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Abstract

Quantum computing holds the promise of achieving computational speed-ups by exploiting the prin-
ciples of quantum mechanics. While certain quantum algorithms are proven to have theoretical speed-
ups, the practical utility of these algorithms is limited on current noisy intermediate-scale quantum
(NISQ) devices due to imperfections, noise and limited qubit capacity. Despite these limitations, vari-
ational hybrid quantum-classical algorithms are often proposed as a means to reap quantum advance
from NISQ devices.

This thesis focuses on the empirical analysis of a recent class of variational hybrid approaches to quan-
tum reinforcement learning, specifically variational quantum deep Q-Learning (VQ-DQL). We show
that VQ-DQL approaches are subject to instabilities that cause the learned policy to diverge, study
the extent to which this afflicts reproduciblity of established results based on classical simulation, and
perform systematic experiments to identify potential explanations for the observed instabilities. Ad-
ditionally, we validate the VQ-DQL algorithm on an actual quantum processing unit and investigate
differences in behaviour between simulated and physical quantum systems, which suffer from imper-
fections. The experiments demonstrate that it is inconclusive whether known quantum approaches,
especially on current NISQ devices, provide an advantage over classical approaches. Nevertheless,
these findings highlight promising areas for future research, particularly in exploring the potential of
a hardware-software co-design approach.
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Kurzfassung

Quantencomputing verspricht, durch die Nutzung der Prinzipien der Quantenmechanik, Beschleu-
nigungen gegenüber klassischen Rechnungen zu erzielen. Obwohl bestimmte Quantenalgorithmen
theoretisch effizienter sind als klassische Ansätze, ist die praktische Anwendbarkeit auf aktuellen,
sog. Noisy Intermediate-Scale Quantum (NISQ) Geräten aufgrund von Imperfektionen auf Grund
von Rauschen und begrenzter Qubit-Kapazität eingeschränkt. Trotz dieser Einschränkungen werden
variationale hybride quanten-klassische Algorithmen häufig als Möglichkeit vorgeschlagen, um von
NISQ-Systemen einen quantenbasierten Vorteil zu erreichen.

In dieser Arbeit wird eine Klasse von variationalen hybriden Ansätzen für quantenbasiertes Rein-
forcement Learning, i.e. Variational Quantum Deep Q-Learning (VQ-DQL) experimentell untersucht.
Es wird gezeigt, dass VQ-DQL-Ansätze instabiles Verhalten aufzeigen und zu einer Divergenz einer
gelernten reinforcement learning Strategie führen können. Es werden systematische Experimente
durchgeführt, um potenzielle Erklärungen für die beobachteten Instabilitäten zu identifizieren und
Auswirkungen auf die Reproduzierbarkeit etablierter Ansätze abzuschätzen. Zudem wird der VQ-
DQL-Algorithmus auf einem realen Quantencomputer validiert und es werden Unterschiede im Ver-
halten zwischen simulierten und physischen Quantensystemen untersucht. Die Experimente zeigen,
dass es nicht eindeutig entschieden werden kann, ob bekannte Ansätze für VQ-DQL, insbesondere
auf aktuellen NISQ-Systemen, einen Vorteil gegenüber klassischen Ansätzen bieten. Dennoch zeigen
diese Ergebnisse vielversprechende Richtungen für zukünftige Forschung auf, insbesondere in der Er-
forschung des Potenzials eines Hardware-Software-Co-Design-Ansatzes.
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1. Introduction

The field of quantum computing aims to exploit the properties of quantum mechanics in order to
achieve computational speed-ups. It has indeed been shown that certain problems can theoretically be
solved more efficiently using quantum algorithms than classical algorithms. Two well-known examples
are Grover’s algorithm [1] and Shor’s algorithm [2], which respectively provide a quadratic speed-up
for the exploration of unstructured search spaces and efficiently solve prime factorization and discrete
logarithm problems.

Quantum computers, utilising diverse physical implementations, have already been built by various
vendors. However, the current generation of quantum computers, called noisy intermediate-scale
quantum (NISQ) systems [3], is prone to errors, such as decoherence caused by interactions with the
environment and errors that arise during the execution of quantum operations. These errors limit the
capabilities of current quantum devices. Additionally, the number of qubits in current machines is
limited, imposing restrictions on the size of problems that can be solved on them.

Nonetheless, some quantum approaches offer potential advantages over classical approaches, even in
the NISQ era. Specifically, variational hybrid quantum-classical algorithms are well-suited for gate-
based quantum machines in the near term [4]. These algorithms perform only a limited number of
steps on a quantum computer and the remaining steps on classical machines, making it more feasible
to take advantage of quantum computing while using current quantum systems.

For instance, one particular class of these variational hybrid algorithms is quantum machine learning
(QLM). Moving parts of a classical machine learning algorithm to a quantum computer could reduce
parameter and sampling complexity, as studies suggest [5], [6]. It is however unlikely that quantum
computing will be able to handle large amounts of data in the near future due to the absence of
quantum RAM [4], [7]. Therefore, quantum reinforcement learning (QRL) techniques, which only
require small data points for training, but often need to explore large search spaces, are promising
machine learning methods for achieving quantum advantage on NISQ devices.

Despite significant advancements in classical reinforcement learning (RL) [8] over the past decade [9]–
[16], it requires large computational resources to match or exceed human performance even on simple
tasks like playing arcade video games. For instance, Badia et al. [17] spent approximately 53,000
hours of training, distributed over 256 machines, to achieve superhuman performance on all 57 Atari
games of the Arcade Learning Environment benchmark [18]. The learning dynamics of these methods
are not yet fully understood, and they remain a subject of current research [19]–[22]. Therefore, it is
natural to explore whether quantum computing could offer a potential speed-up in this domain.

The goal of this thesis is to analyse quantum deep Q-Learning [6], [23]–[25], i.e. a class of recent
variational hybrid approaches to QRL, and compare it to its classical counterpart. To investigate the
approach under the limitations of current NISQ devices, comparative experiments are performed using
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1. Introduction

noise models [26], which mimic the imperfections of near-term quantum systems.

Structure The remainder of this thesis is structured as follows: Chapter 2 gives an overview on
quantum computing and further describes how the noise of currently available quantum systems can
be modelled. Chapter 3 introduces the RL approach of deep Q-Learning, together with its quantum
analogon. Chapter 4 describes how this work relates to prior research. Chapter 5 describe the exper-
iments conducted using these RL approaches and present results, which are discussed in Chapter 6.
Finally, the work is summarised in Chapter 7.

Credit This work, specifically the Chapters 3, 4, 5 and 6 all share material with an article, published
in the Journal of the Franklin Institute, “Uncovering Instabilities in Variational-Quantum Deep Q-
Networks”, authored by Maja Franz, Lucas Wolf, Maniraman Periyasamy, Christian Ufrecht, Daniel
D. Scherer, Axel Plinge, Christopher Mutschler and Wolfgang Mauerer [6].
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2. Background on Quantum Computing

This chapter provides an overview of the main concepts of quantum computing. It begins by introduc-
ing single qubit systems and superpositions in Section 2.1 and expands the concept to multiple qubits
and entanglement in Section 2.2. Section 2.3 gives an overview of quantum computation, including
quantum gates. Section 2.4 describes the algorithmic family of variational hybrid quantum-classical
algorithms that is used in this work. Finally Section 2.5 introduces the concepts of noise modelling,
which are used to mimic the limitations of near-term quantum systems.

2.1. Qubits and Superpositions

The fundamental unit of information in quantum computing is the quantum bit, also known as the
qubit. While a classical bit can only exist in either state 0 or 1, a qubit can can exist in a superposition
of |0〉 and |1〉 [26]. This superposition is a linear combination of the computational basis states |0〉
and |1〉, which can be expressed as:

|ψ〉 = α |0〉+ β |1〉 , (2.1)

where α, β ∈ C are referred to as amplitudes.

Dirac-Notation The notation for quantum states above is referred to as Dirac-notation [27]. Here,
a so called ket |ψ〉, which is labeled by ψ, refers to a vector representing the state of a quantum
system [28]. The ket is a linear combination of vectors such that

|ψ〉 = a1 |s1〉+ a2 |s2〉+ ...+ an |sn〉 , (2.2)

where ai ∈ C is the amplitude for vectors |si〉 [28]. A quantum system can be expressed as a linear
combination of vectors, which form a basis B for the system and allow each state to be uniquely
represented. Additionally, a basis in quantum computing typically is required to be orthonormal [28],
which is explained in the following.

The conjugate transpose of a ket |ψ〉 is called bra 〈ψ|, with |ψ〉 =
( a1

a2
...
an

)
and 〈ψ| = (a1 a2 ... an) . Two

vectors, |s1〉 and |s2〉, are said to be orthogonal if the inner product 〈s1|s2〉 is zero. A set of vectors B
is called orthonormal if each |ψ〉 ∈ B is of unit length, i.e. 〈ψ|ψ〉 = 1, and and all elements of B are
mutually orthogonal [28]. One possible set of state vectors to express all single-qubit systems is given
by the computational basis

B = {|0〉 , |1〉} =
{(

1
0

)
,

(
0
1

)}
, (2.3)

which fulfills the orthonormality condition [28].

3



2. Background on Quantum Computing

x
y
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|0〉

|1〉

|ψ〉

|0〉+|1〉√
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ϕ

θ

Figure 2.1.: Bloch sphere representation of a single qubit.

According to the principles of quantum mechanics, when the state of |ψ〉 is measured, a superposition
collapses into one of the computational basis states. The probability of the collapse is determined by
the square of its corresponding amplitude, which is |α|2 for |0〉 or |β|2 for |1〉 for the quantum state
described in Equation 2.1. As the sum of probabilities for the superposition collapse must be one, the
normalisation condition |α|2 + |β|2 = 1 must be fulfilled [26].

As described in Ref. [26] Equation 2.1 can also be expressed as:

|ψ〉 = eiγ
(

cos θ2 |0〉+ eiϕ sin θ2 |1〉
)
, (2.4)

with γ, θ, ϕ ∈ R. The factor eiγ represents a global phase, which can be disregarded in the following as
it does not have an observable impact. Every single-qubit quantum state, characterised by parameters
θ and ϕ can be visualised on the surface of the unit three-dimensional sphere, often referred to as Bloch
sphere, which is depicted in Figure 2.1. While the visualisation with the Bloch sphere can be useful
for the representation of the state of a single qubit, there is no simple generalisation for multi-qubit
systems [26]. The upcoming section describes the characteristics of multi-qubit systems, which offer
crucial characteristics for quantum computation.

