
Challenges and Opportunities in Quantum
Software Architecture?

Tao Yue1[0000−0003−3262−5577], Wolfgang Mauerer2,3[0000−0002−9765−8313],
Shaukat Ali1[0000−0002−9979−3519], and Davide Taibi4,5[0000−0002−3210−3990]

1 Simula Research Laboratory, Kristian August Gate 23, 0164 Oslo, Norway
tao,shaukat@simula.no

2 Technical University of Applied Sciences Regensburg, Galgenbergstraße 32,
93053 Regensburg, Germany

3 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 München, Germany
wolfgang.mauerer@othr.de

4 University of Oulu, Oulu, Finland
5 Tampere University, Tampere, Finland

davide.taibi@oulu.fi

Abstract. Quantum computing is a relatively new paradigm that has
raised considerable interest in physics and computer science in general
but has so far received little attention in software engineering and archi-
tecture. Hybrid applications that consist of both quantum and classical
components require the development of appropriate quantum software
architectures. However, given that quantum software engineering (QSE)
in general is a new research area, quantum software architecture–a sub-
research area in QSE is also understudied. The goal of this chapter is
to provide a list of research challenges and opportunities for such archi-
tectures. In addition, to make the content understandable to a broader
computer science audience, we provide a brief overview of quantum com-
puting and explain the essential technical foundations.

Keywords: Quantum Computing · Software Architecture · Quantum
Applications · Quantum Software Engineering

1 Introduction

There is, in general, the consensus among the quantum computing (QC) com-
munity that QC applications will primarily be hybrid; that is, some features
will be executed efficiently on classical computers, whereas some specialized fea-
tures will be executed efficiently on quantum computers [1,2]. This pattern is
by pure choice; most known quantum algorithms, from Shor’s seminal factoring

? Wolfgang Mauerer’s work is funded by the German Federal Ministry of Education
and Research within the funding program quantum technologies—from basic re-
search to market—contract numbers 13N15645 and 13N16092. Tao Yue and Shaukat
Ali are supported by Qu-Test (Project#299827) funded by the Research Council of
Norway and Simula’s internal strategic project on Quantum Software Engineering.



2 T. Yue et al.

algorithm to recent variational approaches, rely on classical sub-routines at their
very core that cannot be beneficially replaced by pure quantum approaches. As a
result, there will be close interaction between classical and quantum software, de-
manding careful consideration of both worlds when designing quantum software
architectures (QSAs). QSAs of quantum software define the high-level structure
of the software system, including its components, their interactions, and data
flow.

QSA is a relatively new research area within the broader area of quantum
software engineering (QSE). Therefore, we believe it is crucial to identify high-
level research questions (RQs) related to QSAs for hybrid applications, followed
by devising potential research directions that deserve attention from the com-
munity. Thus, our goal is to present high-level research challenges for QSAs.

To achieve the above goal, we identify four high-level RQs. The first RQ iden-
tifies research directions on whether we need to consider architectural designs for
quantum software or whether classical design considerations are sufficient. The
second RQ focuses more specifically on architecture-level concerns for quantum
software, such as issues related to optimising architectures, integration of various
components, and interactions with hardware. The third RQ gets into further de-
tails of whether the knowledge gained from the classical world can be transferred
to the quantum world, such as with respect to relevant standards, architecture
specification languages, and architectural patterns. Finally, the fourth RQ dis-
cusses research directions related to processes of executing hybrid applications
on a diverse set of computing resources from an architectural perspective.

We organize the rest of the chapter as follows: Section 2 provides some rele-
vant background. Section 3 discusses the overall organization of the RQs, whereas
Section 4 to Section 7 discusses each RQ in detail. Finally, we conclude the chap-
ter in Section 8.

2 Background

Since QC is a new paradigm for many members of the software architecture com-
munity, let us briefly summarise the characteristics that differ from the classical
computation. How hardware is implemented varies widely among commercial
vendors (even more so between research prototypes). For instance, superconduct-
ing circuits, particle traps (cold ions, neutral atoms), ion implantation into crys-
tal lattices or optical technologies find use. Computations can be performed by
applying quantum logic gates on quantum states (which is, conceptually, similar
to applying classical logical gates on classical bits) or by using optimisation-like
approaches (quantum annealing) that are not equivalent in their computational
capabilities to the quantum gate model, yet have some advantages in terms of
physical implementation [3] and practical utility [4]. Details from both approach
and implementation do not just have a substantial impact on the algorithmic
level [5,6], but may also influence architecturally relevant qualities [7], and can
impact architecture decisions.



Challenges and Opportunities in Quantum Software Architecture 3

In particular, it holds for any currently implemented quantum computer that:
(a) results are usually approximate; (b) execution times vary stochastically (even
for identical programs on identical machines); and (c) algorithmic scalability
depends on low-level details like the circuit generation from source code.

Likewise, quantum computers will eventually be used as (a) an embedded
component of a classical system that acts as a computational accelerator (like,
e.g., Graphical Processing Units (GPUs), Tensor Processing Unit (TPUs), or
Floating-Point Units (FPUs)), or (b) a cloud resource that is accessed via APIs.
While the same distinction holds classically, hardware constraints (for instance,
the need to cool chips to near-zero temperature for some approaches) will amplify
differences between these two variants in a much larger way than what archi-
tects are currently accustomed to. It is not yet well understood where the exact
boundaries between software architecture, software engineering and algorithmic
details reside for quantum computers.

A final distinction that is not known from classical computing is between the
following types of systems:

– NISQ (noisy, intermediate scale quantum computer)—these systems are com-
mercially available, usually in a prototypical form, at the time of writing;

– PISQ (perfect (error-corrected), intermediate scale quantum computer)—
such machines are fully error-corrected, large-scale QC—these may be avail-
able within years, decades, or perhaps even never, as many technological and
some foundational physical problems will need to be solved;

– Special-purpose accelerators (e.g., annealers, coherent Ising machines, (Gaus-
sian) boson sampling) whose computational capabilities may not necessarily
be polynomially equivalent to gate-based quantum computers.

3 Overview

QSA is still in its early stage and is primarily a less-touched research area.
Therefore, in this chapter, we aim to answer four basic RQs, which we believe
are relevant to the QSA community at the current stage.

In the first step, we aim to check whether it is sufficient to rely on knowledge
gained from the classical world to the quantum world regarding architectural de-
signs (RQ1, Section 4). To answer this RQ, we particularly focus on checking the
current practice of accessing quantum computers since access modes have direct
impacts on architectural designs. We further check whether existing modelling
notations for architecture descriptions can be reused because an architectural
design needs to be specified and used as a medium for facilitating communi-
cations among stakeholders. Furthermore, to enable architectural-level analyses
of trade-offs of design choices, a taxonomy of quantum-specific constraints and
quality attributes is expected to be proposed, which we think is worth discussing
in RQ1 as well. We further elaborate on the importance of striking a balance
involving low-level, quantum-specific design choices at the architectural design
level. One of the challenges for software engineers to develop quantum software
is a lack of knowledge in quantum mechanics, physics, etc. There is, obviously,



4 T. Yue et al.

a practical need to raise the level of abstraction while keeping necessary details
in the architectural design.

