − 1, where the

term 𝜔 = (0.1)𝑑 denotes the discretisation precision with 𝑑 decimal positions.

3
To simplify our example, we apply no restrictions on the choice of thresholds, whereas

for our own implementation, we apply the variable-efficient binary encoding scheme

as in Eqn. 6, and hence restrict thresholds to values (2𝑖 · 𝜔 ) − 1 for any 𝑖 ≥ 1, where

𝜔 is the discretisation precision.

7



reduce the number of thresholds required for sufficiently accurate

results, which is particularly beneficial for special-purpose HW

with strict size limitations.

Further, while our novel cost approximation refines the baseline

proposed by Trummer and Koch [54], its fundamental implications

for optimal solutions remain unchanged. Hence, we may, for hy-

pothetical perfect devices (disregarding, e.g., size limits of existing

HW), introduce an arbitrary amount of thresholds, to make our ap-

proximation arbitrarily precise, hence allowing configurations that

guarantee optimal solutions when minimising the QUBO formula.

Having derived both, QUBO terms for ensuring valid join orders,

and terms for approximating their costs, the final step is to combine

them into an overarching JO-QUBO.

4.3 The Complete Encoding
Based on the validity terms discussed in Sec. 4.1, and the cost terms

derived in Sec. 4.2, we can construct the complete JO-QUBO H :

H = 𝐴(HV + Hp) + HC .
The term 𝐴 is a penalty weight that amplifies the penalty for vi-

olating validity constraints, such that any potential cost saving in

HC can never beget amortisation of a penalty induced by violating

Hval , or by activating invalid predicates, violating 𝐻𝑝 . However, 𝐴

cannot be set arbitrarily large, which would beget issues such as

slowdowns [39]. We hence seek the minimum weight for 𝐴 that

engenders sufficiently large penalties. This weight is given by the

largest possible value Cmax that may be assumed by the term HC,
which a solver may seek to avoid by violating a constraint in HV .

For our novel quadratic approximation, following Eqn. 5, our cost

function 𝐻𝐶 is maximised if every threshold for every join is ex-

ceeded by the largest possible intermediate result size cj . In that case,
Buffertj = log(𝜃𝑡 ), and Cmax =

∑𝑇
𝑡=1

∑𝐽
𝑗=1

Thres(t)
(
log(𝜃𝑡 ) − cj

)
2

.

We hence set𝐴 = Cmax +𝜖 , where 𝜖 is some small value, to properly

balance our validity and cost terms.

While these aprioristic bounds ensure that constraint violations

never lead to a more desirable overall energy outcome, it is unlikely

that a single constraint violation would beget cost savings akin

to these worst-case bounds. To avoid the negative impact of high

values for 𝐴, it is therefore beneficial to empirically determine

suitable values for 𝐴, rather than applying these lower bounds.

Resource Scaling. Finally, for archetypical cycle queries, Fig. 2
compares our novel encoding against the baseline encoding [41]

w.r.t. the required amount of mandatory variables nvar (without
thresholds for approximation). Our novel encoding requires nnovel =
(𝑅 + 𝑃) (𝐽 − 1) for queries joining 𝑅 relations with 𝐽 joins, using 𝑃

join predicates, which provides a lower qubit bound
4
.

The baseline reaches capacity limits of the second generation DA

for queries joining 40 relations, requiring roughly 8,000 variables,

and maximum query size further decreases due to thresholds. In

contrast, using our novel encoding, optimising queries with up to

50 relations is easily possible on today’s systems while still leaving

capacity for thresholds, demonstrating the variable efficiency of

our novel method. Further comparisons, including scenarios with

thresholds, can be found in our technical report [42].

4
Following Schönberger et al. [41], their encoding requires nbaseline = 2𝑅𝐽 + 𝑅 +
(3𝑃 ) ( 𝐽 − 1) such mandatory variables.

0

5

10

15

10 20 30 40 50 60

# Relations

#
V
a
r
i
a
b
l
e
s
[
k
]

Encoding

Baseline

Novel

Figure 2: Mandatory variable scaling for cycle queries, com-
paring the baseline JO-QUBO [41] and our novel encoding.

5 READOUT
Our JO-QUBO formulation encodes queries to allow the use of

quantum and quantum-inspired annealing. In each case, devices

deliver a solution bitstring that contains value assignments for all

variables. A flawless annealing run would return only valid solu-

tions where assignments adhere to validity terms of Sec. 4. This

would make reading out the join order straightforward.

However, annealing solutions often contain errors, whose fre-

quency depends on the properties of the device. These errors mani-

fest in the form of bitflips, which add ambiguity to an annealing

solution and hence complicate the readout process. A concrete

example for a solution containing bitflips is discussed below. The

manner in which such bitflips are addressed substantially impacts

the practical utility of the overall annealing method.

Baseline Readout Method. The baseline QA approach [41] only

considers a solution as valid if the assignment of certain variables

leaves no ambiguity, discarding all other solutions returned by the

annealing device. However, quantum annealers are prone to errors

of various kinds, which can engender a large amount of bitflips.

For queries joining four relations, their method considers merely

one to three percent of all solutions as valid. This discards a large

amount of possible starting points for solutions.
However, even though a solution may contain ambiguity for

certain variables, it may still include valuable information for con-

structing a good join order. Rather than entirely discarding such

solutions, we seek to extract as much information as possible from

a single solution, to construct a valid join order in any scenario,

and doing so for as many solutions as possible.

Novel Readout Method. Hence, for our novel QUBO encoding, we

propose a readout strategy that encompasses maximum efficiency,

deriving valid join orders for any solution returned by the annealing

device. This provides our method with an advantage not only w.r.t.

the original approach by Schönberger et al. [41], but moreover

regarding any JO method that can potentially time out without

returning any solution at all, includingmany dynamic programming

approaches as well as the MILP method by Trummer and Koch [54].