2.2. Multiple Qubits and Entanglement

In the case of two classical bits, they can be in four possible states, namely 00, 01, 10, and 11.
Similarly, for two qubits, there are four computational basis states denoted by |00〉, |01〉, |10〉, and
|11〉. However, unlike classical bits, a pair of qubits can also exist in superpositions of these states.
Thus, as described in Ref. [26] the quantum state of a two qubits system can be expressed by

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 , (2.5)

where αij ∈ C with i, j ∈ {0, 1} are the respective probability amplitudes for the computational
basis states. As for single-qubit systems, the normalisation condition requires the squared amplitudes
to sum up to one. In general, a state of a quantum system with n qubits can be described by 2n

amplitudes. Consequently, the information that can be stored in such a quantum state is far greater
than that in a classical state. Thus, quantum computation aims to exploit the substantial information
capacity of quantum systems [26].
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2.3. Quantum Computation

As described in Ref [26], quantum computing can exploit a certain phenomenon that is exclusive
to quantum mechanics, which is entanglement. For instance, the Bell state or EPR pair [29], [30],
represented by

|00〉+ |11〉√
2

, (2.6)

is a so-called entangled two-qubit state, which has the peculiar property that upon measuring the
first qubit, one obtains two possible results. A measurement of the second qubit always gives the
same result as the measurement of the first qubit, resulting in correlated measurement outcomes.
In contrast to a classical state space, a quantum system’s state cannot always be characterised by
considering the states of its separate components [28]. The phenomenon of entanglement serves as the
basis for numerous quantum computing approaches [26].

Analogous, to the vector notation for single-qubit systems, a vector space of 2n dimensions can be
used to describe quantum states of multi-qubit systems with n qubits. Generally, as described in
detail in Ref. [26], vector spaces V and W can be combined by the so-called tensor product. A basis
of the combined vector space is given by |i〉 ⊗ |j〉, where |i〉 and |j〉 are the orthonormal bases of W
and V respectively. The states of the combined vector space can be expressed as linear combinations
of |i〉 ⊗ |j〉. An abbreviation for a tensor product of multiple states such as |v1〉 ⊗ |v2〉 ⊗ ... ⊗ |vn〉 is
commonly written as |v1v2...vn〉. The Kronecker product can be used to represent this operation for
matrices and vectors, as described in Ref. [26]. For instance, when using the computational basis state
vector for |0〉 for two operands, the operation can be represented as follows:

|00〉 = |0〉 ⊗ |0〉 =
(

1
0

)
⊗
(

1
0

)
=


1 · 1
1 · 0
0 · 1
0 · 0

 =


1
0
0
0

 , (2.7)

which is one of the computational basis states for two-qubit systems.

2.3. Quantum Computation

In this section, we provide an overview of quantum computation. Specifically, the process of trans-
forming these quantum states into other quantum states using so-called quantum gates is described.

Quantum Gates A crucial aspect of quantum computing is manipulating the state of a quantum
system. This can be achieved by rotating the quantum state vector in the complex vector space using
a transformation, such as applying a matrix. To perform valid state transformations according to the
dynamics of quantum mechanics the corresponding matrix U is required to fulfill the condition

U †U = 1, (2.8)

where U † is the conjugate transpose of U and 1 is the identity matrix, i.e. U must be unitary [26].
This ensures reversibility and also guarantees that all state vectors are kept normalized in every
transformation step. Practically, quantum computers perform quantum state transformations using
gates that are connected by wires and form circuits, with gates representing unitary matrices [26].

5



2. Background on Quantum Computing

Two sample quantum circuits, which are also used in this work, are shown in Chapter 5 in Figure 5.1.
The following two subsections provide an overview of important single-qubit and multi-qubit gates.

2.3.1. Single-Qubit Gates

In classical computing, there is only one non-trivial member in the class of single bit gates, the NOT
gate, which flips a bit, i.e., transforms 0 to 1 and vice versa. In contrast, quantum computing employs
multiple single-qubit gates. The quantum equivalent to the classical NOT gate is the X gate [26],
which is represented by

X =
[
0 1
1 0

]
. (2.9)

Applying X on an arbitrary single-qubit state α |0〉+β |1〉 with α, β ∈ C and |α|2 + |β|2 = 1 using the
computational basis produces

X(α |0〉+ β |1〉) = X

(
α

(
1
0

)
+ β

(
0
1

))
=
[
0 1
1 0

](
α

β

)
=
(
β

α

)
= β |0〉+ α |1〉 , (2.10)

and thus performs a negation. In general, the first column of a single-qubit matrix demonstrates the
transformation of the computational basis state |0〉, while the second column represents the transfor-
mation of |1〉.

The X gate is one of the Pauli gates, which are among the most commonly used single-qubit trans-
formations. The three Pauli matrices [28] are given by:

X =
[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
. (2.11)

According to Ref. [28], the Pauli matrices possess a unique characteristic of being not just unitary,
but also Hermitian matrices. A matrix A is considered to be Hermitian when it satisfies the following
condition:

A = A†. (2.12)

As described in Ref. [28], a special property of Hermitian matrices is that their eigenvalues are real.
When Hermitian operators are used for measurements, they are often referred to as observables. The
possible post-measurement states are represented by the eigenvectors of the operator A. For instance,
as the Pauli-Z operator has the eigenvectors |0〉 and |1〉 with the eigenvalues 1 and -1, respectively, Z
is commonly used for measurements in the computational basis. Hermitian operators and especially
the Pauli-Z gate are essential in the context of hybrid quantum-classical algorithms, including QRL
approaches.

The Pauli matrices, when exponentiated, generate three important classes of unitary matrices known
as rotation operators around the x, y, and z axes in the Bloch sphere representation [26]. As outlined
in Ref. [26], these rotation gates are defined by:

6



2.3. Quantum Computation

Rx(θ) = e−iθX/2 =
[

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

]
,

Ry(θ) = e−iθY/2 =
[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
,

Rz(θ) = e−iθZ/2 =
[
e−iθ/2 0

0 eiθ/2

]
.

(2.13)

As a rotation gate can be parameterised by a value θ, it is often used as one of the building blocks for
variational quantum circuits (VQCs), which is described further in Section 2.4.

2.3.2. Multi-Qubit Gates

To utilise the phenomenon of entanglement in quantum computation, operations or gates can be
performed on multiple qubits to create a correlation between them. The prototypical gate to introduce
entanglement between two qubits is the so-called controlled-NOT or CNOT gate, which operates on
two qubits, with the first referred to as the control qubit and the second as the target qubit. The state
of the target qubit is determined by the control qubit. If the control qubit is measured to be in state
|1〉, the target qubit will be flipped; otherwise, the state of the target qubit remains unchanged [26].
To summarise, the CNOT gate performes the following operations on the computational basis states:

|00〉 → |00〉 |01〉 → |01〉 |10〉 → |11〉 |11〉 → |10〉 (2.14)

The CNOT gate is defined by the following unitary matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.15)

In general, any single-qubit unitary operation U can be used in a two-qubit controlled-U operation,
employing a control and a target qubit. If the control qubit is measured to be in state |1〉, then U will
be applied on the target qubit, otherwise the state of the target qubit stays the same [26]. The circuit
symbols for the CNOT and contolled-Pauli-Z (CZ) gate, which are used in the QRL algorithms later
are depicted in Figure 2.2.

(a) CNOT (b) CZ

Figure 2.2.: Circuit symbols for the controlled-NOT (CNOT ) and the controlled-Pauli-Z (CZ) gate.

This section covered the basic single-qubit and multi-qubit gates, including Pauli-rotation and en-
tangling controlled gates. These gates serve as building blocks for variational quantum algorithms

7



2. Background on Quantum Computing

(VQAs), which are discussed in the next section.

2.4. Variational Quantum Algorithms

This section introduces the family of variational hybrid quantum-classical algorithms. Concrete vari-
ational algorithms for QRL are described in the next chapter in Section 3.4.

According to Ref. [31], variational quantum algorithms (VQAs) aim to approximate a specific target
function by minimising a corresponding cost function C that depends on parameters ~θ. such that

~θ∗ = arg min
~θ

C(~θ), (2.16)

where ~θ∗ represent the optimal parameters. The VQA employs a quantum circuit containing gates with
tunable parameters, e.g. Pauli-rotation gates. Similar to classical machine learning approaches, these
parameters are adjusted in an optimisation or training process. After feeding an input state through
such a variational quantum circuit (VQC), the output is measured and the parameters are optimised
using classical optimisation techniques, such as gradient descent [32]. This process is repeated until
the desired target function is approximated with sufficient quality.

As depicted in Figure 2.3 a VQC consists of three parts. In the first part, a quantum state is prepared
to represent the classical input data ~x. A unitary operator Ue(~x) is applied on the initial quantum state,
which by convention, is assumed to be |0〉 for each qubit [26]. In the second part, the quantum state is
then transformed by applying a parameterised unitary U(~θ), which is also referred to as a variational
layer. Finally, classical information 〈Ô〉 is obtained from the quantum circuit by measuring the state.
The notation 〈Ô〉 refers to the expectation value of an observable Ô and is discussed in Section 2.4.2.
The classical algorithm interacts with the VQC by feeding input data ~x to the encoding component
and by passing parameters ~θ to the variational layer [33]. The upcoming three subsections provide
a more detailed description of the main concepts of VQCs: classical data encoding, quantum data
extraction and the calculation of gradients, which are often required by classical optimisers.

Quantum computer Classical computer

...

|0〉

Ue(~x) U(~θ)...
|0〉

Classical Algorithm

Input
~x

Parameters
~θ

Output 〈Ô〉

Figure 2.3.: The structure of a variational quantum-classical algorithm using a variational quantum
circuit (VQC).
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2.4. Variational Quantum Algorithms

2.4.1. Classical Data Encoding

As stated prior, classical data ~x is prepared as a quantum state using a unitary Ue(~x). The structure
and gates that build this unitary depend on the encoding strategy that is applied. Three of the most
common strategies to encode the classical data, proposed by Weigold et al. [34], [35], are listed in the
following:

• Bitwise encoding maps one classical bit to one qubit. The encoding unitary Ueb
(~x) comprises

Pauli-X gates, which get applied to a qubit if the corresponding classical bit is set to one.
However, since data is typically represented by multiple bits, such as 32 bits for a single-precision
floating-point number, encoding even a small amount of data can quickly exceed the capacity of
currently available gate-based quantum systems. For instance, the maximum number of qubits
offered by the gate-based quantum computers from IBM as of 2023 is 127 [36].

• Amplitude encoding is a method that allows denser encoding by mapping the real values, such
as integers or floating point numbers, to the amplitudes of a quantum state. This technique
can encode 2n values using n qubits with the limitation that the amplitudes must sum up
to one, according to the normalisation condition. Although amplitude encoding provides the
densest encoding, the state preparation using a corresponding unitary Uea requires an exponential
number of operations to encode 2n data values in the general case [34], [37]. We will therefore
not consider amplitude encoding in this work.

• Angle encoding uses a Pauli-rotation gate to encode one real value into one qubit. The
corresponding unitary Ue∠(~x) can comprise one [25], [34] or multiple [23], [24] parameterised
Pauli rotation gates per qubit. There are various methods proposed in the literature for encoding
input data ~x as angles for rotation gates, given that these gates are periodic and the input must
be scaled to an interval smaller than 4π. For instance, Lockwood and Si [24] propose two
encoding schemes: Scaled (S) encoding, which determines a rotation angle by scaling finite-
domain input values to [0, 2π], and Directional (D) encoding, which encodes infinite-domain
inputs by rotating the qubit by π if the input is greater than 0. Skolik et al. [25] additionally
present Continuous (C) encoding, which computes rotation angles as the arctan of the respective
input value [6]. A comparative analysis of the underlined encoding schemes in a QRL algorithm
can be found in Chapter 5. As angle encoding only requires one qubit for each input value, it
will be used in this work.