Motivated by the positive answer to RQ1, when answering RQ2 (Section 5),
we first define what we mean by an optimal architecture. Based on the definition,
we then discuss relevant architectural-level concerns. One paramount concern is
about how to integrate quantum components into existing architectures. We
further highlight properties of quantum hardware that have an ineligible impact
on result quality, speed of calculation, degree of variability in runtime, etc. We
believe these properties are essential to consider during architectural designs.
Furthermore, we list a set of other considerations (e.g., the impact of the evolu-
tion of QC hardware on architectural designs) and call for contributions.

By knowing the architecture level concerns identified in RQ2, in RQ3 (Section
6), we examine whether knowledge gained from the classical world is still appli-
cable to the quantum world to address these concerns and present the literature
of existing proposals particularly targeting QSAs. Specifically, we check whether
existing architecture standards are still applicable and whether new standards
are required for QSAs. We further check whether existing and classical-world
architecture description languages (ADLs) can be used for designing QSAs, and
discuss the state-of-art ADLs proposed specifically for quantum software. We also
present existing proposals on quantum software architectural patterns. Consider-
ing that quantum computers are typically accessed via the cloud, we particularly
discuss quantum DevOps and quantum services.

In RQ4, we present our thoughts on a possible process of running hybrid
applications on diverse computing resources. Particularly we elaborate on key
roles/players in the process and their tasks.

4 RQ1: Do we need to consider QSA designs in a
specialised way?

This RQ looks into whether we need to consider QSA in a specialized way as
compared to the classical way or whether the classical software architecture also
applies to quantum software. We discuss this from multiple dimensions below.

4.1 Accessing Quantum Computers through Cloud

In the current state of practice, quantum computers are located in cloud com-
puting infrastructures. A user gets access to them through cloud services. Com-
mercial players such as Amazon with its Braket platform 6 provide access to
various types of quantum computers such as gate-based, ion trap-based, and
neutral-atom-based quantum computers. The same trend exists for other se-
tups, too, e.g., NordIQuEst 7 in a Nordic and Estonian infrastructure that pro-
vides access to Nordic quantum computers from Chalmers University, Sweden

6 https://aws.amazon.com/braket/
7 https://nordiquest.net/

https://aws.amazon.com/braket/
https://nordiquest.net/


Challenges and Opportunities in Quantum Software Architecture 5

and Technical Research Centre of Finland (VTT), Finland 8 through European
High-Performance Computing (HPC) platforms, i.g., LUMI 9 and eX3 10. Ir-
respective of quantum computer types, services provided via the cloud do not
differ from a standard way of accessing other services from a technical point
of view. To this end, benefiting from existing architectural design notations to
capture a user’s connections to various quantum computers via cloud services
might be the right direction to go. In Section 6.4, we will discuss this more.

In terms of research, we foresee the need for methods with software tools
to help users automatically and optimally decide which quantum computers to
use from the cloud infrastructure for their specific QC applications, which will
provide the best computational capability with minimum noise. One work in the
literature [8] describes various characteristics of QC platforms, followed by how
different quality attributes, such as availability, performance, and portability, im-
pact these attributes (also see some details in RQ2 and RQ3). Interested readers
may consult the reference [8] for more details. To build such methods, one needs
to develop a comprehensive quantum software architectural framework, which
captures characteristics of various types of quantum computers, such as compu-
tational power measured as quantum volume, type of technologies, and physical
arrangements of qubits. Such an architectural framework can be considered the
foundation of helping in optimally deploying QC applications.

In general, we believe that accessing quantum computers through High-
Performance Computing (HPC) platforms will remain one of the future dominant
ways for QC. Therefore, QSAs shall consider various aspects of cloud computing.

4.2 Use of Existing Notations via Extensions

One aspect to investigate is whether a QSA could be captured with exist-
ing modelling notations, e.g., UML component diagrams, by providing exten-
sions. Examples of QC concepts include gates, qubits, superposition, entan-
glement, etc. Keeping our example of a UML component diagram, one could
define a Unified Modeling Language (UML) profile consisting of a set of stereo-
types and their associated attributes, data libraries, and constraints, which
could be used to model QSAs. We feel that existing architectural design meth-
ods/notations/tools/methodologies can largely be reused.

One point, however, to consider is that quantum software is basically about
making quantum circuits transpiled for a given gate model-based quantum com-
puter for its specific gate set and other characteristics. Unfortunately, all this is
too low-level, and high-level abstractions are missing. Thus, once such high-level
abstractions are built, the architecture of quantum software might look quite
similar to a classical one, especially if we manage to develop successful abstrac-
tions away from low-level concepts of qubits and gates. We believe that building
useful abstractions is the right way for QC to be more successful, as highlighted
in existing work [9].

8 https://www.vttresearch.com/
9 https://www.lumi-supercomputer.eu/

10 https://www.ex3.simula.no/

https://www.vttresearch.com/
https://www.lumi-supercomputer.eu/
https://www.ex3.simula.no/


6 T. Yue et al.

One immediate area of research that one could explore is empirically evaluat-
ing existing languages used for capturing the architecture of classical software for
QSA of diverse QC applications. Examples of these languages include UML, Sys-
tem Modeling Language (SysML), and other architecture description languages
(e.g., Architecture Analysis & Design Language (AADL) and Wright [10]). With
such empirical evaluation, one could assess the strengths and weaknesses of each
language in terms of capturing the architecture of quantum software. Once the
weaknesses have been identified, we can assess whether we can extend these
languages or need entirely new ones for QSA. In Section 6.2, we discuss more
about applying existing modelling notations for architectural descriptions by
examining the literature.

When designing QSAs, one may need to introduce pictorial representations
(e.g., similar to Feynman diagrams) of quantum computation processes into
architecture documents. This may be more important than in the classical world,
as quantum software development is more complex, so high-level abstraction is
important, which can also provide the abstraction for quantum computation in
the architecture.

Toward this direction, we foresee the need to develop novel graphical nota-
tions that could extend the existing architectural design notations. Such nota-
tions could be at different levels of abstraction depending on a user’s background.
For instance, if a user has no background in quantum mechanics, then the details
that are irrelevant to the user may be omitted.

4.3 Need for Quantum-specific Constraints

In a classical architectural design, it is common to identify and capture con-
straints that are used to make trade-off decisions about design choices and
perform optimisation accordingly. When making the architecture of quantum
software, do we also need to capture some constraints that are specific to the
quantum domain?