For reading out a solution, we only need to consider variables

that assign relations to their respective joins, and can disregard

all other variables. Hence, we are only concerned with variables

rojrj , for each relation 1 ≤ 𝑟 ≤ 𝑅 and join 1 ≤ 𝑗 ≤ 𝐽 . We further

consider a bitstring 𝑏𝑟 that contains the roj variable assignments

for a relation 𝑟 . For instance, given a query with three joins, the

8



bitstring 111 expresses that relation 𝑟 is part of all joins, whereas

the bitstring 001 expresses that 𝑟 is only part of join 3. Either of

these bitstrings corresponds to valid configurations of roj variables.
Consider the bitstring 1101 for four joins. The bitstring is erro-

neous, given that relation 𝑟 is selected for join 1 and 2, yet missing

for join 3, and once again present for join 4. This configuration

violates one constraint, as our encoding penalises solutions where

rojr2 does not imply rojr3 , yet may still occur owing to stochastic

nature of annealing. Intuitively, we can identify the third bit as

the likely candidate for a bitflip, as the relation has already been

selected for both, the first and second join. Correcting the bitstring

to 1111 is more plausible than to 0001.

In general, we assume that the more early joins a relation 𝑟 is

assigned to in accordance to an annealing bitstring 𝑏𝑟 , the greater

the plausibility that 𝑟 is selected by the annealer to be joined earlier

rather than later, and hence should appear early in the resulting

join order. To capture this, we first assign weight𝑤 𝑗 to each join 𝑗 ,

where 𝑤 𝑗 = 𝐽 − 𝑖 , 0 ≤ 𝑖 ≤ 𝐽 − 1. The earlier a join, the greater its
assigned weight. Next, given the annealing result matrix A, which

is a 𝑅𝑥 𝐽 matrix containing all variables roj for each relation 𝑟 and

join 𝑗 , we determine the vector ®c = 𝐴 ®𝑤 . The more early joins 𝑟

is assigned to, the larger the value cr , which hence numerically

expresses the plausibility of 𝑟 being joined earlier rather than later.

Finally, based on ®c, we derive a rank vector
®rk that ranks all

relations in accordance to ®c, and hence can be used as a join or-

der. In addition, for each join order, we always derive a fallback
solution, by strictly traversing the query graph in accordance to

®rk.
The fallback solution hence deliberately excludes cross products.

Thereby, we address inherent inaccuracies of the annealing process

and our cost approximation method, which may sometimes lead

to the inclusion of unfavorable cross products, which quickly yield

large intermediate results. For these cases, the fallback solution

provides an alternative solution, which ideally compares to solu-

tions obtained by competing JO approaches without cross products.

Example 5.1. Consider the annealing result matrix

𝐴 =


1 1 1

1 0 1

0 0 0

0 1 0


for a query joining four relations. It represents an invalid variable
assignment, as relations 2 and 4 are not continuously present for all
succeeding joins once initially joined by joins 1 and 2 respectively,
while relation 3 has not been assigned a join at all. Using our readout
method, we determine ®c = 𝐴 ®𝑤 =

[
6 4 0 2

]𝑇 . Based on ®c, we
further arrive at the rank vector ®rk =

[
1 2 4 3

]𝑇 . Finally, we
may directly use ®rk as a join order, and have hence achieved our goal
of reading out a valid join order from an erroneous annealing result.

6 EXPERIMENTAL ANALYSIS
Our novel native encoding allows JO on quantum-inspired HW. To

evaluate the benefits, we next conduct an experimental analysis that

compares our DA method against a variety of competing methods.

We describe our experimental setup in Sec. 6.1, and analyse the

scalability of our method for large solution spaces in Sec. 6.2.

6.1 Experimental Setup
When considering the overall query optimisation workflow, which

includes steps such as query parsing and deriving statistical data,

we are only concerned with the join ordering step. Hence, our

problem input is given by a query graph, labeled with cardinalit-

ies, predicates and their selectivities, as derived by the preceding

query optimisation steps. Similarly to Neumann and Radke [38],

our experimental analysis considers query graphs extracted from

various workloads, which we pass to all algorithms used for our ex-

periments. We then evaluate the join order yielded by an algorithm

based on intermediate result sizes, following the cost function cout .
Finally, costs are normalised to the best solution determined by any

algorithm considered by our analysis.

Algorithms. Our goal is to show scalability benefits of our ap-

proach for large solution spaces. We compare our algorithm against

competing methods that are known to scale up to at least moderate

query sizes, and deliberately do not consider approaches known

to offer very limited scalability, such as DP algorithms for super-

polynomially growing search spaces.
5
, which fail to obtain solutions

for queries beyond 20 joins [54].

We consider the algorithm selection of Neumann and Radke [38]

representative of the state-of-the-art. To ascertain fairness, we com-

pare the DA, running our novel encoding, to algorithms operating

on left-deep solution spaces. We also include baselines to analyse

the effectiveness of our novel encoding and special-purpose DA

HW, leading to the following selection:

• DPSizeLinear: DP method by Selinger et al. [44], yielding optimal

solutions without cross products for any query graph.
• IKKBZ: Polynomial-time heuristic algorithm [18, 23], yielding

solutions without cross products for acyclic query graphs.
• Minsel: Greedy heuristic [47], yielding solutions without cross

products (CPs) for any query graph.
• MILP: Special-purpose optimisation algorithm [54], yielding solu-

tions with CPs for any query graph.
• Genetic: Genetic algorithm [45], yielding solutions with CPs for

any query graph.
• SA (novel encoding): Simulated Annealing, running our novel

encoding on classical HW, yielding solutions with CPs for any
query graph.

• DA (baseline): Digital Annealing, based on the baseline approx-
imation [41], yielding solutions with CPs for any query graph.