Up until this point, the standard encoding method follows a traditional neural network setup, where
the encoding unitary, i.e. the input component, generally preceeds the variational layers, as shown in
Figure 2.4b. However, gate-based VQCs do not have a theoretical limitation on the maximum number
of repetitions of input features that can be introduced into the circuit. Therefore, the encoding unitary
can be reintroduced at multiple instances in the VQC, as shown in Figure 2.4a. This approach, known
as data re-uploading [38], is suggested to increase the expressivity of a VQC [6], i.e. the capability to
express information. Reintroducing the encoding circuit increases the expressivity of the model [39].
It was shown by Schuld et al. [39] that the functions represented by VQCs are Fourier sums. In this
functions, the variational layers determine the amplitudes of the Fourier sum and the encoding layer
fixes the frequency spectrum. Therefore, introducing more encoding layers via data re-uploading,
increases the frequency spectrum represented by the VQC and thus the expressivity of the represented
function class. In Chapter 5, the standard encoding and the encoding method with data re-uploading
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. . . ...

|0〉

Ue(~x) Uv(~θ1) Ue(~x) Uv(~θl)...
|0〉

(a) VQC architecture with data re-uploading.

. . . ...

|0〉

Ue(~x) Uv(~θ1) Uv(~θl)...
|0〉

(b) Standard VQC architechture.

Figure 2.4.: VQC architectures with and without data re-uploading for an encoding unitary Ue(~x)
representing the classical data ~x and a variational unitary Uv(~θi), parameterised by ~θi with i ∈ [1, l]
and l variational layers.

are compared through experiments.

2.4.2. Quantum Data Extraction

To extract classical information from a quantum state |ψ〉, the expectation value 〈Ô〉 [40] of an ob-
servable Ô needs to be used, which can be computed by

〈Ô〉 = 〈ψ| Ô |ψ〉
〈ψ|ψ〉

. (2.17)

As only normalised quantum states are considered in this work, the denominator containing the inner
product 〈ψ|ψ〉 can be disregarded as it always equals one. Since measurements are probabilistic and
the probability of obtaining a particular result depends on the amplitude of the associated quantum
state, expectation values can be estimated by averaging over multiple runs and measurements of the
circuit. As described above in Subsection 2.3.1, measurements using Pauli-observables are often used
in VQAs [40].

2.4.3. Gradient Calculation

To solve the optimisation problem from Equation 2.16 the parameters ~θ can be trained using gradient-
base approaches. In this section a VQC is considered, where the parameterised unitary U(~θ) that
depends on m real gate parameters ~θ transforms the initial state |ψ〉, followed by a measurement of
the observable Ô. According to Ref. [41], in a hybrid VQA the calculation of the VQC can then be
expressed as a function f : Rm → R, mapping the gate parameters to an expectation:

f(~θ) := 〈Ô〉 = 〈ψ|U †(~θ)ÔU(~θ) |ψ〉 . (2.18)

For a parameterised quantum gate that is generated by a Hermitian operator with two unique eigen-
values, the partial derivative of f(~θ) with respect to µ ∈ ~θ can be evaluated by the parameter-shift
rule [5], [41]. Considering that the parameterised gates in unitary U(~θ) are Pauli rotation gates, the
following equation [31] holds:

∂f(~θ)
∂µ

= 1
2
(
〈ψ|U †(~θµ,+ π

2
)ÔU(~θµ,+ π

2
) |ψ〉 − 〈ψ|U †(~θµ,+ π

2
)ÔU(~θµ,− π

2
) |ψ〉

)
= 1

2
(
f(~θµ,+ π

2
)− f(~θµ,− π

2
)
) (2.19)
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The notation ~θµ,s denotes a parameter shift of s applied to the parameter µ, meaning that the shifted
parameter (µ + s) belongs to the set of parameters ~θµ,s. Unlike numerical differentiation techniques,
such as using finite differences [42], the parameter-shift rule allows for analatic evaluation of gradients,
as shown in Ref. [41]. For a general cost function C(~θ), which further processes the expectation of the
VQC, the gradient can be obtained by using the chain rule [31].

Similar to a classical neural network [43], a VQC is also proven to be a universal approximator [38],
i.e. it is capable of reproducing any continous function, given a sufficient number of parameters. This
characteristic makes the VQC a promising choice for a variety of optimisation and machine learning
algorithms, which rely on a function approximator as a fundamental concept. Additionally, as the
number of qubits and the circuit depth is typically controllable, the VQC approach is highly versatile
and suitable for NISQ devices [4].

This section introduced VQAs that can use gradient-based optimisation techniques on ideal quantum
devices or quantum simulators. In the following section we discuss how noise models can be used to
simulate noisy quantum circuits.

2.5. Modelling Noise

This section presents a theoretical overview of how noise affects quantum calculations, including VQAs.
The description is presented in a manner that is precise enough to draw dependable conclusions for
quantum software and algorithms, without requiring an in-depth understanding of quantum physics.
The content of this section is based on the description of quantum noise in Ref. [44].

2.5.1. Mixed Quantum States

In earlier sections, we represented a quantum state |ψ〉 ∈ C2n as a unit vector in a 2n dimensional
complex vector space. This notation can only express states that are a linear combination of basis
states, which are associated with an amplitude. However, such states, also known as pure states,
cannot fully capture the state of a system when external influences such as noise are present. For
instance, if a qubit ψi is flipped with probability pi, the system could transform into the state |¬ψi〉
with probability pi or remain in state |¬ψi〉 with probability 1 − pi. In this case, the system state
can be described using a probability distribution of possible states, which is referred to as a mixed
state. Mixed states entail two sources of probabilistic behavior. First, the outcomes of measurements
are stochastic due to the fundamental properties of quantum theory. Second, the external influence
of noise introduces a level of uncertainty due to a lack of knowledge on the systems behaviour.

When noise manipulates a quantum state, classical uncertainty arises that can be expressed using
classical probabilities pi. With the density matrix formalism [26], a mixed state can be described as
multiple pure quantum states |ψi〉 mixed with classical probabilities pi by

ρ =
∑

i

pi |ψi〉 〈ψi| . (2.20)

The upcoming subsection utilises transformations of the density matrix to illustrate the evolution of
quantum states under the influence of noise.
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2.5.2. Operations in Noisy Quantum Systems

As discussed in previous sections, the evolution of a quantum state can be described by a unitary U
in a closed quantum system, which does not suffer from any unwanted interactions with the environ-
ment [26]. If the system’s initial state is |ψi〉 with probability pi, after applying U the system will be
in the state U |ψi〉 with the same probability pi. This leads to the following evolution equation [26] of
the density matrix:

ρ =
∑

i

pi |ψi〉 〈ψi|
U−→
∑

i

piU |ψi〉 〈ψi|U † = UρU †. (2.21)

In the case of a noisy system, the quantum system is open to an external environment. To model such
noisy open systems, the environment is included, resulting in a larger but closed quantum system. Let
ρ denote the state of the open quantum system of interest, called the principal system and ρenv the
state of the environment, which together form a closed quantum system with input state ρ⊗ρenv [26].
The evolution when applying unitary U can be described by U(ρ ⊗ ρenv)U †. The final state of the
principal system can then be expressed by the quantum operator E(ρ) that may not be related by a
unitary transformation to the initial state ρ. Tracing out the environment reveals the evolution of ρ
under noise:

E(ρ) = trenv

[
U(ρ⊗ ρenv)U †

]
. (2.22)

The partial trace tra that is described in detail in Ref. [26] is a tool in the density matrix formalism
to discard certain parts of a quantum mechanical systems.

Suppose that {|ek〉}k is an orthonormal basis for the environment and without loss of generality that
ρenv = |e0〉 〈e0| is the initial state of the environment. As described in Ref. [26], Equation 2.22 can
then be rewritten as the operator-sum representation of E , which is expressed as

E(ρ) =
∑

k

EkρE
†
k, (2.23)

with Ek being the operator on the state space of the principal system, known as the operation elements
for the operation E [26]. In the following subsection, we describe some instances of this general noise
modelling principle.

2.5.3. Noise Models

In a quantum system, noise can arise from different sources such as decoherence, where quantum
information is lost over time, or from imperfect calculations and measurements. This work focuses on
gate errors, which are errors that occur when performing calculations. In the following, we describe
two kinds of gate errors, which are evaluated experimentally for QRL in Section 5.

• Bit/Phase Flip: A probabilistic quantum bit flip [26] can be defined by

E(ρ) = pXρX† + (1− p)1ρ1†. (2.24)

With this operator, a Pauli-X gate is applied to the single-qubit system with state ρ with a
probability of p, and otherwise, the state remains unchanged. The equation above, is one way
to describe the operator elements Ek from Equation 2.23. Similary, the bit-phase flip error or
the phase flip error can be constructed, by replacing the Pauli-X with Pauli-Y or Pauli-Z gates,
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respectively [26].

• Depolarisation: An error commonly used in simulations is the completely depolarising opera-
tor [26] applied to a single qubit, which randomly applies the Pauli-X, Y , or Z operators with
probability p, and leaves the qubit unchanged otherwise:

E(ρ) = p

4(1ρ1† +XρX† + Y ρY † + ZρZ†) + (1− p)1ρ1†. (2.25)

This Equation can be simplified to

E(ρ) = p

21+ (1− p)1ρ1†, (2.26)

where p
21 is the density representing the state of a system being in every basis state with

equal probability. As a result, the system will either remain unchanged or have all information
destroyed with a probability of p. For a system consisting of n qubits, the depolarising operator
can be expressed as [26]

E(ρ) = p

2n
1+ (1− p)1ρ1†. (2.27)

To sum up, this chapter has presented the fundamental principles of quantum computing that are
relevant to this thesis. These concepts are be used to develop and test quantum reinforcement learning
methods in simulations, considering both ideal and noisy quantum models. The upcoming chapter
introduces the concepts of reinforcement learning and explore how they can be adapted for quantum-
based approaches.
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3. Background on Quantum Reinforcement
Learning

In this chapter, the main concepts of classical reinforcement learning (RL) and quantum reinforce-
ment learning (QRL) are introduced. The formulation of RL environments using a Markov decision
process (MDP) is described in the following subsection. Subsection 3.2 outlines a specific class of
RL approaches known as Q-learning, which is further specified in Subsection 3.3 for deep Q-learning
(DQL). Finally, an overview of a quantum version of DQL is provided in Subsection 3.4.

3.1. Markov Decision Process

Most formulations of RL center around the notion of a Markov decision process (MDP) [8], where
an agent interacts with an environment1 at discrete time steps t. In each time step, the current
configuration of the agent in the environment is summarised by the state St ∈ S, where S is the set
of all possible states. Based on this information, the agent selects an action At from a set of possible
actions A according to a policy π(s, a) = P[At = a|St = s], which gives the probability P of taking
action a in state s. Executing the selected action causes a transition of the environment to a next state
St+1 ∈ S; simultaneously, the agent receives a scalar reward Rt+1 ∈ R that quantifies the contribution
of the selected action towards solving the task, with R ⊂ R being the set of all rewards. Such a
transition can be defined as a tuple (St, At, Rt+1, St+1) and is graphically depicted in Figure 3.1.