There are indeed constraints that are specific to the quantum domain. Tak-
ing an example of superconducting quantum computers, physical qubits can be
implemented in different ways, e.g., star structure. How such qubits are im-
plemented has a significant impact on the architectural design of the quantum
software, which shall be executed on a quantum computer with a particular
implementation structure.

Given that the current quantum computers are immature with an abundance
of hardware errors (e.g., in qubits, gates, crosstalk), specifications of such con-
straints are also essential for optimising the architectural design of quantum
software for a specific quantum computer. In addition, other factors for optimi-
sation, such as limited computation resources, continuously advancing quantum
technologies, and optimal ways of splitting quantum and classical tasks, need to
be considered.

In terms of future research, our recommendations are as follows. First, we
must design a novel taxonomy of constraints specific to quantum software ar-
chitectural designs. Such a taxonomy shall be generic and applicable to various



Challenges and Opportunities in Quantum Software Architecture 7

QC applications and quantum computers. Second, the taxonomy shall also pro-
vide the provision for specific domain-specific architectural constraints. Third,
there is a need to develop novel methods to specify various constraints. Fourth,
we need an optimisation method that can use these constraints and additional
information (e.g., information about the underlying architecture of a quantum
computer) and automatically generate an optimal QSA. Towards this end, one
would like to explore the novel field of quantum meta-heuristics [11]. Such meta-
heuristics aim to solve optimisation problems in the Hilbert space, which will
be our context. However, currently, the field is immature and needs extensive
development.

One might consider that, when the chapter is written, it might be premature
to develop the taxonomy because a wide range of QC hardware exists without
having any of them dominant, and more are emerging. In our opinion, developing
the taxonomy might help converge to a set of generic understandings (in the form
of constraints) that would help perform analyses and optimisations. Moreover,
with the rapid advancements in QC, new constraints are emerging, and therefore
the taxonomy needs to be constantly evolved.

4.4 Classifying Quantum-specific Quality Attributes

While optimising QSAs, one needs to consider quantum-specific quality at-
tributes. Such quality attributes could be functional or extra-functional. An
example of the functional quality attribute includes circuit depth11. For exam-
ple, if an algorithm has more than one implementation as quantum circuits,
then the implementation with a lower circuit depth is preferred. In terms of
extra-functional quality attributes, the generic classification, such as perfor-
mance, portability, and robustness, still hold. However, these categories need
to be specialized for QC.

Regarding research recommendations, we believe there is a need to build a
detailed taxonomy of functional and extra-functional quality attributes. Such
attributes shall cover both quantum-specific attributes and attributes from a
classical domain that apply to QC. Such a taxonomy can be continuously refined
with more concrete metrics as those are developed. In addition, users can use
such taxonomy for their own purposes.

4.5 Prevalence of Low-level Design Choices in architectural designs

For architectural design optimisation, we must consider available resources re-
garding acceptable noise level, number of qubits, etc. These ’low-level’ details
might be needed at the very early stage of the decision-making process in con-
trast to the classical counterpart. As we will detail in Section 5, it is vital to
strike the proper balance regarding the level of abstraction. Thus, dedicated re-
search methodologies and software tools are needed to elicit such requirements
at the earlier stage of QSA design.

11 In the context of quantum circuits, the circuit depth represents the longest path in
a given quantum circuit



8 T. Yue et al.

5 RQ2: What are relevant architecture-level concerns for
QC?

Before addressing the question of what architecture-level concerns are relevant
for software systems that employ Quantum Processing Units (QPUs) and their
associated custom or generic software components, we need to set our notion of
an optimal architecture, which can be the goal of optimally tending to all the
concerns we will discuss in this section.

Optimal Architecture: a collection of classical and quantum software, and
their interrelations, used to solve a given computational task within the required
degree of correctness, using an acceptable amount of time, and respecting neces-
sary and unavoidable trade-offs in the use of resources.

Note while this software-centric definition is independent of quantum hard-
ware, an optimal quantum architecture will strongly depend on the specific tech-
nical details of the underlying QPUs. This is certainly true in the NISQ area [3],
but may likely also apply beyond if variational quantum algorithms remain a
technique of choice. The latter, however, will and can only be decided once suf-
ficiently mature hardware has become available, or variational mechanisms (and
related variants like Quantum Approximate optimisation Algorithm (QAOA) or
Variational Quantum Eigensolver (VQE)) will be placed on more solid grounds
with improved theoretical underpinning, or both.

While it might be tempting to, from a software architecture point of view,
eliminate the signature of specific properties of quantum hardware by layers of
abstraction [12], the degree of influence imposed by the varying physical founda-
tions of different QPU approaches can endanger the potential quantum advan-
tages when a too strong degree of abstraction is tried. While we will detail this
consideration below; it is important to note that quantum software architectures
cannot be decoupled from quantum system architectures, and vice versa. Con-
sequently, many architectural considerations will differ from traditional software
architectural designs, and require: (a) the awareness of software architects in the
first place; and (b) a better understanding of low-level details that need to be
subject to the relevant academic curricula, or post-graduate industrial education
efforts.

We below discuss relevant criteria that allow us to achieve optimal quantum
software architectures by focusing on two major aspects: influence and relevance
of hardware details on architectural properties and quantum-classical integra-
tion. We believe that such considerations will differ between essentially four
domains: general-purpose computing (where cost considerations prevail), HPC
(focusing on latency and throughput), embedded industrial computing (focus-
ing on latency and hardware integration), as well as solving singular problems
of outstanding importance beyond pure demonstrations of quantum advantage.

5.1 Integrating Quantum Components into Existing Architectures

In contrast, how integrating quantum components into existing architectures
is less of a concern, as some of the authors, for instance, argue in Ref. [13].



Challenges and Opportunities in Quantum Software Architecture 9

Essentially, we need to distinguish between two access modes: (a) cloud-based (or
using some other queuing systems) with asynchronous means of interacting with
the QPU—for instance, vendors IBMQ, D-Wave, or Rigetti currently operate
using this access mode; and (b) queue local based with synchronous access that
can be established by either direct attachment of the QPU to a classical system
via a local network (with controlled maximal latency) or even via direct on-chip
integration of CPU and QPU, assuming future extended physical manufacturing
and engineering capabilities.12 This mode of operation is targeted by many HPC
use cases [14] and is currently pursued by vendors like IQM or IonQ.

On the other hand, we can broadly classify known quantum algorithms along-
side two characteristics: (a) Stochastic/approximate algorithms that usually re-
quire interaction with a classical system, but deliver a result that, on perfect
error-corrected hardware, is either sufficiently close to a desired optimal solu-
tion or a perfect solution with a high probability—for instance, Shor’s semi-
nal factoring algorithm or Grover search [15], as do quantum annealing based
approaches [3]. Alternatively, there are (b) variational algorithms that run a
parameterised quantum circuit multiple times and optimise employed quantum
gates in each run towards producing an optimal desired solution based on classi-
cal numerical optimisation techniques—for instance, QAOA [16], VQE [17,18], or
many machine learning techniques like QRL [19]. Here, the number of iterations
and therefore the runtime is unknown upfront, as the convergence behaviour
of the underlying parameter optimisation is not yet fully understood (yet, see,
e.g., Refs. [20,21] for the current state of hypotheses and understanding). The
situation is summarised in Table 1.

