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The Quantum Approximate Optimisation Algorithm (qaoa) is a widely studied quantum-classical
iterative heuristic for combinatorial optimisation. While qaoa targets problems in complexity class
NP, the classical optimisation procedure required in every iteration is itself known to be NP-hard.
Still, advantage over classical approaches is suspected for certain scenarios, but nature and origin of
its computational power are not yet satisfactorily understood.

By introducing means of efficiently and accurately approximating the qaoa optimisation landscape
from solution space structures, we derive a new algorithmic variant: Instead of performing an
iterative quantum-classical computation for each input instance, our non-iterative method is based
on a quantum circuit that is instance-independent, but problem-specific. It matches or outperforms
unit-depth qaoa for key combinatorial problems, despite reduced computational effort.

Our approach is based on proving a long-standing conjecture regarding instance-independent
structures in qaoa. By ensuring generality, we link existing empirical observations on qaoa parameter
clustering to established approaches in theoretical computer science, and provide a sound foundation
for understanding the link between structural properties of solution spaces and quantum optimisation.

I. INTRODUCTION

With the advent of early commercially available quan-
tum computers, interest in the field has spilled from
academia to early industrial adopters, and the hope for
possible advantage or even supremacy is manifest [1–3].
However, challenges arise not only from deficiencies of
noisy, intermediate-scale quantum (nisq) hardware [4–7],
but quantum algorithmic theory in general lags behind the
classical case. While fundamental complexity-theoretic
boundaries have long been established [8–10], a more pre-
cise understanding of concrete algorithmic building blocks
and how to construct them is required [11–13].

How to systematically construct quantum algorithms
is a multi-faceted, highly non-trivial task that remains
essentially unsolved. Instead, heuristics like variational
quantum circuits (vqc) [14] have emerged as popular
alternatives. Originally intended to extract useful compu-
tational power from nisq devices despite their limitations,
they may also prove relevant as resource-efficient primi-
tives in the post-nisq era. They are centred around an
iterative quantum-classical process that learns a param-
eterised form of a quantum circuit such that sampling
a produced quantum state obtains a valid solution with
high probability. Depending on the variational ansatz,
this approach defers considerable aspects (i.e., finding
an appropriate quantum circuit that eventually imple-
ments the optimisation routine) of the task to classical
components [15–17].

Structured forms of vqcs, in particular the quantum
approximate optimisation algorithm (qaoa), enjoy popu-
larity in prototypical applications [18]. qaoa is a specific
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vqc for combinatorial optimisation. Similar to quantum
annealing, to which qaoa is closely related [4, 19], it
provides a strict framework on the quantum side. Given a
specific problem, users only need to find a fitting problem
representation, choose a suitable circuit depth, and pick
a classical optimisation method. Devising such problem
representations is not foreign to traditional computer sci-
ence: In particular, techniques to reduce computational
problems specified using an apt formalism into represen-
tations that are suitable for qaoa [20–22] are curricular
knowledge [23].

The most essential ingredient of combinatorial optimi-
sation is, of course, the optimisation landscape. This
paper is centred around a new theorem, detailed in Sec-
tion IV, that allows us to approximate the expected qaoa
optimisation landscape of a problem from existing so-
lution space structures. Informally speaking, qaoa is
concerned with multiple objects: A problem (e.g., can
a graph be partitioned into two halves such that only a
certain amount of edges must be cut?), an instance (e.g.,
a specific graph), a solution space (e.g., lists of edges to
cut), and parameters that define an appropriate quantum
circuit specific for each instance to obtain solutions from
sampling the circuit output.

Hamming distances between solutions offer an intuitive
handle to discover and describe local structures in solution
space. Our approach continues a line of research [3, 24–26]
using such distance information, particularly the connec-
tion to state amplitudes and their interference, to obtain
insights about the inner workings of qaoa. By using
stochastic methods, we establish novel means of reason-
ing about qaoa landscapes on an instance independent,
but problem specific level, and show that instance-specific
quantum circuits can be replaced by one single problem-
generic alternative, while obeying a strictly bounded max-
imal difference between approximated and exact ingre-
dients of the overall combinatorial optimisation process.
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∣∣∣ ≤

√
Var(|T |)Var

(
|ck|2

)
Bounded Difference

FIG. 1. Overview of our main foundational contributions. Left: Previously conjectured parameter clustering in qaoa optimisation
landscapes F

(i)
1 (β, γ) (derived from a combinatorial optimisation objective function c(i)(z⃗) of a decision problem instance)

suggests that shared macroscopic similarities exist between instances i. Averaging over these reveals that the expected landscape
E(F1(β, γ)) is a common structure at the problem-global level. Right: Shared macroscopic features exist across all instances,
based on structural properties manifest in the solution spaces. Aggregation (which may be possible analytically, but can always
be performed using empirical sampling) leads to a macroscopic description of a problem-global solution space, from which
the expected optimisation landscape can be efficiently approximated as Ẽ(F1(β, γ)). Most importantly, we prove that the
approximation has a bounded difference to the underlying exact quantity. The approximation approach (ingredients indicated
by a blue background) and its consequences are subject of this paper.