Agent

Environment
Rt+1

St+1

reward
Rt

state
St

action
At

Figure 3.1.: Transition (St, At, Rt+1, St+1) in a MDP [8].

3.1.1. Rewards

The agent’s goal is to maximise the return [8]

Gt =
T∑

t′=t

γt′
Rt′ , (3.1)

1The term “environment” used in the context of RL should not be confused with the “environment” defined earlier in
the text for noise modelling.
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i.e. the discounted sum of rewards, until a terminal state ST is reached. In that, the discount factor γ
controls how much the agent favors immediate over future rewards. The period between the initial time
step and ST is often referred to as an episode. Both St+1 and Rt+1 are assumed to obey the Markov
property [45], i.e., conditional independence of previous states and actions given St, At. However, the
MDP’s dynamics, P[St+1, Rt+1|St, At], are typically unknown to the agent, which necessitates learning
a policy by trial-and-error.

3.1.2. Policies

A policy π can be evaluated with the action-value function

qπ(s, a) = E[Gt|St = s,At = a], (3.2)

which calculates the expected return, starting from state s ∈ S when following policy π under the
constraint that action a ∈ A was executed. The results of the action-value function are also referred
to as Q-values [8].

To solve a RL task, a policy must be found that achieves the highest possible reward over time. Using
the function from Equation 3.2 an order of possible strategies can be established. A policy π is called
better than a policy π′ if qπ(s, a) > qπ′(s, a),∀s ∈ S,∀a ∈ A. The optimal action-value function q∗

q∗(s, a) = max
π

qπ(s, a),∀s ∈ S,∀a ∈ A (3.3)

is maximised for the optimal policy π∗, If q∗ is known, then π∗ can be derived by [25]

π∗(a, s) = arg max
π

qπ(s, a). (3.4)

The goal of RL approaches is to determine or approximate the optimal policy with sufficient quality.
This thesis focuses on the Q-Learning approach, which is described further in the upcoming sections.

3.2. Q-Learning

Q-Learning [46] is a technique used to approximate the optimal action-value function defined in Equa-
tion 3.3. This algorithm combines ideas from dynamic programming and temporal-difference learning,
both of which is discussed in this section.

3.2.1. Dynamic Programming

In dynamic programming, value functions are commonly used to facilitate the search for optimal
policies [8]. To this end, Bellman optimality equations [8] can be converted into update rules for
improving approximations of the desired value functions. The action-value function in Equation 3.3
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can be expressed as a Bellman equation

q∗(s, a) = max
π

qπ(s, a)

= max
π

E[Gt|St = s,At = a]

= E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)|St = s,At = a

]
,

(3.5)

which relates the current state to its subsequent state. In a sequence of Q-values (q0, q1, . . . ), for which
q0 is randomly initialised, the subsequent Q-value qk+1 to qk with k ∈ N can be calculated by

qk+1(s, a) = E
[
Rt+1 + γmax

a′
qk(St+1, a

′)|St = s,At = a

]
. (3.6)

The policy πk, which can be derived from qk, converges against the optimal policy π∗ for k →∞ [47].

However, to calculate the expectation value in Equation 3.6, a complete and accurate model of the
environment, i.e. a model of its reward and next-state probability distribution, is required, which is
not practical for most environments [8]. Therefore, Q-learning also considers experience, i.e. sequences
of states, actions, and rewards from actual or simulated interaction with the environment [8]. The
following subsection outlines, how experience can be utilised in so-called temporal-difference learning.

3.2.2. Temporal-Difference Learning

Temporal-difference learning allows for building new approximations of the action-value function based
on previous approximations. Q-learning is a specific approach to temporal-difference learning that
was originally proposed as a tabular learning algorithm [46]. This means that the Q-values for each
action-value pair encountered during learning are stored in a table. The algorithm starts by arbitrarily
initialising this table. It then collects experience by exploring the environment and updates each Q-
value for an explored action-value pair using the following update rule [8]:

q(St, At)← (1− α) q(St, At)︸ ︷︷ ︸
old

+α

Rt+1 + γmax
a′

q(St+1, a
′)︸ ︷︷ ︸

new

 , (3.7)

where α ∈ [0, 1] is a constant step-size. As proven in Ref. [48], in the tabular Q-learning approach,
q(s, a) converges to the optimal Q-values q∗(s, a) when all state-action pairs are visited infinitely often.
However, in applications with many possible transitions, storing the Q-value for all states and actions
is inefficient in terms of memory usage and difficult to implement. Therefore, in so-called (classical)
deep Q-learning [47], a neural network is used to approximate the action-value function, which is
outlined in the following section.

3.3. Deep Q-Learning

The fundamental idea of deep Q-learning (DQL) [47] is to learn the optimal Q-values from Equation 3.3
using a multi-layered neural network that for any given state s outputs a vector of Q-values q(s, a; ~θ),
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where ~θ are the parameters of the neural network. If the state space has n dimensions and the action
space has m actions, then the neural network is a function from Rn to Rm [19].

The neural network is then trained to minimise the temporal difference error, i.e. the difference
between the “old” and “new” value from Equation 3.7 under some loss function [47]. One possible loss
function is e.g. the mean squared loss function [49]

Li(θi) = E(St,At,Rt+1,St+1)

[(
Yi − q(St, At; ~θi)

)2
]
, (3.8)

which is evaluated in each training step i ∈ N on samples of transitions (St, At, Rt+1, St+1). The target
Yi [19] is defined as

Yi ≡ Rt+1 + γmax
a′

q(St+1, a
′; ~θi). (3.9)

The remainder of this section describes the update of the parameters based on the loss, as well as
common techniques to address known problems in training convergence, namely experience replay and
a target network.

3.3.1. Updating Weights with Gradient Descent

The parameters, also called weights, of the deep neural network can be updated using gradient-based
optimisation, such as stochastic gradient descent [32],

θk
i+1 = θk

i − α
∂

∂θk
i

Li(~θi), (3.10)

where α ∈ [0, 1] is a step size, θk
i ∈ ~θi is the parameter at index k ∈ N in parameter set ~θi at

training step i ∈ N and ∂
∂θk

i

Li(~θi) the corresponding gradient. The gradients can be obtained via
backpropagation [50], i.e. applying the chain rule for calculating derivatives with respect to the loss
function Li.

As Mnih et al. [51] point out, learning q∗ with a high-capacity function approximator leads to con-
vergence problems. To this end, DQL makes use of a target network and experience replay, which is
described in the following two subsections.

3.3.2. Experience Replay

Experience replay, introduced in Ref. [52], involves storing the agent’s experience, which consists of
transitions denoted by et = (St, At, Rt+1, St+1), at a time step t in a so-called replay buffer Dt =
{e1, . . . , et} across multiple episodes. During training, the parameters are updated based on the loss
function from Equation 3.8 by uniformly sampling mini-batches of experience e ∼ U(D) that are
randomly drawn from the stored samples [47]. Experience replay is used to achieve data efficiency and
to reduce correlation between samples. For a detailed discussion on the advantages of using experience
replay the reader is referred to Ref. [47].

In DQL, the transitions are sampled using an off-policy approach, i.e. instead of applying the current
greedy policy, an ε-greedy behavior policy that selects a random action with probability ε is chosen.
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Decaying ε over the course of training allows the agent to explore the environment, while guaranteeing
that the behavior policy and target policy converge eventually.

3.3.3. Target Network

To further enhance the stability of DQL, a second modification involves using a separate network to
generate the targets Yi [19]. Specifically the standard neural network, in this context called online
network, is cloned every c ∈ N time steps to obtain a target network, which is parameterised by ~θ−.
Therefore, instead of calculating the target values with the online network as defined in Equation 3.9,
the target values in training step i ∈ N are calculated using the target network:

Yi ≡ Rt+1 + γmax
a′

q(St+1, a
′; ~θ−

i ). (3.11)

As discussed in Ref. [47], this modification makes the algorithm more stable compared to standard
DQL, where an update that increases q(St, At; ~θ) often leads to an increase in succeeding Q-value
approximations and thus also increases the target Yi, which can cause policy oscillations or divergence.
By generating the targets using an older set of parameters, a delay is introduced between the time an
update to q is made and the time it affects the targets Yi, thereby reducing the likelihood of divergence
or oscillations.

This section provided an overview of the main concepts of classical DQL. These concepts serve as the
foundation for a quantum version of DQL, with some modifications specific to the quantum scenario.
The upcoming section delves into these quantum specific changes.

3.4. Variational Quantum Deep Q-Learning

A specific class of recent hybrid quantum-classical RL methods is that of variational quantum deep
Q-learning (VQ-DQL) [6], [23]–[25]. In this approach, the traditional deep neural network in DQL is
replaced by a variational quantum circuit (VQC). As outlined in Section 2.4, a VQC has the capability
to serve as a universial function approximator, making it a suitable machine learning model. The
parameters of the VQC can be optimised using gradient descent and the parameter-shift rule, which is
described in Section 2.4.3. The remainder of this section gives an overview of how the input encoding
and the output extraction in the VQC differ compared to the classical approach.

3.4.1. Input Encoding

To input a classical MDP state s ∈ S to the VQC, the state must be represented as a quantum
state |ψ(s)〉 using the available qubits. Various encoding strategies discussed in Section 2.4.1 can be
employed for this purpose. The choice of a suitable encoding strategy depends on the structure of the
classical input components. Therefore, Section 5.1 describes the input components of the MDP state
in the CartPole benchmark environment [53] and Section 5.4.1 explore the encoding methods, which
can be applied to it.
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3.4.2. Q-Value Extraction

For a given input MDP state, the VQC predicts Q-values for all |A| actions simultaneously by taking
the expectation value of a measurement, using Pauli-Z observables of a corresponding number of
output qubits. The resulting expectation values lie within [1; 1]; thus obtaining valid action values can
require additional processing, for instance by scaling the measured results by a learned multiplicative
factor, which is further described for the particular MDP environment CartPole in Section 5.4.1.

By replacing the classical neural network with a VQC, there is potential to incorporate the power
of quantum computation into the RL domain. While there is no proof that VQ-DQL models are
superior to classical DQL models, several experiments [6], [23]–[25] have been conducted that suggest
advantages in terms of sampling or parameter complexity. In Chapter 5, we describe some of these
experiments.
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This chapter gives an overview of the existing research and literature, which serves as a foundation
for this work.

4.1. Deep Q-Learning and its instabilities

Deep Q-Learning (DQL) dates back to Watkin’s Q-Learning [46] and has seen a lot of interest over
the years due to its immense potential in learning capabilities. DQL is itself an active field of re-
search because of its versatility in applications. Nevertheless, as versatile as the applications are, the
algorithm possesses space for improvements in its stability and speed of convergence to a solution
[17], [19], [54]–[59]. In particular, the Q-learning approaches, i.e., off-policy learning with function
approximation and bootstrapping, are known to diverge in certain scenarios. This divergence occurs
more often when the Q-value is approximated using a non-linear function approximator such as a deep
neural network. However, the root causes are still unknown [19], [60]–[62].