Algo/Access Cloud/Queue Local

Stochastic 1 2
Variational 3 4

. . .

St
at

e 
Pr

ep
.

. . .

. . .

. . .

|0>

|0>
|0>

|0>
|0>

M
ea

su
re

Iterate

Table 1. Possible combinations of algorithmic types and QPU access modes (left), and
a general interaction pattern between QPU and CPU (right).

Depending on the particular class an approach falls into, there will be differ-
ent implications on architectural properties. However, once the functional and
non-functional properties of a quantum component are given, the integration
into any existing architecture can in every case be described by a single call to
an API that follows the “data in, result out” pattern. This is nearly trivial from
a programmer’s point of view, but of course, the aspect of interest for architec-

12 Note that for iteration-based algorithms, such details may make a difference [7],
albeit we can safely ignore these in this architecture-centric overview.



10 T. Yue et al.

ture is how the functional and non-functional properties reflect on the overall
architecture.

5.2 Concerning Hardware-specific Properties in architectural
designs

Quantum hardware design is very much in flux, with even individual vendors
experimenting with different physical designs (e.g., IBM with qubits based on
superconducting Josephson junctions and silicon quantum dots). Any quantum
problem, at least in the era of NISQ machines, requires a specific quantum encod-
ing,13 which then needs to be translated into specific physical inputs for a partic-
ular machines. While this seems identical to translating high-level languages into
machine code at a superficial level, the properties of the translation may vary
widely with the concrete physical design of the machine (see, e.g., Ref. [7,22]).

Hardware and Software Coupling Properties of underlying hardware (as
well as the translation process itself [22,7]) influence result quality, speed of
calculation, the ability to find a result at all, the range of input data that can
be processed, and degree of variability in runtime. As these properties directly
arise as a consequence of:

– the degree and type of noise/loss on the capability of individual qubits to
store data and the influence of decoherence that leads to increasing loss of
quantum information with deeper circuits/longer programs;

– the connectivity between qubits (i.g., which qubits can be subjected to joint
operations, and which not) and imperfections arising from the coupling struc-
ture;

– the ability to prepare initial states for computation, and intermittently “clear”
qubits for re-use;

– imperfections of the measurement process that turns quantum information
into classical results such that they can be interpreted and processed by
classical IT.

These aspects must be considered in designs that strive for optimal architecture
for a given use case. Especially for variational algorithms, there is a direct trade-
off between longer circuits/larger number of iterations (that can be shown to lead
to monotonically increasing result quality for some approaches like QAOA) and
the consequences like the increasing influence of noise, which in turn, deteriorates
result quality.

13 It is doubtful if it will be possible to produce perfect error-corrected machines for
each imaginable use case; we expect noisy machines to remain relevant also in the
long run if it will be possible to achieve quantum advantage with them, albeit this
remains an open scientific question [3].



Challenges and Opportunities in Quantum Software Architecture 11

Hardware-specific Optimisation Logical circuits (the primary output of a
translation/compilation from a high-level description in any quantum framework
into an executable sequence of operations on quantum states) are, in principle,
independent of the executing QPU. But they are already implicitly connected
with the target hardware by the choice of gate set, which is used to manipu-
late individual or multiple qubits. When a logical circuit is transpiled to a con-
crete physical implementation, logical gates must be replaced by (combinations
of) available native hardware gates, and this influences architectural properties
like scalability, runtime, result quality, and so forth. There is optimisation po-
tential by designing hardware-optimised algorithms [3] that center around the
operations available in specific implementations, thus eliminiating some of the
aforementioned overhead.

However, this does not solve (and is independent of) the connectivity prob-
lem: Since not every qubit can interact with each other qubit, any necessary
operations between “remote” qubits must be enabled by first bringing the qubits
into close enough proximity, and then execute the gate. (Logically) moving qubits
around is possible with so-called swap gates that exchange the quantum state of
two qubits (without requiring a measurement that would destroy the quantum
state). As, in turn, native swap gates are not available on most architectures, it
needs to be replaced by a sequence of three controlled-not gates, increasing cir-
cuit depths even further. Enhancing the connectivity of the underlying systems,
possibly in a problem-specific way, can provide improvements, albeit at the cost
of co-designing hardware and software. Likewise, technologies like cold neutral
atoms provide universal connectivity between qubits—albeit under the negative
influence by prolonged gate execution times [23] as compared top other imple-
mentation platforms, which especially deteriorates the temporal performance of
iterative schemes 3 , 4 .

Some parts of applications could therefore be optimised for different types of
quantum technologies. However, it remains a question whether doing so is com-
mercially viable and whether the arising disadvantages (for instance, having to
synchronise two queues in the case of cloud access 1 , 3 ) defeat the advantages
gained by a multi-QPU scheme.

Consequences As we have discussed, low-level properties of QPUs have a di-
rect (and often unaccustomed to the classical world) impact on architecture-level
properties. We, therefore, believe that: (a) the awareness of this relation is avail-
able to software architects, and (b) mapping between the architectural quality
and low-level properties need to be defined and maintained in any architec-
tural design document or model, of course satisfying established requirements
on traceability [24].

Additionally, we expect that not the scalability of algorithms is the most
relevant criterion, but the absolute performance for a given set of inputs; many
industrial use cases (e.g., factory control, production planning, long-term re-
source distribution [4]) work on input data sets of fixed (or merely varying)



12 T. Yue et al.

sizes, whereas absolute execution times are the most relevant concern. Similar
considerations apply to HPC workloads.

5.3 Other Considerations

The properties of QC hardware are subject to considerable flux, and even many
of the elementary theoretical characteristics (like runtime!) of algorithms them-
selves are not yet well understood. This induces uncertainties in the design of
QSAs. We find that more research is desirable and necessary to understand such
variability’s short- and long-term implications.

– Evolution of QC Hardware: At this stage of QC development, we might
also need to consider the fast evolution of QC technologies and the archi-
tectural design needs to particularly take care of changes of underlying QC
technologies. To this end, architecture decay issues that quantum applica-
tions might need to face need to be addressed.

– Empirical Studies: To perform architectural design optimisation, empiri-
cal studies are needed to collect evidence. Currently, any possibility to com-
pare structured approaches to architectural design with the classical world
is limited, which is, however, also caused by the fact that no large-scale
applications of QC are known.

– Verification of Quantum Results: It may be a challenge to verify the
results of quantum computations depending on the class of algorithms [25,26]
or to ascertain the correct functioning of QPUs [27]. This concern should
also be considered at the architectural level, as it may influence correctness,
performance, and quality properties.