Our set of algorithms features representatives over a wide range

of methods, both established and novel for query optimisation. We

include exhaustive search to obtain optimal solutions for restric-

ted search spaces (DPSizeLinear), polynomial-time heuristics for

swiftly obtaining solutions (IKKBZ), greedy heuristics (Minsel),

metaheuristics (Genetic), special-purpose solvers with decades of

maturing, running on conventional HW (MILP), and finally, our

novel annealing method, tailored to fully exhaust the capabilities of

highly optimised special-purpose HW (DA). As further baselines,

we add SA on classical HW, running our novel encoding, to analyse

the performance advantage of special-purpose DA HW, and an

encoding with baseline cost approximation [41]
6
, run on the DA,

5
For JO, such approaches include DP algorithms considering cross products.

6
By augmenting the baseline encoding [41] with our novel encoding strategy for valid

join trees, allowing the use of our novel readout, the encoding yields an upper bound

9



Chain Cycle Star Tree

18 22 26 30 34 38 42 46 50 18 22 26 30 34 38 42 46 50 18 22 26 30 34 38 42 46 50 20 30 40 50

1

5

10

15
N/A

1

5

10

15
N/A

# Relations

N
or
m
al
is
ed

Co
st
[s
qr
t]

Algorithm
Digital Annealing (Baseline)

Digital Annealing (Novel)

DPSizeLin

Genetic

IKKBZ

MILP

Minsel

Simulated Annealing

1Figure 3: Normalised costs (relative to overall best solutions; square root scale) achieved by various JO approaches for chain, star,
cycle and tree queries joining increasing numbers of relations. Point ranges depict average, minimal and maximal normalised
costs obtained within a batch; individual solutions are given by small points. Cases where an algorithm does not produce a valid
result after 60s, or results with normalised costs equal or greater 20, are denoted by crosses (slightly jittered horizontally and
vertically to resolve outlier count) with cost N/A. Shaded areas group results for different input sizes. We split the comparison
of our approach (orange circles, identical values across rows) against the state-of-the-art into two rows to avoid visual clutter.

to evaluate the advantage of our novel encoding. Below, we assess

which approach is most capable for optimising large queries.

For DPSizeLinear, IKKBZ and Minsel, we use implementations

by Neumann and Radke [38], kindly provided to us in executable

form. We use the genetic algorithm implemented by Trummer [51],

adjusted to use the cost function𝐶𝑜𝑢𝑡 . For MILP, we use the original

Java code of Trummer and Koch [54], using the Gurobi optimiser

(version 10.0.0), and reuse their approximation quality setup (they

apply thresholds as powers of 10). We consider two additional

approximation quality setups, with thresholds as powers of 2 and

100, which correspond to higher and lower approximation qualities,

respectively. For each query, we report the bestMILP result obtained

over all configurations. All algorithms are set to time out after 60s.

Our JO-QUBO encodings, implemented in Python 3.8.16, are

available in the reproduction package. We run the SA dwave-neal

solver (version 0.6.0) on an octa-core AMD Ryzen 7 PRO 5850U

CPU with 32 GB of DDR4 RAM, and use the second generation DA.

Since optimisation time depends on the number of annealing steps,

or sweeps, we conduct runs with varying amounts (up to 10
4
for

SA and 10
8
for DA

7
), such that total optimisation time does not

exceed 60s. For the remaining parameters, we use default values.

We choose logarithmic thresholds based on exponentials of 2 as

described in Sec. 4.2. During preliminary testing, we observed a

dependence between the number of thresholds and QUBO penalty

weight determination (see Sec. 4.3), where increasing the former

on the performance of the baseline encoding [41]. This allows a thorough performance

comparison and moreover reduces variable requirements for the baseline encoding,

such that queries of all considered sizes fit onto the DA.

7
These represent upper bounds on orders of magnitude of annealing steps, as further

increases exceed our time limit of 60s.

complicates the latter. To reduce the load on the DA, we hence apply

three threshold configurations with single thresholds 0.63, 2.55

and 5.11 respectively, and moreover one configuration without

any thresholds, relying entirely on quadratic approximation. Even

such minimal threshold configurations are sufficient to achieve

substantial performance with our novel encoding, as we will show.

Like MILP, for each query, we report the best result derived

over all configurations
8
. For each experiment and configuration,

we conduct up to ten annealing runs
9
, each yielding 100 shots, or

solutions. Using our readout method as described in Sec. 5, we

decode each annealing result into a valid join order. In addition, we

obtain a fallback solution without cross products, by traversing the

query graph based on the annealing result, as described in Sec. 5.

6.2 Evaluating Scalability
Common benchmarks for JO include TPC-H [49], TPC-DS [50],

LDBC BI [2], SQLite [15] and the Join Order Benchmark [24]. Given

their small or simple queries
10
, their usefulness for assessing the

scalability advantage of DA is limited (a detailed evaluation for

these queries can be found in our technical report [42], confirming

the novel DA method performs well in all scenarios).

To assess the performance on larger queries, we need suitable

loads. We consider ten batches of synthetic queries generated with

the conventional method by Steinbrunn et al. [45], using code by

8
A configuration consists of threshold values and annealing steps.

9
For some queries, we conduct only a single annealing run, which is sufficient to

obtain good join order with high probability.

10
With exception of SQLite, queries included in these benchmarks join at most 18

relations, with median sizes substantially lower, whereas simply joining relations in

accordance to the PK/FK structure obtains optimal SQLite solutions.

10

https://github.com/lfd/vldb24


Trummer [51]. We generate 270 queries with up to 50 relations for

the classical chain, star, and cycle query graphs. In addition, we

evaluate our method on tree queries by Neumann and Radke [38],

where we consider 400 queries joining up to 50 relations. All queries

can be found in the reproduction package.

This captures many practically relevant and common scenarios

with varying properties, which allows to assess the general utility

of DA on JO, specifically (1) its capability to identify beneficial cross

product opportunities, which occur more frequently in chain and

cycle graphs than star graphs
11
, (2) its ability to solve cyclic queries,

which are problematic for some JO methods such as IKKBZ [18, 23],

and finally (3), the DA’s aptitude to obtain good solutions even for

complex star and tree queries, a task known to be NP-complete

when considering cross products [7, 8]. In contrast, the complexity

of optimising chain and cycle queries with cross products is not

fully understood [32]. However, given its factorial growth, their

extremely large solution space is still sufficiently challenging to

assess the scalability aptitude of JO algorithms, which becomes

apparent in our experiments. For all queries, Fig. 3 on page 10

depicts the normalised cost of the obtained results. A more detailed

analysis on execution time can be found in our technical report [42].

6.2.1 DPSizeLinear. Using exhaustive search, DPSizeLinear guar-

antees optimality for a linear solution space without cross products.

We observe that the algorithm manages to obtain such solutions

after a few milliseconds for chain and cycle queries joining up to

50 relations. The query graph linearity and lack of cross product

support restrict the amount of possible solutions for these queries,

and enable DPSizeLinear to obtain solutions even for large queries.