4.2. Quantum Reinforcement Learning

Over the past few years, there have been several attempts to improve the performance of reinforcement
learning algorithms via possible “quantum advantage” using quantum computing. Like in the classical
realm, no method has emerged as the superior approach in performance or generality. The first
known quantum reinforcement learning (QRL) algorithm has been proposed by Dong et al. [63],
which uses a modified version of Grover’s algorithm [1] to learn a state-value function. As in the
classical reinforcement learning family, whose members vary in algorithm and methodology, various
algorithms for QRL have been studied [64]–[68].

The VQ-DQL approach was originally proposed by Chen et al. [23] where the authors have used VQCs
to solve two different discrete environments, namely, “cognitive radio” [69] and “frozen lake” [53]. Both
these environments are discrete environments where the state space is finite. Lockwood and Si [24],
further investigated the VQ-DQL algorithm by utilizing a VQC to tackle environments with both
continuous and discrete state spaces. Another study that analyses the learning performance and
behavior of VQ-DQL was conducted by Skolik et al. [25]. Here the authors explore the effects of
having a VQC as a Q-value approximator along with techniques like data re-uploading and a hybrid
machine learning model, which combines components of a classical neural network with a VQC. The
performance of these variational approaches [24], [25] is discussed in detail in our reproduction study
in Section 5.2.

While there have been claims in the literature about the potential advantages of VQ-DQL in terms of
sampling and parameter complexity [6], [23]–[25], the practicality of implementing these approaches
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on current NISQ devices is limited due to noise susceptibility. However, a study conducted by Skolik
et al. [70] suggests that VQ-DQL methods exhibit a certain level of robustness against (simulated)
noise. Additionally, insights from other quantum machine learning domains [71] support the notion
that incorporating noise during the training process can achieve comparable performance to the ideal
case. Based on these discoveries, in our study, we further explore the performance of VQ-DQL under
specific noise models in Section 5.6. The goal is to assess the resilience of VQ-DQL in the presence of
noise. By examining the effects of noise on VQ-DQL, we can gain valuable insights into the practicality
and viability of these approaches in real-world quantum computing scenarios.
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5. Experimental Analysis: Variational Quantum
Deep Q-Learning

This chapter presents our experimental analysis of Variational Quantum Deep Q-Learning (VQ-DQL).
The chapter is organised as follows: We begin by introducing the CartPole environment, which serves
as the benchmark for our experiments in the upcoming section. We then discuss the reproduction
study conducted to validate previous research on VQ-DQL in Section 5.2. In Section 5.3, we describe
the methodology employed in our experimental analysis, which we use for our experiments with ideal
quantum simulators in Section 5.4. Next, in Section 5.5, we compare the performance of VQ-DQL with
its classical counterpart. Finally, in Section 5.6, we investigate the impact of noise on the performance
of VQ-DQL.

5.1. The CartPole Environment

The CartPole environment [53] has emerged as a widely recognised benchmark in the field of RL.
It poses a non-trivial task due to its continuous state-space. In the environment, the goal is for an
agent to learn how to balance a pole upright on a cart that moves along a frictionless track. The
action-space for the agent is discrete and includes two actions: moving the cart to the left or to the
right. The continuous state-space comprises four observations, which are listed in Table 5.1.

Table 5.1.: State observations in CartPole

Observation Minimum Maximum

Cart Position −4.8 4.8
Cart Velocity −∞ ∞
Pole Angle −24◦ 24◦

Pole Angular Velocity −∞ ∞

An episode terminates when the pole angle exceeds ±12◦, the cart position surpasses ±2.4, or the agent
reaches a predefined maximum number of steps per episode. OpenAI [53] provides two variants of
CartPole: CartPole-v0, where the maximum number of steps in an episode is 200 and CartPole-v1,
where it is 500. At the start of each episode, the four variables of the environment state are randomly
initialised within a stable range of [−0.05, 0.05]. Throughout the episode, the agent receives a reward
of one at each step. The episode score is computed as the cumulative sum of rewards obtained during
the episode. Consequently, the episode score is directly tied to the length of the episode, with a
maximum achievable score of 200 (CartPole-v0) or 500 (CartPole-v1).
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(a) VQC architecture by Lockwood and Si [24]
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(b) VQC architecture by Skolik et al. [25]

Figure 5.1.: VQC architectures from Refs. [24] and [25].

5.2. Reproduction study

To gauge the learning capability of VQ-DQL, we first reproduce the results published by Lockwood and
Si [24] on the CartPole-v1 task. We train five VQ-DQL agents and evaluate their performance during
training using the source code1 published by the authors, in which the VQC architecture depicted in
Figure 5.1a is used. The results are visualised in Figure 5.2a. The blue line indicates episode returns.
The red line represents a moving average of the (up to) 20 previous returns2. While our measurements
reproduce the computational outcome of the published results, we identify two notable methodological
aspects that require careful consideration and interpretation:

• Training frequency—A step of mini-batch gradient descent is carried out only once per episode
(namely, after its termination). This differs substantially not only from the original DQL al-
gorithm, but also from the pseudo-code provided by Lockwood and Si [24], where training is
executed in regular intervals after a set number of trajectories has been sampled by the agent.
We are not aware of other approaches in the literature that pursue or analyse this approach,
and conjecture that it might have a detrimental effect on learning, since the distribution of
transitions in the replay buffer grows faster than the amount of data that the agent perceives.
The adaptation also complicates the comparison between independent runs of the algorithm,
depending on the length of the experienced episodes.

• Performance evaluation—Measuring agent performance in terms of a moving average over
previous runs is not a good indicator for learning success: Averaged returns have been generated

1Available on GitHub (link in PDF).
2Note that these statistics have been measured with the original source code, without modification. Superficial differ-

ences in visual appearance are caused by the plot aesthetic settings.
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5.2. Reproduction study

by different policies, that is, trained on increasing numbers of transitions at different stages of
ε-decay. Further, the averaging approach shadows any underlying instabilities as indicated by
the raw episode returns: In all five runs, the blue line oscillates strongly between low and high
return values, indicating that the underlying policy network/circuit fails to converge towards an
optimal policy. Note that in complex environments, DQL convergence can be non-monotonic
in terms of measured returns (see, e.g., Ref. [72]). Observing oscillations of this magnitude
on CartPole (which can be learnt in an approximately monotonic fashion by a simple neural
network with DQL, refer to Section 5.5) does not give a promising outlook on capability of
VQ-DQL to generalise to more challenging tasks.

Besides, we would like to explicitly point out that the experiment is based on CartPole-v1 where
return values of up to 500 can be achieved. In contrast, returns in CartPole-v0 cannot exceed 200,
which is important to take into account when judging closeness to optimality of particular approaches,
especially when the visual display of episode return time series uses clipped axes.

One other study which overcame these instabilities using a VQ-DQL algorithm to solve the CartPole
environment is conducted by Skolik et al. [25]. Here the authors have used slightly different gate
connectivity in their VQC compared to Lockwood and Si [24]. Apart from the change in VQC
architecture, which is depicted in Figure 5.1b, the authors also perform a gradient descent optimization
step after a fixed number of sampling steps. They also present their total reward attained in each
episode averaged over ten different agents rather than presenting a moving average. Skolik et al. [25]
have studied and tested various combinations of pure and quantum-classical hybrid VQC architectures
in their work. However, the pure VQC model did exhibit the same instabilities exhibited by Lockwood
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(a) Results from Ref. [24], reproduced using the pub-
lished source code. The light blue lines indicate the
total reward collected in an episode, using the greedy
policy for each agent. The light red lines represent
a moving average of the (up to) 20 previous episode
returns. Results are averaged over five experiments,
which is represented by the strong red and strong blue
lines. The experiments are based on the CartPole-v1
environment, where the maximum achievable return
value is 500.
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(b) Replication of the results from Ref. [25]. Here
we reproduced the quantum-classical model with clas-
sical trainable weights applied to the input and
output and the pure quantum model, both with
data re-uploading. The experiments are based on
the CartPole-v0 environment, where the maximum
achievable return value is 200.

Figure 5.2.: Reproduced results from Refs. [24] and [25]
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5. Experimental Analysis: Variational Quantum Deep Q-Learning

and Si’s model. Skolik et al. [25] used a VQC model where the inputs to and outputs from the VQC
were multiplied with classical weights along with the data re-uploading strategy [38] (cf. Section 2.4.1)
to overcome these instabilities.

Figure 5.2b presents the outcomes of our replication experiment, which aims to reproduce the findings
of Skolik et al. [25]3. The experimental setup followed the parameters specified in the Appendix section
of Ref. [25]. The measurement results shown in Figure 5.2b confirm the published results that the
quantum-classical model exhibited a stable learning behavior, while the pure quantum model, which
had no classical weights on the input and output parameters of the VQC, failed to learn the given
task.

In order to gain deeper insights into the effects of different influencing factors on training perfor-
mance, such as classical training weights and encoding schemes, the subsequent sections provide a
comprehensive description of our experimental setup and methodology.

5.3. Methodology

Previous implementations of the VQ-DQL approach show various methodological issues [24] that
we have discussed in the previous section. For having a stable and uniform VQ-DQL framework
that coincides with the classical RL practices and to provide a replication of existing results on
top of mere reproduction, we re-implement the original deep Q-learning algorithm as described in
[47], [72] in Tensorflow-Quantum [73](TFQ). In contrast to the previous implementations, which use
TFQ too, our re-implementation allows to conventiently integrate extensions and has a higher degree
of configurability of hyperparameters. Furthermore we included a flexible validation mechanism,
which is used to evaluate the performance of a current policy. Since in previous implementations a
fair comparison between different studies was difficult due to several meanings of return values (e.g.
averaging over past episodes as in Ref. [24] vs. taking a single episodes return value as in Ref. [25]), we
designed our validation mechanism to allow a uniform comparison of different classical and quantum
RL approaches. (Section 5.3 discusses implementation details). This section covers experiments, which
were conducted using the quantum simulators of the TFQ framework. Apart from our implementation
in TFQ, we have also adapted the code to the Qiskit framework [74] to conduct experiments on IBM
Quantum devices and utilise IBM quantum noise models [36] (cf. Section 5.6.1). The process of porting
between frameworks, as we elaborate on in in Ref. [75], is relatively straightforward and enables us to
leverage the unique features of each framework.

To describe our methodology, let us first set the employed conventions: By sampling steps, we refer
to the transitions sampled from the ε-greedy behavior policy. By training step, we understand one
iteration of gradient descent. Words in monospaced font indicate configurable parameters of the
algorithms.

To ensure comparability between our different experimental setups, and especially between previous
research and our dedicated experiments, we choose sampling steps as fundamental unit of training time.
Each experiment is run for 50 000 sampling steps. We deliberately use a long time horizon to capture

3The associated source code published by the authors of Ref. [25] is available on GitHub (link in PDF). Since this
implementation was not published during the reproduction process in the paper [6] associated with this thesis, we
independently replicated the results reported by Skolik et al. [25] using our own custom implementation.

26

https://github.com/askolik/quantum_agents


5.4. Experiments with Ideal Quantum Simulators

any phenomena that may materialise late in the learning process caused by slow convergence, but
retain the possibility to terminate successful runs prematurely, as described in detail below. Initially,
the replay memory is pre-filled with train_after=1000 sampling steps, corresponding to at least five
full episodes, using a uniform random policy with ε = 1.