– Deployment of QC in Real-time/Safety-critical Contexts: Especially
in scenario 1 (and to a lesser degree in 2 ), it is impossible to specify upper
bounds on the execution time of a computation. To integrate such applica-
tions into industrial control scenarios, likewise, it is known that tail laten-
cies, even if they are rare, can cause substantial issues in data processing
schemes [28]. Latency is also known to be among the most important perfor-
mance characteristic in HPC scheduling [29]. Appropriate countermeasures
(e.g., fallback to safe states, classical refinement of approximate results, la-
tency tailing) must be considered directly at the architectural level.

6 RQ3: Is knowledge gained from the classical world still
applicable to the quantum world, and to which extent?

This question is raised to examine whether we can reuse methodologies, tools,
and standards, among others, created for developing classical software for devel-
oping quantum software and to which extent they can be reused. This question
is crucial as we aim to save as much effort as possible.



Challenges and Opportunities in Quantum Software Architecture 13

6.1 Standards

The ISO/IEC/IEEE 42010:2022 (Software, systems and enterprise — Architec-
ture description) standard14 is a well-known and commonly practised standard
for devising architecture descriptions. In this standard, terminologies such as
architecture, architecture description (AD), architecture description framework
(ADF), architecture description language (ADL), architecture view and view-
points, stakeholders and concerns are defined. The standard also defines their
relationships. For instance, concern is linked to a stakeholder describing her/his
concern on the relevance or importance of a matter. Since these concepts are
defined at a very high level, which is intended by most standards, we believe
the conceptual model of the ISO/IEC/IEEE 42010:2022 is still applicable to the
quantum world.

However, we like to mention that bringing concepts from the quantum world
will be useful when instantiating the conceptual model. For instance, in addi-
tion to typical viewpoints such as operational, logical, technical, and deployment
viewpoints, it might be important to bring integration viewpoints where inter-
actions of the classical world and quantum world meet for developing hybrid
software applications, as we discussed in Section 5.1. Also, a deployment view-
point might be tailored to consider different computing resources, as some might
be quantum computers of the same or different types. Another example is that we
might need quantum-specific modelling solutions to describe architecture views.
We will discuss this in detail in Section 6.2.

In summary, existing standards are still generally applicable to guide the
development of QSAs. Methodologies and tools conforming to these standards
might need to be customised for developing quantum and hybrid applications to
enhance their applicability and usability.

6.2 Architecture Description Languages

Different modelling notations (e.g., UML, SysML) can be used to describe an
architecture. For instance, shortly after UML was standardised by the Object
Management Group (OMG), Rich Hilliard [30] investigated the application of
UML in the context of IEEE P1471, which was superseded by ISO/IEC/IEEE
42010 later on and concluded that UML provides a set of notations that can be
used to model various architecture aspects of systems.

In QSA, attention has been naturally drawn to UML. For instance, the au-
thors of the short paper [31] suggested distinguishing UML model elements in
terms of whether they carry quantum information. Such a suggestion is neces-
sary; however, it is far from being sufficient for specifying architectures of quan-
tum software. In [32], the authors presented novel ideas for developing quantum
software modelling languages along with a conceptual model of quantum pro-
grams. They illustrated how to model the state-based behaviour of quantum
programs. In [33], the authors presented a position paper arguing the potential

14 ISO/IEC/IEEE 42010:2022: https://www.iso.org/standard/74393.html



14 T. Yue et al.

benefits of applying Model-Driven Engineering (MDE) practices for developing
software. Specifically, the authors highlighted that QC resources are mostly ac-
cessed via cloud services (e.g., Amazon Braket) and therefore, current modelling
languages for cloud computing might be worth being investigated.

Representing processes by graphical abstractions is not uncommon in quan-
tum physics; for instance, Feynman diagrams [34] are widely used representations
of certain mathematical aspects of quantum electrodynamics and related theo-
ries. However, they are in one-to-one correspondence with calculations, and do
not provide an abstraction in the software engineering sense, but instead make
complex formulas easier accessible to intuition. Quantum circuit diagrams, which
are also commonly employed to visualise quantum algorithms, reside at a higher
level of abstraction from a physical point of view, yet correspond to the layer
of assembly language from a computer science point of view. This is also well
below the usual levels of abstractions as they appear in software architecture and
engineering. Approaches like quantum pictorialism, as proposed and detailed by
Coecke and Kissinger [35], might pave a a road that bridges between physics
and computer science via visual abstractions. Yet, none of the existing solutions
seems sufficient to model the architecture of any non-trivial software application
with quantum components.

Moreover, we observe that to develop a practical-useful ADF and ADL, we
first need access to real-world quantum applications, which are hardly available
to researchers at the moment. Existing modelling notations (e.g., UML) and
paradigms (e.g., MDA) can be a natural foundation for developing quantum-
specific ADFs and ADLs. We do not foresee the need for radically new modelling
notations for now, which is partially due to our limited knowledge of real-world
quantum applications.

6.3 Architectural Patterns

Architectural patterns (e.g., client-server patterns) represent ideas, practices,
and solutions that are reusable for addressing reoccurring problems. By defini-
tion, this is still applicable to QSA.

Various patterns and pattern languages have been proposed in the litera-
ture for supporting quantum software development and testing. For instance,
Leymann [36] proposed a template for structuring pattern documents, including
fields such as name, intent, problem statement, solution and known use. With
this template, Leymann proposed an initial set of basic patterns for developing
quantum algorithms, such as Initialization (aka State Preparation) to answer
the question of how the input of a quantum register can be initialized, and Cre-
ating Entanglement, and Phase Shift. However, as stated clearly by the author,
these patterns are design (not architectural) patterns for developing quantum
algorithms.

Weigold et al. [37] also proposed six encoding patterns to facilitate efficient
data loading of quantum algorithms; three of the six patterns are for data encod-
ing and state preparation (e.g., preparing an arbitrary state), and two of them

https://aws.amazon.com/braket/


Challenges and Opportunities in Quantum Software Architecture 15

are for unitary transformation (e.g., matrix encoding), and one measurement
pattern (i.e., post-selective measurement).

In [38], Zhao et al. presented a set of bug patterns (”erroneous code idioms
or bad coding practices” in [38]) such as Insufficient Initial Qubits, along with
a classification of them, in the context of developing quantum programs with
Qiskit.

However, it is worth noting that these existing works focus on identifying
patterns at the design and implementation levels, not on the architectural level.
Consequently, the reported design and bug patterns are all quantum-specific. As
discussed in Section 5.1 and Section 5.2, we see the need to define patterns for,
for instance, various modes of integrating quantum components.