Limits arise for tree or star graphs, whose structure engenders a

large solution space even without cross products. For star graphs,

DPSizeLinear initially obtains solutions within a few seconds. From

26 relations on, optimisation typically takes around 45s, and starting

at 30 relations, no solution can be obtained before the 60s timeout.

For tree queries, timeouts appear for queries joining 40 relations,

and become frequent for 50 relations. While solutions are optimal

without cross products, their exclusion severely degrades solution

quality for chain and cycle queries: Normalised solution costs ex-

ceed competitors by up to a factor of almost 20.

6.2.2 IKKBZ. Unlike exhaustive search, IKKBZ heuristically de-

termines linear JO solutions without cross products in polynomial

time, enabling it to obtain good solutions even for large star queries

within milliseconds. This excludes cyclic queries, where IKKBZ

fails: While still obtaining solutions, their normalised costs often

exceed those of other methods by orders of magnitude. Like DP-

SizeLinear, IKKBZ is unable to scale for large, general query graphs.

Solution quality substantially suffers from excluded cross products.

6.2.3 Minsel. Similarly to IKKBZ and DPSizeLinear, Minsel con-

siders a solution space without cross products. However, even for

this restricted space, normalised costs for Minsel solutions often

exceed those of competitors by orders of magnitude. We there-

fore observe an inconsistent performance that is characteristic for

greedy algorithms, making the method inferior to most competitors.

11
Once joining the central relation in star queries, which is sensible within the first

few joins, cross products are no longer relevant. They only matter at the early stage.

We can assume fewer cross product opportunities for star than for chain/cycle queries.

6.2.4 MILP. In contrast to the methods discussed so far, the MILP

solver accounts for cross products, and explores an extremely large

search space with factorial growth in the number of relations. Des-

pite this challenge, the approach often obtains favourable cross

product solutions for chain and cycle queries, which are substan-

tially cheaper (up to a factor of almost 20) than join orders obtained

by DPSizeLinear and IKKBZ. When a normalised (near-)optimal

or solution (w.r.t. the best solution obtained by any algorithm) is

obtained, run-time varies from a few milliseconds (simple cases)

to over 20s (large queries). Our results also uncover a main draw-

back, as the MILP solver frequently fails to obtain a solution before

the 60s timeout. The frequency of timeouts tends to increase as

the number of relations grows. This illustrates the search space

explosion that brings contemporary MILP solvers to their limits.

6.2.5 Genetic. Like MILP, the genetic algorithm considers a solu-

tion space with cross products, thereby often obtaining higher solu-

tion quality than IKKBZ or DPSizeLinear, in particular for chain and

cycle queries. However, unlike MILP, the genetic solver guarantees

to yield a join order after each optimisation step. Yet, solution qual-

ity varies greatly, often exceeding normalised costs of 20, making

the genetic algorithm unsuitable for practical scenarios.

6.2.6 SA (Novel Encoding). SA on conventional HW (using our

novel encoding) performs more robust compared to the genetic

algorithm and MILP, while ensuring valid solutions. However, we

observe cases where normalised costs exceed competitors by orders

of magnitude. SA encounters runtime issues with an increasing

number of relations: For default annealing time, a single batch of 100

solutions requires roughly 50s for 50 relations, almost reaching our

60s timeout. The large JO solution space hence remains challenging

for SA on classical HW, even when using our novel encoding.

6.2.7 DA (Baseline Approximation). On the DA, obtaining a batch

of 100 solutions for queries joining 50 relations takes roughly 5-7s,

using the default 10
6
annealing steps. This illustrates the substantial

runtime advantage of DA HW over SA on classical HW, by roughly

an order of magnitude. We first analyse the encoding using baseline

cost approximation following Schönberger et al. [41]. Yielding in-
consistent performance, the method is frequently outperformed by

competitors. We attribute this to the sparse set of single thresholds,

unable to yield sufficient cost approximation following the baseline

method [41]. The method hence often fails to obtain solutions con-

taining beneficial cross products. However, increasing the amount

of thresholds proves difficult on the second generation DA, making

penalty weight tuning complex, as discussed above. The baseline

method hence does not conform well to contemporary DA HW,

due to complex parameter tuning and suboptimal performance.

6.2.8 DA (Novel Encoding). Finally, using our novel encoding, the

DA addresses the drawbacks of competing approaches while retain-

ing their strengths. Like MILP, the DA explores an extremely large

search space with cross products, where it often obtains cheaper

solutions compared to IKKBZ and DPSizeLinear. However, in stark

contrast to MILP, which suffers from frequent timeouts, and the ge-

netic algorithm, which frequently obtains very costly solutions, the

DA handles the extreme size of the solution space gracefully, as it

guarantees to yield the desired number of annealing solutions, each

of which we translate into a valid join order. While this provides no

11

https://github.com/lfd/vldb24


guarantees on the solution quality, our empirical results show that

the DA, using our novel encoding, obtains normalised optimal or

near-optimal solutions for all considered queries, independently of
the query graph shape and size. Normalised optimal or near-optimal

solutions are typically obtained within the first batch of 100 an-

nealing runs. Depending on query size, a batch requires predictable

optimisation time of 5-7s. For JO, the DA is roughly an order of

magnitude faster than SA on classical HW.

Using our novel encoding, the DA provides the most consistent

performance out of all considered JO algorithms, typically obtaining

normalised optimal or near-optimal solutions within seconds, even

with a sparse set of thresholds. To further increase solution quality,

one may apply a broader selection of thresholds, which requires

additional annealing runs. To address the increased optimisation

time, the number of individual solutions sampled for single runs

may be decreased. We recommend thresholds based on powers of 2

to enable our variable-efficient binary encoding of Sec. 4.2.

Our results, though already substantial, only give lower perform-

ance bounds, as we use single cost approximation thresholds. Newer

DAHW offers advanced methods for penalty weight tuning
12
. This

may ease using large amounts of thresholds, thus reducing the im-

pact of individual thresholds, and increasing solution quality.