A sampling step does not necessarily entail a training step; instead, a training step is carried out every
train_every sampling steps. As backpropagation on quantum devices is computationally intensive
due to gradients being estimated via the parameter-shift rule [5], [41], we introduced this parameter
as a means to keep the number of training steps per episode feasible. We note, however that in this
thesis and in the accompanying paper [6], we only report validation results on quantum hardware,
while the agent has been trained in simulation. Similarly, we update the target network parameters to
match the policy network parameters every update_every sampling steps. After the initial warm-up
phase, we decay ε linearly over epsilon_duration sampling steps in total, starting at a value of
epsilon_start=1, and ending at a value of epsilon_end=0.01. Keeping ε > 0 ensures continued
exploration with a near-greedy policy.

Since performance on the ε-greedy policy is not indicative of learned performance when ε is large [76],
we estimate the expected return achieved by the current greedy policy in regular intervals. Specifically,
we measure return over a single episode on a copy of the training environment every validate_every=100
sampling steps (note that the parameter does not influence the actual training process, and is just
used for performance monitoring). If the average validation return over the past consecutive 25 vali-
dation steps reaches 196 (recall that the maximum return is 200, and that we need to allow for some
jitter), we regard the task as solved and terminate training early. While this differs from the official
CartPole-v0 benchmark [53] that necessitates an average score of at least 195 over 100 episodes, we
find that training is very unlikely to diverge past this point, given that ε has decayed sufficiently. This
early stopping criterion is particularly beneficial for experiments conducted on the experimental IBM
quantum device, where a reduced number of episodes is crucial for practical feasibility. To showcase
the effectiveness of the early stopping criterion, we present a collection of results for VQ-DQL agents
trained using this criterion and validated against the solving criterion of the official benchmark [53].
The results, which can be found in Appendix A, demonstrate that the majority of trained agents
successfully solved the CartPole-v0 environment according to the official benchmark.4

5.4. Experiments with Ideal Quantum Simulators

Using our TFQ-implementation, we run a set of experiments to systematically evaluate the observed
instabilities. Throughout all our experiments, we used the CartPole-v0 environment to ensure com-
parability with [25] and [24], and also to keep computational cost at bay. Section 5.4.1 investigates
the effects of the chosen input encoding and Q-value extraction method on performance and stability.
Using these insights, we run an extensive cross-validation study described in Section 5.4.2.

4PLease note that, for the purpose of data visualization during averaging, any remaining steps in the training process
will be substituted with the optimal return value of 200 if the training was halted prematurely due to the early
stopping criterion.

27



5. Experimental Analysis: Variational Quantum Deep Q-Learning

5.4.1. Encoding and Extraction Methods

In this subsection, we delve into the various approaches for mapping input parameters onto quantum
states, as previously outlined in Section 2.4.1; we consider the following approaches, which are special
cases of angle enciding:

• Continuous (C): continuous encoding applied to all input components.

• Scaled & Continuous (SC): scaled encoding applied to finite-domain input components (i.e.
cart position, pole angle), continuous encoding otherwise (i.e. cart velocity, pole angular velocity;
cf. Table 5.1).

• Scaled & Directional (SD): scaled encoding applied to finite-domain input components,
directional encoding otherwise.

Along with the encoding strategies, we also investigate the impact of different Q-value extraction
methods on agent performance. This is necessary due to the mismatch between VQC outputs and
Q-values. In particular, we distinguish between:

• Local Scaling: each output is scaled by a dedicated trainable weight as described in Ref. [25].

• Global Scaling (GS): all outputs are scaled by a single trainable weight.

• Global Scaling with Quantum Pooling (GSP): quantum pooling as described in Ref. [24],
followed by global scaling. Quantum pooling involves incorporating additional rotation and
entangling gates into the circuit to compress the observation space to match the action space.
However, the overall advantages of utilizing this pooling operation are not explicitly discussed
in Ref. [24]. Therefore, we empirically evaluate its effectiveness in our experiments.

Initial Experiment

We conducted experiments for each combination of input encoding, Q-value extraction method and
circuit architecture, totalling in 18 runs. To this end, we adapted hyperparameters from Ref. [25] to
our slightly modified algorithm described in Section 5.3 (without data re-uploading). VQC weights
are initialised to zero to avoid barren plateaus [77], i.e. the vanishing gradient problem as suggested
in Ref. [78] and classical weights are initialised to one. Throughout all our experiments, we employed
five variational layers based on the VQC architectures illustrated in Figure5.1.

Results are shown in Figure 5.3. As is apparent, instabilities occur in every run and are not tied
to a specific encoding-/extraction setting. Nevertheless, some models only achieve comparatively low
returns on average: In particular, runs involving directional encoding tend to perform sub-par, which
we attribute to the high information-loss incurred by the encoding scheme. Directional encoding is
therefore not considered in further experiments.

To minimise the number of classical parameters, we focus on global scaling (with and without pooling)
in further experiments. While local scaling has not performed worse or less stable, the additional
classical parameters increase model capacity, and might therefore shadow deficiencies on the quantum
parts.

As described by Mnih et al. [51], Q-Learning is known to be instable, when a nonlinear function
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Figure 5.3.: Validation returns for using the VQC-layer structure as in Ref. [24] (top) and Ref. [25]
(bottom) with different input encoding strategies. The columns correspond to the extraction strategy
(ltr. Global Scaling (GS), Global Scaling with Quantum Pooling (GSP), Local Scaling (LS), cf.
section 5.4.1). Results are averaged over five experiments each. These experiments are based on the
CartPole-v0 environment, where the maximum achievable return value is 200.

approximator, such as a classical neural network or a VQC, is used to represent the state-action value
function. Our implementation already incorporates mechanisms suggested by Mnih et al. to support
convergence in Q-Learning. However, these mechanisms do not guarantee a stable behaviour and we
can not rule out that the instabilities in VQ-DQL are caused by classical algorithmic constraints. In
section 5.5 we compare the VQC to a classical neural network using the same algorithm. Our results
support the hypothesis that the reason for instabilities could be classical. Therefore, in the next
subsection, we study the effect of classical hyperparameters on the training process of VQ-DQL.

5.4.2. Cross-Validation

As instabilities persist throughout our experiments, we turn to hyperparameters as a source of in-
stabilities. To this end, we re-utilise the previous setting (C, SC/GS, GSP) with hyperparameters
from Ref. [25] as a starting point. Following recommendations [23], [79]–[81] from classical supervised
learning, we add a linear decay to the learning rate η. In particular, we decrease η over a period of
eta_duration training steps from eta_start towards a target value of eta_end=0.01*eta_start.
Additionally, we progressively increase the update_every parameter as learning progresses. This
choice is motivated by the observation that the delta between target and policy network decreases as
the agent becomes more proficient on the task. Finally, to optimise resource utilization and minimise
training time, we increase the batch size from 16 to 32, since this does not have a major impact on
the agent’s performance [82].
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5. Experimental Analysis: Variational Quantum Deep Q-Learning

Table 5.2.: Hyperparameter settings for cross-validation.
Hyperparameter Description Default value

Fixed parameters throughout cross validation runs
num_steps #sampling steps 50 000
train_after #sampling steps before first training step 1 000
train_every #sampling steps between training steps 10
update_every_start initial #sampling steps between target net-

work updates
30

update_every_end final #sampling steps between target network
updates

500

update_every_duration #sampling steps for update_every increase 35 000
replay_capacity max. #transitions in replay buffer 50 000
optimiser Loss-function optimiser Adam [83]
batch_size batch size for gradient descent 32
loss TD error loss function L2
epsilon_start initial value for ε decay 1.0
epsilon_end final value for ε decay 0.01
validate_every #sampling steps between validation runs 100
eta_end final value for learning rate η 0.01 ∗ eta_start

Hyperparameters subject to cross validation
eta_start (ηs) initial value for learning rate η {0.001, 0.01, 0.1}
eta_duration (ηd) #training steps for learning rate decay {2 000, 4 000}
epsilon_duration (εd) #sampling steps for ε decay {10 000, 20 000, 30 000}
gamma (γ) discount factor γ {0.99, 0.999}

We cross-validate over the following hyper-parameter choices: eta_start (i.e., the initial learning rate)
∈ {10−3, 10−2, 10−1}, eta_duration (learning rate decay duration) ∈ {2000, 4000}, epsilon_duration
∈ {10000, 20000, 30000}, gamma ∈ {0.99, 0.999}. The remaining parameters have been kept fixed over
all experiments and are listed in Table 5.2. The following subsections describe our results obtained on
the baseline setting (without data re-uploading), and a modified variant with data re-uploading.

Baseline

Results for the baseline case are depicted in Figure 5.4 (top two rows) and Table 5.3. The results
in Figure 5.4 show the runs with the best-performing hyperparameter configuration for each com-
bination of encoding/extraction method and VQC architecture. The full set of results is illustrated
in Appendix B. As evident from the figure, almost every model was able to achieve stable optimal
performance (according to our early-stopping criterion). Generally, the SC encoding tends to con-
verge faster as compared to models with continuous encoding; in the best case (Skolik et al./SC/GS),
optimal performance is reached after a mere 97 validation steps. This shows that VQ-DQL is in fact
capable of learning a stable optimal policy, albeit hyperparameter tuning is a sensitive influence factor.
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Baseline with data re-uploading

From Figure 5.4, it is evident that the performance of the VQ-DQL algorithm also suffers due to the
choice of encoding strategy used along with the bad choice of hyperparameters. For example, the
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Figure 5.4.: Validation returns for our best-performing hyperparameter constellations in the baseline
configurations. The figure considers the results for the VQC architecture described in Ref. [24] (left)
and Ref. [25] (right). Columns correspond to the extraction method (ltr. Global Scaling (GS), Global
Scaling with Quantum Pooling (GSP)), rows correspond to the input encoding strategy (Continuous
(C), Scaled & Continuous (SC), cf. Section 5.4.1) and whether data re-uploading was applied. The
experiments are based on the CartPole-v0 environment, where the maximum achievable return value
is 200.

Table 5.3.: Best-performing hyperparameters identified in cross-validation. The table provides values
for eta_start (ηs), eta_duration (ηd), epsilon_duration (εs), and gamma (γ). Encodings C, SC,
GS, and GSP as defined in Section 5.4.1.

Baseline Baseline + data re-uploadingArchitecture
ηs ηd εd γ ηs ηd εd γ

[24]/C/GSP 0.01 2 000 20 000 0.99 0.01 2 000 30 000 0.99
[24]/C/GS 0.001 4 000 20 000 0.99 0.01 2 000 30 000 0.999
[24]/SC/GSP 0.01 2 000 20 000 0.99 0.1 2 000 20 000 0.999
[24]/SC/GS 0.01 4 000 30 000 0.99 0.01 2 000 30 000 0.99
[25]/C/GSP - - - - 0.01 2 000 30 000 0.999
[25]/C/GS - - - - 0.01 2 000 10 000 0.99
[25]/SC/GSP 0.01 2 000 10 000 0.999 0.01 2 000 10 000 0.99
[25]/SC/GS 0.01 4 000 30 000 0.99 0.01 2 000 10 000 0.99
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agent with the continuous encoding format does not learn an optimal policy in many cases. Here to
increase the expressivity of the model, we can use techniques such as data re-uploading [25], [38]. The
results for the baseline case with data re-uploading are also depicted in Figure 5.4 (bottom two rows)
and Table 5.3. As in Section 5.4.2, we only present a selection of the best-performing hyperparameter
constellations (cf. Appendix B for the full set of results). From the results shown in Figure 5.4, we can
conclude that the data re-uploading strategy does not significantly increase the VQ-DQL algorithm’s
performance. Though it increases the expressive power of the model, which in turn allows the agent
to learn optimal behavior in some cases (for example, agent with Continuous (C) encoding), the
performance change is negligible or even negative in some cases. Moreover, the data re-uploading
strategy increases the gate count in the VQC architecture, which is not ideal for NISQ devices due to
noise.