6.4 Quantum DevOps and Quantum Services

Inspired by the agile software development principle, DevOps was proposed to
shorten the software development lifecycle and enable continuous delivery. In
principle, being a set of recommended practices, DevOps does not put restric-
tions on using any specific architectural styles. However, the microservices ar-
chitecture is often applied together with DevOps for developing continuously
deployed software systems, which is composed of small services communicating
via APIs and the cloud. From the architectural aspect, the microservices archi-
tecture is distributed and loosely coupled to facilitate fault isolation, continuous
and fast integration of new features, etc. For instance, Azure DevOps15 is a plat-
form that implements DevOps with a set of cloud-hosted services for building,
testing and deploying programs in various programming languages on multiple
operating platforms.

To get access to QC resources, the cloud is mainly used for two purposes:
1) getting access to classical computing resources for the purpose of simulating
quantum computers, such as the early stage of validation of quantum software
can be achieved; 2) getting access to limited and shared quantum computers
that are often placed in very specialised room conditions. Therefore, a number of
cloud-based QC platforms (e.g., Amazon Braket16, D-Wave Leap17 and Xanadu’s
Quantum Cloud18) have been made available for use via the cloud.

Therefore, DevOps for QC emerged. For instance, Azure Quantum proposes
two DevOps loops19: the outer loop (which is a complete DevOps cycle) and
the inner loop, which is quantum-specific and involves activities (e.g., program-
ming quantum software, executing quantum software on simulators or quantum
computers, estimating required computing resources) that need to be performed
by quantum architects and engineers. In the literature, Gheorghe-Pop et al. [39]

15 Azure DevOps: https://azure.microsoft.com/en-us/products/devops/
16 Amazon Braket, https://aws.amazon.com/braket/
17 D-Wave Leap: https://cloud.dwavesys.com/leap/login/?next=/leap/
18 Xanadu Cloud: https://www.xanadu.ai/
19 DevOps for QC at Azure Quantum: https://learn.microsoft.com/en-

us/azure/architecture/guide/quantum/devops-for-quantum-computing



16 T. Yue et al.

promoted the concept of Quantum DevOps in the context of dealing with un-
certainties of NISQ computers and envisioned building Quantum DevOps by
extending the traditional DevOps concept. To enable the realisation of this con-
cept, a set of quantum-specific software engineering methodologies (including
tool support), across several key phases of a software development lifecycle, such
as requirements engineering, design and testing are needed, are needed but are
largely unavailable up to date, as also highlighted in [9].

As one of the key elements of DevOps, Gheorghe-Pop et al. [39] mentioned
that, for testing quantum software to be run on NISQ computers, it is needed to
go through three testing phases: testing in a simulator without noise, testing in a
simulator with injected noise mimicking real Qubit environment, and testing on
real quantum computers. In the literature, a set of approaches (e.g., [40,41,42,43])
on testing quantum software have been proposed. However, to realise Quantum
DevOps in the NISQ era or beyond, scalable and efficient testing approaches
across the three quantum software testing phases are expected.

To conclude, currently, the concept of Quantum DevOps seems promising;
however, supporting its realisation, methodologies and tools across various soft-
ware development life cycles need to be proposed or matured. Moreover, investi-
gations on whether the microservices architecture is still applicable for Quantum
DevOps are needed as well.

In addition to the idea of Quantum DevOps, back in 2004, the authors of
[44] promoted to introduce a layered software architecture to support the devel-
opment of quantum algorithms by following a four-phase design flow going from
a high-level representation of a quantum algorithm all the way to a technology-
specific implementation, through a series of transformations. Recently, Moguel
et al. [45] investigated opportunities and challenges of introducing the Service-
oriented Computing (SOA) architectural style to the quantum world in the con-
text of developing classical-quantum hybrid software systems, where quantum
software systems are invoked as quantum services. The proposal comes natu-
rally because most quantum computers can currently be accessed through the
cloud (Section 5.1). The authors experimented with Amazon Braket by wrap-
ping quantum services as classical services and demonstrated the potential. But,
the authors also concluded that, based on their investigation, there is an in-
sufficient benefit for running quantum algorithms as classical services, and new
methodologies and tools are needed, which we also agree.

7 RQ4: How to run hybrid applications from an
architectural perspective?

As discussed in Section 7, there are various ways of getting access to quantum
computers, and some properties of quantum hardware (e.g., scalability, run-
time, result quality) are impacted by the degree and type of noise, connectivity
of qubits, etc. of quantum hardware. All these aspects have an influence on
achieving the optimal architecture we envision. However, before achieving such
an optimal architecture for running quantum software on quantum hardware,



Challenges and Opportunities in Quantum Software Architecture 17

a common practice is using quantum simulators such that quantum programs
can be run and tested before being executed on quantum hardware. We envision
that in the NISQ era, architecture optimisation (Section 5 might need to rely on
quantum computer simulators of various types, including simulators simulating
pure qubits and various hardware noises.

There are two possible ways of performing a simulation: (1) using a quantum
simulator (with the fundamental limits being about 45 qubits for noise gate-
based simulation and 10,000 qubits for noisy quantum annealing) and carefully
extrapolating results to larger computing resources; (2) using an effective model,
based on the structure of a quantum circuit, imperfections of gates, speed of de-
coherence, etc., to predict most likely performance/result quality characteristics.

Moreover, it is important to identify QSA that cover both classical and quan-
tum components of software systems, including, for instance, user interfaces (or
APIs), databases, and computation parts. Submitting a computation request
to quantum hardware needs a series of steps starting from data pre-processing.
When results are ready, they will also need to be processed to be usable. This
process is particularly commonly seen for systems running Artificial Intelligence
(AI). Currently, AI is executed on traditional machines that send a specific part
of the computation to GPUs. Developers only need to develop their AI algo-
rithms, and a dedicated software or platform is responsible for orchestrating the
computation between the CPU and GPU.

It is not yet possible to have a hybrid and seamless architecture that covers
both the quantum and classical worlds. Developers must manually decide what
part of the computation needs quantum hardware and which needs classical
ones. Commonly, developers manually send input data to quantum hardware,
and when results are ready, they fetch the results and continue the elaboration
or processing with other classical machines. We foresee the need for an inte-

Superconduc*ng 
Quantum 
Computer

Trapped Ion
Quantum Computer

Classical Computer 
(Pure simulator)

Classical Computer 
(Noisy simulator)

Classical 
HPC

Hardware 
Resources

Quantum
Circuit

Quantum
Program

Result 
Interpreter

Resource
Orchestrator

Quantum Execution Service

built

exec
ute

Developer

Web-Service
Code

Quantum
Code

Fig. 1. Running Hybrid Applications—An Architectural Perspective



18 T. Yue et al.

grated quantum and classical computing architecture. A process mainly has the
following steps (as also illustrated in Figure 1):

– Developers develop quantum and classical code to implement their systems.
We foresee the possibility of developing a framework, with which developers
can specify which part of the computation must be sent to quantum com-
puters and which part must be computed with classical hardware resources.

– Resource Orchestrator automatically orchestrates and therefore sends
computation tasks to quantum and/or classical hardware resources.