7 RELATEDWORK
The JO problem is among themost extensively studied query optimi-

sation problems [24, 32, 37, 38, 54, 58]. Exhaustive search methods

such as DP [30, 33, 34, 44, 55] provide optimal solutions within

their solution spaces, yet face limitations when scaling up problem

dimensions. Heuristic methods [6, 17, 20, 45, 47, 48, 53] are more

suitable for large queries, yet provide no guarantees on solution

quality. This category contains the method discussed in this paper.

Query optimization methods based on machine learning [21, 25, 26]

have become popular in the past years. Corresponding work typ-

ically focuses on optimising smaller queries more reliably (e.g.,
by learning data correlations [21]), rather than addressing chal-

lenges due to particularly large search spaces. Recent work in this

domain [26] exploits traditional optimisers as a sub-function and

could therefore benefit from faster join ordering methods as well.

Approaches like MILP have been applied on a variety of DB opti-

misation problems: Multiple query optimisation [10], materialised

view design [57], or index selection [40]. Ref. [54] gives a MILP

encoding for JO; yet, large JO solution spaces remain problematic

for highly optimised solvers on conventional HW.

Rather than conventional HW,we consider the Fujitsu DA, which

applies quantum-inspired extensions to classical SA, to exploit its

high parallelisation capabilities enabled by special-purpose HW.

Thereby, the DA can achieve speedups of two orders of magnitude

over classical SA for dense QUBO problems, as shown by Aramon

et al. [3]. Matsubara et al. [28] provide an overview on DA for a

variety of combinatorial optimisation problems. For the MinCut

and MaxCut problems, the DA outperforms dedicated solvers in

both, solution quality and runtime performance, achieving spee-

dups over conventional methods by orders of magnitude. Similar

improvements have recently been achieved for problems in various

12
Generations 3 and 4 determine weights by separating validity and cost terms.

domains, including sensor placement [19], optical network modern-

isation [46], market graph clustering [16] and segment routing [11].

Our DA method follows a trend within DB research that recog-

nises limitations of general-purpose systems and addresses them

using special-purpose HW. Related approaches include, for instance,

an energy-efficient stream join for IoT [31], or resource-efficient

FPGAmodules for DB operators [35], among other research [12, 60].

QUBO encodings have been proposed for different DB problems,

such as DB transaction scheduling [4, 5, 14] or multiple query opti-

misation [52]. However, these problems are unrelated to JO. Their

problem-specific encodings cannot be reused for JO, and have so far

only been applied to small-scale problems with quantum annealing.

They presently do not scale, given current QPU HW limitations. In

contrast, we demonstrate scalability for JO problems with extremely

large search spaces, using highly optimised quantum-inspired HW.

8 DISCUSSION AND CONCLUSION
The shift from general-purpose HW to optimised special-purpose

systems, motivated by the prospect of higher energy efficiency and

computational throughput, is an established trend within many

fields, including database research. To exhaust the full potential of

these systems, a comprehensive perspective encompassing both,

novel problem encodings (SW) and architectural aspects (HW) is

required. Driven by such co-design considerations, we are prompted

to re-evaluate existing optimisationmethods, designed andmatured

for conventional systems, tailoring them to special-purpose HW.

The potential of such systems remains unexplored for many

database problems, which motivates us to evaluate their aptness in

the domain, starting with its most fundamental problems. We have

analysed the potential of quantum-inspired special-purpose HW on

the join ordering problem, which (1) is one of the most fundamental

query optimisation problems, and (2) features an extremely large

solution space, making it a challenging and suitable candidate to

assess the aptitude of special-purpose HW.

Given the large JO solution space, obtaining exact optimal solu-

tions with exhaustive search becomes infeasible beyond small-sized

queries. While many established methods consider a reduced search

space for feasible exploration, the size reduction can severely de-

grade solution quality, as shown by our results. Finding ways to

handle large solution spaces remains desirable, and previous at-

tempts include the use of MILP solvers. Our results show their

limitations, as MILP optimisation frequently fails as queries grow.

We solve queries on the quantum-inspired Fujitsu DA, using a

novel, native JO-QUBO encoding tailored to the DA’s architecture.

Unlike MILP, our DA approach guarantees, within predictable opti-

misation times, to yield the desired number of solutions even for

large queries joining 50 relations, which far exceeds typical query

dimensions, including complex join orders unobtainable within the

restricted search space considered by competing approaches. Our

results demonstrate the aptitude of special-purpose HW to achieve

scalability even for extremely large JO solution spaces, and prompt

their further evaluation on yet unconsidered problems.

Acknowledgements. MS and WM were supported by the German Federal

Ministry of Education and Research (BMBF), funding program “Quantum

Technologies—from Basic Research to Market”, grant number 13N15647.

WM acknowledges support by the High-Tech Agenda Bavaria.

12



REFERENCES
[1] Tameem Albash and Daniel A. Lidar. 2018. Adiabatic quantum computation. Rev.

Mod. Phys. 90 (Jan 2018), 015002. Issue 1. https://doi.org/10.1103/RevModPhys.

90.015002

[2] Renzo Angles, Peter Boncz, Josep-Lluis Larriba-Pey, Irini Fundulaki, Thomas

Neumann, Orri Erling, Peter Neubauer, Norbert Martínez-Bazan, Venelin Kotsev,

and Ioan Toma. 2014. The Linked Data Benchmark Council: A graph and RDF

industry benchmarking effort. ACM SIGMOD Record 43 (05 2014), 27–31. https:

//doi.org/10.1145/2627692.2627697

[3] Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hiro-

taka Tamura, and Helmut G. Katzgraber. 2019. Physics-Inspired Optimization

for Quadratic Unconstrained Problems Using a Digital Annealer. Frontiers in
Physics 7 (2019). https://doi.org/10.3389/fphy.2019.00048

[4] Tim Bittner and Sven Groppe. 2020. Avoiding Blocking by Scheduling Trans-

actions Using Quantum Annealing. In Proceedings of the 24th Symposium on
International Database Engineering & Applications (Seoul, Republic of Korea)
(IDEAS ’20). Association for Computing Machinery, New York, NY, USA, Article

21, 10 pages. https://doi.org/10.1145/3410566.3410593

[5] Tim Bittner and Sven Groppe. 2020. Hardware Accelerating the Optimization

of Transaction Schedules via Quantum Annealing by Avoiding Blocking. Open
Journal of Cloud Computing (OJCC) 7, 1 (2020), 1–21.