5.5. Comparison to a Classical Neural Network

A popular “quantum advantage” claimed by a good fraction of the literature in QRL is that the VQC
has better state-action pair representation, samples efficiently, and learns an optimal policy faster than
the classical neural network [23]–[25]. Hence to compare the sample efficiency of a VQ-DQL-agent
trained on an ideal simulator against a classical neural network, we trained a simple fully-connected
network with one hidden layer to solve the CartPole-v0 environment. To ensure a fair comparison,
we restricted the total number of parameters of the network to 58, which is approximately in the same
order of magnitude as the number of parameter in the VQC. For reference, the comparative VQ-DQL
approach, which is based on the “Skolik et al./SC/GS” architechture/encoding/extraction configu-
ration without data re-uploading (cf. Section 5.4.2), employs 41 parameters in total (40 ”quantum”
parameters for the VQC and one classical trainable parameter for global scaling). Furthermore, we
conducted cross-validation on the same set of hyperparameters as explained in Sec. 5.4.2.

Classical Neural Network Variational Quantum Circuit
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Figure 5.5.: Comparison between a VQC and classical neural network averaged over 30 different
agents. The dashed line represents the threshold value Vthresh used in the significance test. The
experiments are based on the CartPole-v0 environment, where the maximum achievable return value
is 200.
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The results shown in Fig. 5.5 indicate that initially, the VQC seems to learn faster than the neural
network. For a more rigorous discussion we resort to Ref. [84], where sample efficiency of an algorithm
is defined for an online learning setting as the number of time steps from which on an agent trained by
the algorithm perceives an average reward exceeding a certain threshold Vthresh with high probability.

For a weaker statement adapted to a numerical treatment, we propose to use significance testing under
the null hypothesis of mean reward being smaller than Vthresh. Thus, we define sample efficiency as the
number of time steps from which on the null hypothesis is rejected with respect to the given threshold.
As statistical test we propose to use a one-sample t-test [85], [86], in particular its one-sided version
as we compare the performance of a particular algorithm against a given threshold. Thus, we perform
sufficiently many independent runs of each algorithm and fix the significance level at α = 0.05.

With respect to this metric the variational quantum circuit indeed crosses Vthresh = 120 faster than the
classical network. This indicates a potential improvement in terms of sampling complexity and also
parameter complexity compared to the classical neural network, considering that we utilised slightly
fewer parameters for the VQC. However, for larger threshold values, no definitive conclusion can be
drawn. Furthermore, these experiments were performed using an ideal quantum simulation for the
VQ-DQL algorithm. The impact of noise on the VQ-DQL agents performance is examined in the next
section.

5.6. Experiments with Noisy Quantum Systems

In this section, we explore the influence of noise on the performance of VQ-DQL. We conduct experi-
ments using both real hardware, specifically the IBM quantum device ibmq_ehningen [36], and noisy
quantum simulators. In the following subsection, we present validation results on the IBM quantum
device for an agent trained using an ideal simulator. These results provide valuable insights into the
performance of VQ-DQL under realistic noise conditions. Subsequently, we introduce specific noise
into the training process to evaluate the robustness of VQ-DQL when noise is present during both
training and validation stages.

5.6.1. Validation on IBM Quantum Device

Results from Sec. 5.4.2 and Sec. 5.4.2 illustrate that a VQC can learn a stable policy to solve the
CartPole-v0 environment using the VQ-DQL algorithm if the right set of hyperparameters is used.
In order to gauge the detrimental influence of device noise on an agent trained using an ideal simulator
in solving the environment, we tested the trained model in an actual IBM quantum device [36]. As
a first step, we had to port the VQ-DQL algorithm from the TFQ API [73] to the Qiskit API [74]
as the IBM quantum devices [36] use the Qiskit API as their primary programming library. There is
one significant difference between the Qiskit API and the TFQ API to be noted here. The TFQ API
calculates the expectation value analytically, whereas the Qiskit API estimates the expectation value
by simulating the ideal quantum device and measuring its outcomes. Likewise, the expectation values
are estimated in the IBM quantum device [36] by measuring the outcome multiple times. Further,
we trained the best-performing model without data re-uploading from Sec. 5.4.2 (specifically the
“Skolik et al./SC/GS” configuration) using Qiskit qasm_simulator [74] and verified the correctness
of our implementation in comparison to the results from Sec. 5.4.2. We chose a model without
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Figure 5.6.: Results of our validation run on ibmq_ehningen [36]. The experiments are based on the
CartPole-v0 environment, where the maximum achievable return value is 200.

data re-uploading due to the fact that the quantum devices available right now are prone to noise.
Hence adding more gates via data re-uploading in NISQ devices seems counter-productive. Once
the correctness was verified, we uploaded the weights trained using the qasm_simulator to the IBM
quantum (ibmq_ehningen) device and validated the learned policy. The results of these validation
runs are shown in Fig. 5.6.

Though the agents trained in the ideal simulator learned an optimal policy to solve the CartPole-v0
environment, testing the trained agent in the ibmq_ehningen device did not reproduce the optimal
behavior. This degradation in behavior is due to the noise present in the IBM quantum device. An
agent trained in the IBM quantum device from scratch might reduce the effect of noise and learn
a policy close to the optimal policy. Additionally, different types of error mitigation techniques can
be employed to reduce the effects of noise at the cost of additional overhead. However, when we
attempted to train the agent from scratch on the IBM quantum device, the training turned out to be
infeasible due to the following practical issues:

1. We observed waiting times in the queue to start a job execution (referred to as fair-share queue for
jobs in IBM quantum systems) in the cloud-based IBM quantum device that were typically two
orders of magnitude (or more) larger than the actual job execution time. As (roughly speaking)
a single action selection corresponds to a single job in the fair share queue, even completion of
a single episode takes a substantial amount of time.

2. The overall time it takes to achieve low-variance estimators of expectation values can become
quite large due to the large number of shots (i.e., measurement samples) taken for a single circuit
instance.

Here, the first hindrance can be overcome in time as the availability of quantum devices and resources
is expected to increase in the near future. As improvements in hardware and orchestration of quantum
and classical computational resources progress, we might also witness an increased number of circuit
layer operations per second (CLOPS) [87]. When we started the training process in the ibmq_ehningen
device, the job execution time for each action selection took between 15 to 30 seconds, and each
training step took around 3 minutes (as the training step performs gradient decent via parameter-
shift rule). These long execution and waiting times make the training process in real quantum devices
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5.6. Experiments with Noisy Quantum Systems

impractical for training algorithms like VQ-DQL, where the agent has to interact with the environment
sequentially.

Due to the limitations discussed above, conducting a complete training of a VQ-DQL agent on an
IBM quantum device is beyond the scope of this thesis. However, IBM provides a set of noise models
in their Qiskit API [74] to simulate the noise present in their quantum devices. In the following
subsection, we delve into the experiments conducted using different simulated noise models.

5.6.2. Training with Noisy Quantum Simulators

In order to further assess the impact of noise on the performance of the VQ-DQL algorithm, we
incorporate noise into the training process using specific noise models. In this subsection, we initially
examine the separate effects of individual elementary noise types, which can offer insights for the
design of future quantum systems. Subsequently, we explore the influence of a noise model provided
by the Qiskit API [74], which characterises current real hardware.
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Figure 5.7.: Validation returns of VQ-DQL during the training process under different noise variants
and gate error rates. Noise was introduced during both training and validation stages. Results are
averaged over five experiments each. The experiments are based on the CartPole-v0 environment,
where the maximum achievable return value is 200.
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5. Experimental Analysis: Variational Quantum Deep Q-Learning

Pauli/Depolarising Noise Models

First, we incorporate the gate errors specified in Section 2.5.3 in the training of the VQ-DQL agent. As
for the validation on the IBM quantum device, we chose a configuration without data re-uploading.
This choice was made to keep the circuit shallow and the gate count minimal, thereby reducing
potential sources of errors. We selected the architecture/encoding/extraction model configuration
with its corresponding hyperparameters that performed best in the ideal case, which was also utilised
in previous sections (i.e. “Skolik et al./SC/GS”). Figure 5.7 shows the validation returns during the
training process using the Pauli-X, -Y , -Z, and depolarizing channels with varying gate error rate.
The figure illustrates that as the error rate increases, the VQ-DQL agent requires more steps to
converge to the optimal performance. Nevertheless, for low error rates up to 0.5%, the agent achieves
comparable results to the ideal case. This finding is particularly encouraging for near-term quantum
devices, which typically exhibit error rates ranging from ca. 0.01% to 3% [44]. Moreover, certain
platforms demonstrate particular resilience against specific types of noise. For instance, trapped ion
systems have shown resilience against bit flip (Pauli-X) errors [88], [89], which, along with Pauli-Y
errors, can be particularly troublesome at higher error rates. This resilience can be a relevant criterion
when selecting a quantum platform for a software system [44]. However, it is essential to note that
current NISQ devices are susceptible to various other types errors, such as coherence errors. These
additional forms of noise can also be simulated and modeled using more complex noise models. For a
detailed description, we refer to Ref. [26].

Real Hardware Noise Model

To evaluate the impact of additional types of noise, we employ a comprehensive noise model provided
by IBM [36] in their Qiskit API [74]. This noise model specifically characterises the publicly accessible
5-qubit IBM quantum device ibmq_belem [36]. We train five VQ-DQL agents using this noise model
and present the results in Figure 5.8. It is evident that, based on our early-stopping criterion (cf.
Section 5.3), the agents are able to achieve an optimal policy for the CartPole-v0 environment in all
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Figure 5.8.: Validation returns of VQ-DQL during the training process under the simulated
ibmq_belem noise model. Noise was introduced during both training and validation stages. Results
are averaged over five experiments. The experiments are based on the CartPole-v0 environment,
where the maximum achievable return value is 200.
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5.6. Experiments with Noisy Quantum Systems

five runs.

While the agents trained with noise take longer to reach optimal returns compared to the ideal case
that is depicted in Figure 5.5, these results still indicate a certain degree of robustness of the VQ-DQL
approach against noise. This finding aligns with the observations made in Ref. [70], where the authors
also conducted noisy experiments using various noise models. Moreover, we hypothesise that further
improvement in the performance of VQ-DQL can be achieved by searching for optimal hyperparam-
eters. As demonstrated in Section 5.4.2, VQ-DQL is highly susceptible to classical hyperparameters,
even in the ideal case.