– Resource Orchestrator sends the quantum program to the quantum pro-
gram compiler, which compiles the program and executes it on quantum
hardware, which could be identified by the orchestrator or manually.

– Result Interpreter receives results once the execution of the quantum
program is concluded. Hardware noise is an important aspect to consider in
this step. The Result Interpreter should be able to understand if there is the
need to run the program once more, based on a pre-defined confidence level,
for instance.

Let’s consider a practical example to illustrate the process. A weather forecast
company might decide to use QC to provide a web service reporting the weather
forecast in certain areas. The developers will develop the code for the weather
forecast station composed of four main steps: 1) Obtain sensor data; 2) Process
the data and send the pre-processed data to the QC algorithm that has been
developed; 3) Interpret data returned by the quantum algorithm; and 4) Save
results in a database accessible via the web service.

With this process, we envision that software development effort will be re-
duced as the splitting of tasks and allocating them to different resources can
be, in an ideal situation, automatically performed by Resource Orchestrator. We
are aware that currently, there is no such an approach, and developers need to
manually code each step, manually interpret results, and then again manually
send them to an accessible database. In the far future, we foresee the option of
adopting QC algorithm seamlessly with a process like the one we sketched.

8 Conclusion

Quantum software architecture (QSA) of quantum computing (QC) applications
that require both classical and QC resources is an understudied area of research.
Nonetheless, within quantum software engineering, researchers and practitioners
are getting more and more interested in it. Due to this reason, the objective of
this chapter was to provide an initial set of research challenges and opportunities
for QSA after examining a set of research questions and also put light on future
research directions. These discussions are preliminary and need to be further en-
hanced with more thorough investigations, such as systematic literature reviews,
empirical evaluations, and surveys with industry and researchers.



Challenges and Opportunities in Quantum Software Architecture 19

References

1. M. Weigold, J. Barzen, F. Leymann, and D. Vietz, “Patterns for hybrid quan-
tum algorithms,” in Service-Oriented Computing, J. Barzen, Ed. Cham: Springer
International Publishing, 2021, pp. 34–51.

2. A. Callison and N. Chancellor, “Hybrid quantum-classical algorithms in the noisy
intermediate-scale quantum era and beyond,” Phys. Rev. A, vol. 106, p. 010101, Jul
2022. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.106.010101

3. K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand,
M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok,
S. Sim, L.-C. Kwek, and A. Aspuru-Guzik, “Noisy intermediate-scale quantum
algorithms,” Rev. Mod. Phys., vol. 94, p. 015004, Feb 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.94.015004

4. A. Bayerstadler, G. Becquin, J. Binder, T. Botter, H. Ehm, T. Ehmer,
M. Erdmann, N. Gaus, P. Harbach, M. Hess, J. Klepsch, M. Leib, S. Luber,
A. Luckow, M. Mansky, W. Mauerer, F. Neukart, C. Niedermeier, L. Palackal,
R. Pfeiffer, C. Polenz, J. Sepulveda, T. Sievers, B. Standen, M. Streif, T. Strohm,
C. Utschig-Utschig, D. Volz, H. Weiss, and F. Winter, “Industry quantum
computing applications,” EPJ Quantum Technology, vol. 8, no. 1, 11 2021.
[Online]. Available: https://epjquantumtechnology.springeropen.com/track/pdf/
10.1140/epjqt/s40507-021-00114-x.pdf

5. T. Gabor, S. Zielinski, S. Feld, C. Roch, C. Seidel, F. Neukart, I. Galter,
W. Mauerer, and C. Linnhoff-Popien, “Assessing solution quality of 3sat
on a quantum annealing platform,” Proc. Int. Workshop on Quantum
Technology and Optimization Problems (QTOP), 2019. [Online]. Available:
https://arxiv.org/abs/1902.04703

6. M. Schönberger, S. Scherzinger, and W. Mauerer, “Ready to leap (by co-design)?
join order optimisation on quantum hardware,” in Proceedings of ACM SIG-
MOD/PODS International Conference on Management of Data, 2023.

7. K. Wintersperger, H. Safi, and W. Mauerer, “Qpu-system co-design for quantum
hpc accelerators,” in Proceedings of the 35th GI/ITG International Conference on
the Architecture of Computing Systems. Gesellschaft für Informatik, 8 2022.

8. B. Sodhi, “Quality attributes on quantum computing platforms,” ArXiv, vol.
abs/1803.07407, 2018.

9. S. Ali, T. Yue, and R. Abreu, “When software engineering meets quantum com-
puting,” Communications of the ACM, vol. 65, no. 4, pp. 84–88, 2022.

10. H. Yao and Y. Ma, “An exploration for the software architecture description lan-
guage of wright,” ICIC Express Letters, vol. 8, pp. 3481–3487, 12 2014.

11. Z. A. Dahi and E. Alba, “Metaheuristics on quantum computers: Inspiration,
simulation and real execution,” Future Generation Computer Systems, vol. 130,
pp. 164–180, 2022. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X21004969

12. M. Schönberger, M. Franz, S. Scherzinger, and W. Mauerer, “Peel — pile? cross-
framework portability of quantum software,” QSA@IEEE International Conference
on Software Architecture (ICSA), 2022.

13. T. Krüger and W. Mauerer, “Quantum annealing-based software components: An
experimental case study with sat solving,” Q-SE@ICSE, 2020. [Online]. Available:
https://arxiv.org/abs/2005.05465

14. T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch, and T. Monz,
“Quantum computers for high-performance computing,” IEEE Micro, vol. 41,
no. 05, pp. 15–23, sep 2021.

https://link.aps.org/doi/10.1103/PhysRevA.106.010101
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://epjquantumtechnology.springeropen.com/track/pdf/10.1140/epjqt/s40507-021-00114-x.pdf
https://arxiv.org/abs/1902.04703
https://www.sciencedirect.com/science/article/pii/S0167739X21004969
https://www.sciencedirect.com/science/article/pii/S0167739X21004969
https://arxiv.org/abs/2005.05465


20 T. Yue et al.

15. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2011.

16. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization
algorithm,” Nov. 2014.

17. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a
photonic quantum processor,” Nature Communications, vol. 5, no. 1, p. 4213, Jul
2014. [Online]. Available: https://doi.org/10.1038/ncomms5213

18. J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig,
I. Rungger, G. H. Booth, and J. Tennyson, “The variational quantum eigensolver:
A review of methods and best practices,” Physics Reports, vol. 986, pp. 1–128,
2022, the Variational Quantum Eigensolver: a review of methods and best
practices. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0370157322003118

19. M. Franz, L. Wolf, M. Periyasamy, C. Ufrecht, D. Scherer, A. Plinge, C. Mutschler,
and W. Mauerer, “Uncovering instabilities in variational-quantum deep q-
networks,” Journal of The Franklin Institute, 8 2022.