[6] Nicolas Bruno, César Galindo-Legaria, and Milind Joshi. 2010. Polynomial heur-

istics for query optimization. In 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010). 589–600. https://doi.org/10.1109/ICDE.2010.5447916

[7] S. Chatterji, S. S. K. Evani, S. Ganguly, and M. D. Yemmanuru. 2002. On the

Complexity of Approximate Query Optimization. In Proceedings of the Twenty-
First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(Madison, Wisconsin) (PODS ’02). Association for Computing Machinery, New

York, NY, USA, 282–292. https://doi.org/10.1145/543613.543650

[8] Sophie Cluet and Guido Moerkotte. 1995. On the complexity of generating

optimal left-deep processing trees with cross products. In Database Theory —
ICDT ’95. Springer Berlin Heidelberg, Berlin, Heidelberg, 54–67.

[9] Nicolas Dieu, Adrian Dragusanu, Françoise Fabret, François Llirbat, and Eric

Simon. 2009. 1,000 Tables Under the From. PVLDB 2, 2 (2009), 1450–1461.

https://doi.org/10.14778/1687553.1687572

[10] Tansel Dokeroglu, Murat Ali Bayır, and Ahmet Cosar. 2014. Integer Linear Pro-

gramming Solution for the Multiple Query Optimization Problem. In Information
Sciences and Systems 2014, Tadeusz Czachórski, Erol Gelenbe, and Ricardo Lent

(Eds.). Springer International Publishing, Cham, 51–60.

[11] Sebastian Engel, Christian Münch, Fritz Schinkel, Oliver Holschke, Marc Geitz,

and Timmy Schüller. 2022. Segment Routing with Digital Annealing. In NOMS
2022-2022 IEEE/IFIP Network Operations and Management Symposium. 1–9. https:

//doi.org/10.1109/NOMS54207.2022.9789782

[12] Johannes Fett, Annett Ungethüm, Dirk Habich, and Wolfgang Lehner. 2021. The

Case for SIMDified Analytical Query Processing on GPUs. In Proceedings of the
17th International Workshop on Data Management on New Hardware (DaMoN
2021) (Virtual Event, China) (DAMON’21). Association for Computing Machinery,

New York, NY, USA, Article 14, 5 pages. https://doi.org/10.1145/3465998.3466015

[13] Fujitsu Limited. 2023. Fujitsu Digital Annealer - solving large-scale combinatorial

optimization problems instantly. https://www.fujitsu.com/emeia/services/

business-services/digital-annealer/what-is-digital-annealer/

[14] Sven Groppe and Jinghua Groppe. 2021. Optimizing Transaction Schedules

on Universal Quantum Computers via Code Generation for Grover’s Search

Algorithm. In 25th International Database Engineering & Applications Symposium
(Montreal, QC, Canada) (IDEAS 2021). Association for Computing Machinery,

New York, NY, USA, 149–156. https://doi.org/10.1145/3472163.3472164

[15] Richard D Hipp. 2020. SQLite. https://www.sqlite.org/index.html

[16] Seo Woo Hong, Pierre Miasnikof, Roy Kwon, and Yuri Lawryshyn. 2021. Market

Graph Clustering via QUBO and Digital Annealing. Journal of Risk and Financial
Management 14, 1 (2021). https://doi.org/10.3390/jrfm14010034

[17] Jorng-Tzong Horng, Cheng-Yan Kao, and Baw-Jhiune Liu. 1994. A genetic

algorithm for database query optimization. In Proceedings of the First IEEE Con-
ference on Evolutionary Computation. IEEE World Congress on Computational
Intelligence. 350–355 vol.1. https://doi.org/10.1109/ICEC.1994.349926

[18] Toshihide Ibaraki and Tiko Kameda. 1984. On the Optimal Nesting Order for

Computing N-Relational Joins. ACMTrans. Database Syst. 9, 3 (sep 1984), 482–502.
https://doi.org/10.1145/1270.1498

[19] Tomoki Inoue, Tsubasa Ikami, Yasuhiro Egami, Hiroki Nagai, Yasuo Naganuma,

Koichi Kimura, and Yu Matsuda. 2023. Data-driven optimal sensor placement

for high-dimensional system using annealing machine. Mechanical Systems and
Signal Processing 188 (2023), 109957. https://doi.org/10.1016/j.ymssp.2022.109957

[20] Y. E. Ioannidis and Younkyung Kang. 1990. Randomized Algorithms for Optimiz-

ing Large Join Queries. SIGMOD Rec. 19, 2, 312–321. https://doi.org/10.1145/

93605.98740

[21] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and

Alfons Kemper. 2018. Learned cardinalities: estimating correlated joins with

deep learning. In CIDR. 1–8. arXiv:1809.00677 http://arxiv.org/abs/1809.00677

[22] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by Simulated

Annealing. Science 220, 4598 (1983), 671–680. https://doi.org/10.1126/science.220.
4598.671 arXiv:https://www.science.org/doi/pdf/10.1126/science.220.4598.671

[23] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. 1986. Optimization of

Nonrecursive Queries. In Proceedings of the 12th International Conference on Very
Large Data Bases (VLDB ’86). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 128–137.

[24] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz,

Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the

looking glass, and what we found running the join order benchmark. The VLDB
Journal 27 (2018), 643–668.

[25] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2018. Neo: A Learned

query optimizer. PVLDB 12, 11 (2018), 1705–1718. https://doi.org/10.14778/

3342263.3342644 arXiv:1904.03711

[26] Tim Marcus, Ryan and Negi, Parimarjan and Mao, Hongzi and Tatbul, Nesime

and Alizadeh, Mohammad and Kraska. 2022. Bao: Making Learned Query Op-

timization Practical. In ACM SIGMOD Record, Vol. 51. 6–13. https://doi.org/10.