Overall, this chapter provided a comprehensive experimental analysis of the VQ-DQL algorithm. We
evaluated its performance under ideal and noisy conditions, compared it to classical approaches, and
assessed its potential for real-world quantum computing applications. The findings and insights gained
from these experiments are summarised and discussed in the following chapter.
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6. Discussion and Outlook

In the previous chapter, we have systematically studied the performance of quantum-assisted reinforce-
ment learning schemes on both simulators and physical quantum computers. Our findings revealed
that, even in ideal simulation settings, variational quantum deep Q-learning (VQ-DQL) approaches
exhibit instabilities leading to policy divergence. This chapter delves into the results obtained, exam-
ine the potential factors contributing to these instabilities, and propose potential strategies to mitigate
them in future research.

In our approach of VQ-DQL we trained a VQC with a classical optimization loop. Such a setting is
known to be prone to the barren plateau effect [77], which describes a problem of vanishing gradients
that causes the inability to converge to an optimal return value. However, barren plateaus only occur
in random VQCs. To counter randomness in the quantum circuits, we initialised all VQC parameters
systematically to zeros. Since the VQCs in our experiments are neither very wide (four qubits), nor
deep (five “layers”), randomness induced by gradient-based optimization is also limited. Therefore we
rule out barren plateaus as the source of instabilities.

With the possibility of the barren plateau avoided, one can say that every agent with its unique archi-
tecture combinations and a reasonable encoding scheme is capable of learning the optimal policy to
solve the CartPole environment. This can be seen from the results shown in section 5.4.2. The archi-
tecture combinations which did not learn an optimal policy during experiments conducted by different
authors (Refs. [24] and [25]) showed a tendency to learn the optimal policy during our experiments.
The reason why these agents show such a tendency is the selection of the right set of classical hyper-
parameters. The agents learned the optimal policy only for a few sets of classical hyperparameters
during our hyperparameters search. This made us conclude that the VQ-DQL algorithms are highly
sensitive to classical hyperparameters.

The results from sections 5.4.2 elucidate that the data re-uploading strategy does not always outper-
form its corresponding architecture without data re-uploading in sampling efficiency. One possible
reason for this could be that the optimal hyperparameter set required for these architectures might
fall outside the search space used in the experiments. One other possible reason for this underper-
formance can be inferred from the work of Schuld et al. [39]. Schuld et al. show that the function
represented by a VQC is a Fourier sum. In particular, the variational layers determine the amplitudes
and the encoding layers determine the frequency spectrum. As shown in Ref. [90], when it comes to
data re-uploading strategy, the variational layers between two encoding layers might not be expressive
enough which reduces the overall expressivity of the VQC. Increasing the number of variational layers
can enhance expressivity, but this would require further investigation and architectural modifications
in future studies.

Furthermore, we observe that in the current early stage of technological development, quantum com-
puters, even in the absence of noise, do not exhibit clear advantages over classical approaches, as
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6. Discussion and Outlook

indicated by the findings presented in Section 5.5.

Nonetheless, a number of constructive insights can be drawn from our experiments. Following previ-
ous work, we have trained models on classical simulators and only performed the execution step on
quantum hardware. This approach, albeit practically necessitated by current-day hardware, creates a
mis-match in terms of handling noise. Most importantly, our results do not corroborate observations
made when reinforcement learning on quantum computers was first introduced into the literature in
Ref. [23]: While the authors in this approach upload weights determined by classical training onto a
quantum machine as we do in this paper, they find that executing the model does not vary much be-
tween simulation and NISQ machine. We, on the contrary, observe a total mismatch in performance.
We expect the most probable explanation for this discrepancy to lie in (a) the size of the machine
(five versus 27 qbits) and the problem of choice (“cognitive radio” [69] versus CartPole [53]; a random
policy as would be caused by growing amounts of noise from NISQ devices is obviously better suited
to the former than the latter).

To address the challenges posed by noisy systems, one potential strategy is to incorporate noise in
the training process. Our results for simulated noise models from Section 5.6.2, along with previ-
ous studies [25], [71], [91] on small-scale systems, indicate that existing noise models can effectively
bridge the gap between simulation and hardware, enabling a more accurate comparison of algorith-
mic performance. A logical next step would be to validate this statement by executing the VQ-DQL
agent, trained with a simulated noise model on real hardware. Unfortunately, due to limited access
to hardware, we were unable to pursue this validation in the scope of this thesis.

We encounter hindrances towards the practical application of quantum computers: Waiting time on
queues in a shared, cloud-like environment is a major practical issue, which will however be alleviated
with the broader availability of quantum chips. Nonetheless, the temporal contributions of sequential
elements of algorithms to the overall computation time would also occur in a non-shared setting and
do substantially increase wall-time run-times, which is an obvious impediment to practical utility.

As long as noise and imperfections are unavoidable, we propose a hardware-software co-design approach
as a pathway to practical utility. This approach, as highlighted by recent studies [92]–[94], involves
leveraging simulated quantum processing unit (QPU) designs that exhibit tunable and physically
realistic noise behavior. By exploring optimal noise models and parameters within these inherent
constraints, we can identify an ”ideal” noise model that aligns with the characteristics of real-world
quantum systems. Moreover, future QPUs can be designed to closely mimic the identified noise
and imperfection behavior by carefully considering trade-off decisions during hardware design. In
essence, we put forth the hypothesis that by recognizing the varying impact of hardware imperfections
on different computations, there exists a degree of freedom within the realm of hardware design
decisions. This freedom can be harnessed to develop custom algorithmic-specific hardware solutions
that optimise performance in the presence of noise and imperfections, leading to more practical and
effective quantum computing systems.
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7. Conclusion

This thesis presented an empirical analysis of a recent class of variational hybrid approaches to quan-
tum reinforcement learning, namely VQ-DQL. Our findings indicate that current VQ-DQL methods
do not offer clear advantages over classical methods, particularly on current NISQ devices. However,
these results highlight potential directions for future research.

One area of focus for future investigations is the adaptation of algorithms to address the challenges
posed by noise and imperfections in quantum systems. By incorporating techniques that mitigate the
impact of these factors, it may be possible to improve the practical utility of quantum reinforcement
learning approaches.

Furthermore, the design of algorithmic-specific quantum hardware represents another promising ap-
proach. By tailoring hardware architectures to suit the requirements of quantum algorithms, it may
be possible to leverage the unique properties of quantum computing and realise quantum advantage
in specific problem domains.

Overall, this work emphasises the need for further research and development to unlock the full potential
of quantum reinforcement learning. By addressing the challenges posed by noise and imperfections,
and by considering the design of algorithmic-specific quantum hardware, we can pave the way for more
effective and practical quantum-assisted learning algorithms.
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A. Validation Results

Table A.1.: Average validation results after training with early stopping criterion, collected over 100
validation episodes. The VQ-DQL agents were trained using the best-performing hyperparameter sets
listed in Table 5.3 for each configuration of VQC architecture and encoding/extraction method.

Architecture Baseline Baseline + data re-uploading

[24]/C/GSP 198 197
[24]/C/GS 191 196
[24]/SC/GSP 189 200
[24]/SC/GS 192 198
[25]/C/GSP - 195
[25]/C/GS - 193
[25]/SC/GSP 200 200
[25]/SC/GS 200 198
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B. Cross-Validation – Full Results

This appendix depicts the full result set of our cross-validation experiments introduced in Section 5.4.2.
The VQ-DQL agents were trained for the CartPole environment using the early stopping criterion
(cf. Section 5.3).

B.1. Baseline without data re-uploading
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Figure B.1.: Cross-validation results for using the VQC architecture from Ref. [24], Continuous (C)
input encoding and Global Scaling with quantum Pooling (GSP) for Q-value extraction (Baseline).
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B. Cross-Validation – Full Results
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Figure B.2.: Cross-validation results for using the VQC architecture from Ref. [24], Continuous (C)
input encoding and Global Scaling (GS) for Q-value extraction (Baseline).
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B.1. Baseline without data re-uploading
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Figure B.3.: Cross-validation results for using the VQC architecture from Ref. [24], Scaled & Con-
tinuous (SC) input encoding and Global Scaling with quantum Pooling (GSP) for Q-value extraction
(Baseline).
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B. Cross-Validation – Full Results
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Figure B.4.: Cross-validation results for using the VQC architecture from Ref. [24], Scaled & Con-
tinuous (SC) input encoding and Global Scaling (GS) for Q-value extraction (Baseline).
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B.1. Baseline without data re-uploading
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Figure B.5.: Cross-validation results for using the VQC architecture from Ref. [25], Continuous (C)
input encoding and Global Scaling with quantum Pooling (GSP) for Q-value extraction (Baseline).
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B. Cross-Validation – Full Results
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Figure B.6.: Cross-validation results for using the VQC architecture from Ref. [25], Continuous (C)
input encoding and Global Scaling (GS) for Q-value extraction (Baseline).
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B.1. Baseline without data re-uploading
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Figure B.7.: Cross-validation results for using the VQC architecture from Ref. [25], Scaled & Con-
tinuous (SC) input encoding and Global Scaling with quantum Pooling (GSP) for Q-value extraction
(Baseline).
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B. Cross-Validation – Full Results
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Figure B.8.: Cross-validation results for using the VQC architecture from Ref. [25], Scaled & Con-
tinuous (SC) input encoding and Global Scaling (GS) for Q-value extraction (Baseline).
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B.2. Baseline with data re-uploading

B.2. Baseline with data re-uploading
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Figure B.9.: Cross-validation results for using the VQC architecture from Ref. [24], Continuous (C)
input encoding and Global Scaling with quantum Pooling (GSP) for Q-value extraction (Baseline +
data re-uploading).
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B. Cross-Validation – Full Results
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Figure B.10.: Cross-validation results for using the VQC architecture from Ref. [24], Continuous (C)
input encoding and Global Scaling (GS) for Q-value extraction (Baseline + data re-uploading).
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B.2. Baseline with data re-uploading
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Figure B.11.: Cross-validation results for using the VQC architecture from Ref. [24], Scaled & Con-
tinuous (SC) input encoding and Global Scaling with quantum Pooling (GSP) for Q-value extraction
(Baseline + data re-uploading).
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B. Cross-Validation – Full Results
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Figure B.12.: Cross-validation results for using the VQC architecture from Ref. [24], Scaled &
Continuous (SC) input encoding and Global Scaling (GS) for Q-value extraction (Baseline + data
re-uploading).
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B.2. Baseline with data re-uploading
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Figure B.13.: Cross-validation results for using the VQC architecture from Ref. [25], Continuous (C)
input encoding and Global Scaling with quantum Pooling (GSP) for Q-value extraction (Baseline +
data re-uploading).
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B. Cross-Validation – Full Results
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Figure B.14.: Cross-validation results for using the VQC architecture from Ref. [25], Continuous (C)
input encoding and Global Scaling (GS) for Q-value extraction (Baseline + data re-uploading).
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B.2. Baseline with data re-uploading
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Figure B.15.: Cross-validation results for using the VQC architecture from Ref. [25], Scaled & Con-
tinuous (SC) input encoding and Global Scaling with quantum Pooling (GSP) for Q-value extraction
(Baseline + data re-uploading).
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B. Cross-Validation – Full Results
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Figure B.16.: Cross-validation results for using the VQC architecture from Ref. [25], Scaled &
Continuous (SC) input encoding and Global Scaling (GS) for Q-value extraction (Baseline + data
re-uploading).
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