20. L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quantum approximate
optimization algorithm: Performance, mechanism, and implementation on near-
term devices,” Phys. Rev. X, vol. 10, p. 021067, Jun 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.10.021067

21. M. Streif and M. Leib, “Training the quantum approximate optimization
algorithm without access to a quantum processing unit,” Quantum Science
and Technology, vol. 5, no. 3, p. 034008, may 2020. [Online]. Available:
https://dx.doi.org/10.1088/2058-9565/ab8c2b

22. S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t—ket〉: a retargetable compiler for nisq devices,” Quantum
Science and Technology, vol. 6, no. 1, p. 014003, nov 2020. [Online]. Available:
https://dx.doi.org/10.1088/2058-9565/ab8e92

23. L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and
C. Jurczak, “Quantum computing with neutral atoms,” Quantum, vol. 4, p. 327,
Sep. 2020. [Online]. Available: https://doi.org/10.22331/q-2020-09-21-327

24. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, ser.
SEI series in software engineering. Addison-Wesley, 2003. [Online]. Available:
http://books.google.fi/books?id=mdiIu8Kk1WMC

25. S. Dasgupta and T. S. Humble, “Characterizing the reproducibility of
noisy quantum circuits,” Entropy, vol. 24, no. 2, 2022. [Online]. Available:
https://www.mdpi.com/1099-4300/24/2/244

26. W. Mauerer and S. Scherzinger, “1-2-3 reproducibility for quantum software exper-
iments,” Q-SANER@IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering, 2022.

27. H. Pashayan, J. J. Wallman, and S. D. Bartlett, “Estimating outcome probabilities
of quantum circuits using quasiprobabilities,” Phys. Rev. Lett., vol. 115, p. 070501,
Aug 2015. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.115.
070501

28. J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM,
vol. 56, pp. 74–80, 2013. [Online]. Available: http://cacm.acm.org/magazines/
2013/2/160173-the-tail-at-scale/fulltext

29. A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, M. Jones,
P. Michaleas, A. Prout, A. Rosa, and J. Kepner, “Scalable system scheduling for

https://doi.org/10.1038/ncomms5213
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://www.sciencedirect.com/science/article/pii/S0370157322003118
https://link.aps.org/doi/10.1103/PhysRevX.10.021067
https://dx.doi.org/10.1088/2058-9565/ab8c2b
https://dx.doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.22331/q-2020-09-21-327
http://books.google.fi/books?id=mdiIu8Kk1WMC
https://www.mdpi.com/1099-4300/24/2/244
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
https://link.aps.org/doi/10.1103/PhysRevLett.115.070501
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext


Challenges and Opportunities in Quantum Software Architecture 21

hpc and big data,” Journal of Parallel and Distributed Computing, vol. 111, pp.
76–92, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0743731517301983

30. R. Hilliard, “Using the uml for architectural description,” in International Confer-
ence on the Unified Modeling Language. Springer, 1999, pp. 32–48.

31. C. A. Pérez-Delgado and H. G. Perez-Gonzalez, “Towards a quantum software
modeling language,” in Proceedings of the IEEE/ACM 42nd International Confer-
ence on Software Engineering Workshops, 2020, pp. 442–444.

32. S. Ali and T. Yue, “Modeling quantum programs: Challenges, initial results,
and research directions,” in Proceedings of the 1st ACM SIGSOFT International
Workshop on Architectures and Paradigms for Engineering Quantum Software,
ser. APEQS 2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 14–21. [Online]. Available: https://doi.org/10.1145/3412451.3428499

33. F. Gemeinhardt, A. Garmendia, and M. Wimmer, “Towards model-driven quan-
tum software engineering,” in 2021 IEEE/ACM 2nd International Workshop on
Quantum Software Engineering (Q-SE). IEEE, 2021, pp. 13–15.

34. R. P. Feynman, “Space-time approach to quantum electrodynamics,” Phys. Rev.,
vol. 76, pp. 769–789, Sep 1949. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRev.76.769

35. B. Coecke and A. Kissinger, Picturing Quantum Processes: A First Course in
Quantum Theory and Diagrammatic Reasoning. Cambridge University Press,
2017.

36. F. Leymann, “Towards a pattern language for quantum algorithms,” in Interna-
tional Workshop on Quantum Technology and Optimization Problems. Springer,
2019, pp. 218–230.

37. M. Weigold, J. Barzen, F. Leymann, and M. Salm, “Encoding patterns for quantum
algorithms,” IET Quantum Communication, vol. 2, no. 4, pp. 141–152, 2021.

38. P. Zhao, J. Zhao, and L. Ma, “Identifying bug patterns in quantum programs,” in
2021 IEEE/ACM 2nd International Workshop on Quantum Software Engineering
(Q-SE). IEEE, 2021, pp. 16–21.

39. I.-D. Gheorghe-Pop, N. Tcholtchev, T. Ritter, and M. Hauswirth, “Quantum de-
vops: Towards reliable and applicable nisq quantum computing,” in 2020 IEEE
Globecom Workshops (GC Wkshps. IEEE, 2020, pp. 1–6.

40. X. Wang, P. Arcaini, T. Yue, and S. Ali, “Generating failing test suites for quantum
programs with search,” in Search-Based Software Engineering, U.-M. O’Reilly and
X. Devroey, Eds. Cham: Springer International Publishing, 2021, pp. 9–25.

41. S. Ali, P. Arcaini, X. Wang, and T. Yue, “Assessing the effectiveness of input
and output coverage criteria for testing quantum programs,” in 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST), 2021, pp.
13–23.

42. X. Wang, P. Arcaini, T. Yue, and S. Ali, “Application of combinatorial testing
to quantum programs,” in 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security (QRS). IEEE, 2021, pp. 179–188.

43. E. Mendiluze, S. Ali, P. Arcaini, and T. Yue, “Muskit: A mutation analysis tool
for quantum software testing,” in The 36th IEEE/ACM International Conference
on Automated Software Engineering, Tool Demonstration. IEEE/ACM, 2021.

44. K. Svore, A. Cross, A. Aho, I. Chuang, and I. Markov, “Toward a software architec-
ture for quantum computing design tools,” in Proceedings of the 2nd International
Workshop on Quantum Programming Languages (QPL), 2004, pp. 145–162.

https://www.sciencedirect.com/science/article/pii/S0743731517301983
https://www.sciencedirect.com/science/article/pii/S0743731517301983
https://doi.org/10.1145/3412451.3428499
https://link.aps.org/doi/10.1103/PhysRev.76.769
https://link.aps.org/doi/10.1103/PhysRev.76.769


22 T. Yue et al.

45. E. Moguel, J. Rojo, D. Valencia, J. Berrocal, J. Garcia-Alonso, and J. M. Murillo,
“Quantum service-oriented computing: current landscape and challenges,” Soft-
ware Quality Journal, pp. 1–20, 2022.


	Challenges and Opportunities in Quantum Software Architecture