1145/3542700.3542702

[27] Jirí Matousek and Robin Thomas. 1992. On the complexity of finding iso- and

other morphisms for partial k-trees. Discret. Math. 108 (1992), 343–364.
[28] Satoshi Matsubara, Motomu Takatsu, Toshiyuki Miyazawa, Takayuki Shibasaki,

Yasuhiro Watanabe, Kazuya Takemoto, and Hirotaka Tamura. 2020. Digital

Annealer for High-Speed Solving of Combinatorial optimization Problems and

Its Applications. In 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC). 667–672. https://doi.org/10.1109/ASP-DAC47756.2020.9045100

[29] Catherine McGeoch and Pau Farré. 2020. The D-Wave Advantage system: An
overview. Technical Report 14-1049A-A. D-Wave Systems Inc.

[30] Andreas Meister and Gunter Saake. 2020. GPU-accelerated dy-
namic programming for join-order optimization. Technical Report.

https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_

und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf

[31] Adrian Michalke, Philipp M. Grulich, Clemens Lutz, Steffen Zeuch, and Volker

Markl. 2021. An Energy-Efficient Stream Join for the Internet of Things. In

Proceedings of the 17th International Workshop on Data Management on New
Hardware (DaMoN 2021) (Virtual Event, China) (DAMON’21). Association for

Computing Machinery, New York, NY, USA, Article 8, 6 pages. https://doi.org/

10.1145/3465998.3466005

[32] Guido Moerkotte. 2020. Building query compilers. https://pi3.informatik.uni-

mannheim.de/~moer/querycompiler.pdf

[33] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One

NewDynamic Programming Algorithm for the Generation of Optimal Bushy Join

Trees without Cross Products. In Proceedings of the 32nd International Conference
on Very Large Data Bases (Seoul, Korea) (VLDB ’06). VLDB Endowment, 930–941.

[34] Guido Moerkotte and Thomas Neumann. 2008. Dynamic Programming Strikes

Back. In Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data (Vancouver, Canada) (SIGMOD ’08). Association for Comput-

ing Machinery, New York, NY, USA, 539–552. https://doi.org/10.1145/1376616.

1376672

[35] Mehdi Moghaddamfar, Christian Färber, Wolfgang Lehner, Norman May, and

Akash Kumar. 2021. Resource-Efficient Database Query Processing on FPGAs.

In Proceedings of the 17th International Workshop on Data Management on New
Hardware (DaMoN 2021) (Virtual Event, China) (DAMON’21). Association for

Computing Machinery, New York, NY, USA, Article 4, 8 pages. https://doi.org/

10.1145/3465998.3466006

[36] Hiroshi Nakayama, Junpei Koyama, Noboru Yoneoka, and Toshiyuki Miyazawa.

2021. Description: Third Generation Digital Annealer Technology. https://www.

fujitsu.com/global/documents/about/research/techintro/3rd-g-da_en.pdf

[37] Thomas Neumann. 2009. Query Simplification: Graceful Degradation for Join-

Order Optimization. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data (Providence, Rhode Island, USA) (SIGMOD
’09). Association for Computing Machinery, New York, NY, USA, 403–414.

https://doi.org/10.1145/1559845.1559889

[38] Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization of Very

Large Join Queries. In Proceedings of the 2018 International Conference on Manage-
ment of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Ma-

chinery, New York, NY, USA, 677–692. https://doi.org/10.1145/3183713.3183733

[39] B. O’Gorman, R. Babbush, A. Perdomo-Ortiz, A. Aspuru-Guzik, and V. Smely-

anskiy. 2015. Bayesian network structure learning using quantum annealing.

The European Physical Journal Special Topics 224, 1 (2015), 163–188.
[40] Stratos Papadomanolakis and Anastassia Ailamaki. 2007. An Integer Linear

Programming Approach to Database Design. In 2007 IEEE 23rd International
Conference on Data Engineering Workshop. 442–449. https://doi.org/10.1109/

ICDEW.2007.4401027

[41] Manuel Schönberger, Stefanie Scherzinger, and Wolfgang Mauerer. 2023. Ready

to Leap (by Co-Design)? Join Order Optimisation on Quantum Hardware. In

Proceedings of the 2023 ACM International Conference on Management of Data.
ACM, Seattle, WA, USA.

13

https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1145/2627692.2627697
https://doi.org/10.1145/2627692.2627697
https://doi.org/10.3389/fphy.2019.00048
https://doi.org/10.1145/3410566.3410593
https://doi.org/10.1109/ICDE.2010.5447916
https://doi.org/10.1145/543613.543650
https://doi.org/10.14778/1687553.1687572
https://doi.org/10.1109/NOMS54207.2022.9789782
https://doi.org/10.1109/NOMS54207.2022.9789782
https://doi.org/10.1145/3465998.3466015
https://www.fujitsu.com/emeia/services/business-services/digital-annealer/what-is-digital-annealer/
https://www.fujitsu.com/emeia/services/business-services/digital-annealer/what-is-digital-annealer/
https://doi.org/10.1145/3472163.3472164
https://www.sqlite.org/index.html
https://doi.org/10.3390/jrfm14010034
https://doi.org/10.1109/ICEC.1994.349926
https://doi.org/10.1145/1270.1498
https://doi.org/10.1016/j.ymssp.2022.109957
https://doi.org/10.1145/93605.98740
https://doi.org/10.1145/93605.98740
https://arxiv.org/abs/1809.00677
http://arxiv.org/abs/1809.00677
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.220.4598.671
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://arxiv.org/abs/1904.03711
https://doi.org/10.1145/3542700.3542702
https://doi.org/10.1145/3542700.3542702
https://doi.org/10.1109/ASP-DAC47756.2020.9045100
https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
https://www.inf.ovgu.de/inf_media/downloads/forschung/technical_reports_und_preprints/2020/TechnicalReport+02_2020-p-8268.pdf
https://doi.org/10.1145/3465998.3466005
https://doi.org/10.1145/3465998.3466005
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/3465998.3466006
https://doi.org/10.1145/3465998.3466006
https://www.fujitsu.com/global/documents/about/research/techintro/3rd-g-da_en.pdf
https://www.fujitsu.com/global/documents/about/research/techintro/3rd-g-da_en.pdf
https://doi.org/10.1145/1559845.1559889
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1109/ICDEW.2007.4401027
https://doi.org/10.1109/ICDEW.2007.4401027


[42] Manuel Schönberger, Immanuel Trummer, and Wolfgang Mauerer. 2023.

Quantum-Inspired Digital Annealing for Join Ordering. Technical Report. https:

//lfdr.de/Publications/2023/ScTrMa_TR.pdf

[43] Manuel Schönberger, Immanuel Trummer, and Wolfgang Mauerer. 2023.

Quantum Optimisation of General Join Trees. In Joint Workshops at 49th In-
ternational Conference on Very Large Data Bases (VLDBW’23) — International
Workshop on Quantum Data Science and Management (QDSM ’23).

[44] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.

Price. 1979. Access Path Selection in a Relational Database Management System.

In Proceedings of the 1979 ACM SIGMOD International Conference on Manage-
ment of Data (Boston, Massachusetts) (SIGMOD ’79). Association for Computing

Machinery, New York, NY, USA, 23–34. https://doi.org/10.1145/582095.582099

[45] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. 1997. Heuristic and

randomized optimization for the join ordering problem. The VLDB journal 6
(1997), 191–208.

[46] Masahiko Sugimura, Mikinori Kobayashi, Hidetoshi Matsumura, Xi Wang, and

Paparao Palacharla. 2022. Accelerate Optical Network Modernization through

Quantum-inspired Digital Annealing. In 2022 European Conference on Optical
Communication (ECOC). 1–4.

[47] A. Swami. 1989. Optimization of Large Join Queries: Combining Heuristics

and Combinatorial Techniques. In Proceedings of the 1989 ACM SIGMOD In-
ternational Conference on Management of Data (Portland, Oregon, USA) (SIG-
MOD ’89). Association for Computing Machinery, New York, NY, USA, 367–376.

https://doi.org/10.1145/67544.66961

[48] Arun Swami and Anoop Gupta. 1988. Optimization of Large Join Queries. SIG-
MOD Rec. 17, 3, 8–17. https://doi.org/10.1145/971701.50203

[49] Transaction Processing Performance Council . 2023. TPC Benchmark H. https:

//www.tpc.org/

[50] Transaction Processing Performance Council. 2023. TPC Benchmark DS. https:

//www.tpc.org/

[51] Immanuel Trummer. 2016. Query Optimizer Library. https://github.com/

itrummer/query-optimizer-lib

[52] Immanuel Trummer and Christoph Koch. 2016. Multiple query optimization on

the D-Wave 2X adiabatic quantum computer. Proceedings of the VLDB Endowment
9, 9 (May 2016), 648–659.

[53] Immanuel Trummer and Christoph Koch. 2016. Parallelizing Query Optimization

on Shared-Nothing Architectures. Proc. VLDB Endow. 9, 9 (may 2016), 660–671.

https://doi.org/10.14778/2947618.2947622

[54] Immanuel Trummer and Christoph Koch. 2017. Solving the join ordering prob-

lem via mixed integer linear programming. In Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, New York, NY, USA,

1025–1040.

[55] Bennet Vance and David Maier. 1996. Rapid Bushy Join-Order Optimization

with Cartesian Products. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data (Montreal, Quebec, Canada) (SIGMOD ’96).
Association for Computing Machinery, New York, NY, USA, 35–46. https:

//doi.org/10.1145/233269.233317

[56] A. Adrian Vogelsgesang, M. Michael Haubenschild, J. Jan Finis, A. Alfons Kemper,

V. Viktor Leis, T. Tobias Muehlbauer, T. Thomas Neumann, and M. Manuel Then.

2018. Get real: How benchmarks Fail to Represent the Real World. In DBTest.
https://doi.org/10.1145/3209950.3209952

[57] Jian Yang, Kamalakar Karlapalem, and Qing Li. 1997. Algorithms for Materialized

View Design in Data Warehousing Environment. In Proceedings of the 23rd
International Conference on Very Large Data Bases (VLDB ’97). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 136–145.

[58] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement

Learning with Tree-LSTM for Join Order Selection. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1297–1308. https://doi.org/10.1109/

ICDE48307.2020.00116

[59] Stefanie Zbinden, Andreas Bärtschi, Hristo Djidjev, and Stephan Eidenbenz.

2020. Embedding algorithms for quantum annealers with Chimera and Pegasus

connection topologies. In High Performance Computing. Springer International
Publishing, Cham, 187–206.

[60] Qitian Zeng, Kyle C. Hale, and Boris Glavic. 2021. Playing Fetch with CAT:

Composing Cache Partitioning and Prefetching for Task-Based Query Processing.

In Proceedings of the 17th International Workshop on Data Management on New
Hardware (DaMoN 2021) (Virtual Event, China) (DAMON’21). Association for

Computing Machinery, New York, NY, USA, Article 15, 5 pages. https://doi.org/

10.1145/3465998.3466016

14

https://lfdr.de/Publications/2023/ScTrMa_TR.pdf
https://lfdr.de/Publications/2023/ScTrMa_TR.pdf
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/67544.66961
https://doi.org/10.1145/971701.50203
https://www.tpc.org/
https://www.tpc.org/
https://www.tpc.org/
https://www.tpc.org/
https://github.com/itrummer/query-optimizer-lib
https://github.com/itrummer/query-optimizer-lib
https://doi.org/10.14778/2947618.2947622
https://doi.org/10.1145/233269.233317
https://doi.org/10.1145/233269.233317
https://doi.org/10.1145/3209950.3209952
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1145/3465998.3466016
https://doi.org/10.1145/3465998.3466016

	Abstract
	1 Introduction
	2 Digital Annealing Fundamentals
	2.1 Simulated Annealing
	2.2 Quantum Annealing
	2.3 Digital Annealing
	2.4 Problem Encoding

	3 Join Ordering Model
	3.1 Problem Input
	3.2 Solution Space
	3.3 Cost Function

	4 QUBO Encoding
	4.1 Encoding Valid Join Trees
	4.2 Encoding Join Order Costs
	4.3 The Complete Encoding

	5 Readout
	6 Experimental Analysis
	6.1 Experimental Setup
	6.2 Evaluating Scalability

	7 Related Work
	8 Discussion and Conclusion
	References