Our result contributes to both, foundational understand-
ing of qaoa and practical implementations.

As for the fundamental aspects, we provide a rigor-
ous mathematical proof of a long-standing empirically
motivated conjecture [27–31] that instance independent
structures of a problem form the global structure of the
qaoa optimisation landscape. We combine methods from
physics and computer science to ascertain this structural
insight, and can use either efficient sampling techniques
or an analytical approach to obtain an accurate approxi-
mation of the qaoa optimisation landscape. In particular,
we can separate the instance sampling from specific qaoa
parameters. These aspects of our contribution are visually
summarised in Fig. 1.

In terms of practical impact, we replace unit-depth
qaoa as an iterative heuristic comprising an interplay of
quantum and classical components (that, notably, requires
solving an NP-hard parameter optimisation problem [32]
individually for every instance) with a two-phase, non-
iterative algorithm that first approximates the instance-
independent, but problem-specific expected landscape
followed by sampling a fixed quantum circuit, as illus-
trated in Fig. 2. While omitting the outer loop has, in

various ways, been suggested in prior work based on the
aforementioned empirical observations [27, 28], our ap-
proach places the idea on a sound theoretical basis. It
also introduces a new method of devising classical optimal
parameters, and equips the method with a quantitative
quality criterion. We demonstrate that our simplified
variant is identical or better to standard qaoa for several
seminal subject problems in terms of successfully finding
solutions to combinatorial optimisation problems.

By showing that the required structures exist for all
problems in NP, we establish generality of our results.
Our approach therefore opens up the discussion on pa-
rameter clustering and optimisation landscape similari-
ties to the vast body of established results in theoretical
computer science on structural properties of problem so-
lutions.

The rest of this paper is organised as follows: Section II
first presents related work, supporting and motivating
our ideas, and then establishes precise terminology for
qaoa fundamentals, particularly given the many subtly
different variants in current use. Section III covers the
qaoa optimisation landscape and prepares the necessary
groundwork for Section IV, where the main approxima-
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FIG. 2. Overview of our main practical contributions (blue background indicates problem-global, grey background instance-
specific components; yellow boxes mark classical computation. Dashed lines indicate transfer of classical data, and double
lines denote querying a resource). Left: Standard qaoa that iteratively (symbolised by ⟳) determines optimal parameters
(β, γ) for every instance by repeatedly sampling a structured quantum circuit. Right: Two-phase qaoa approach introduced in
this paper that first determines optimal parameters (β, γ) by sampling Ẽ(F1(β, γ)) from the problem-global target space, and
then uses the derived instance-independent optimal parameters (β, γ) to obtain instance-specific solutions by sampling from a
quantum circuit that is constant for each instance Ĉ. As we show, Ẽ(F1) has a strictly bounded difference to the expectation
value of F1, the core quantity of interest in qaoa.

tion theorem is presented and proved. With the new
theorem at hand, we discuss a list of five examples build-
ing on each other in Section V. This illustrates how our
theorem can be used to analyse synthetic and realistic
computational problems. The practical application of our
insights is subject of Section VI, where we introduce a
novel non-iterative variant of qaoa based on our insights
that matches or exceeds the performance of the standard
heuristic for a set of subject problems, yet at substantially
reduced computational cost. After setting our contribu-
tions in context with the current state of the art, and
discussing potential further uses and future improvements
in Section VII, we conclude in Section VIII.

II. FOUNDATIONS

A. Context and Related Work

qaoa and variants of the algorithm have been subject
of intensive research [6, 15, 16, 20, 26, 29–31, 33–67], as
recently reviewed by Blekos et al. [7] or Zhou et al. [17].
Apart from improving the understanding of the heuris-
tic construction, modifications to the structure of the
quantum circuit itself (e.g., Refs. [17, 26, 44, 61, 68])
aim at improving performance especially in nisq sce-
narios. Likewise, changes to the classical optimisation
procedure (e.g., Refs. [3, 28, 31, 54, 55, 60, 62, 63])
have been proposed. Given that limitations of nisq
hardware restrict programs to shallow circuits, many
analytical and practical studies focus on unit-depth
qaoa [7, 26, 29, 30, 33, 34, 36, 54, 55, 69, 70]; our con-
siderations are also based on this commonly employed
scenario. Perhaps fuelled by the possibility of empirically

investigating early-stage deployments, qaoa has been ap-
plied to a considerable variety of practical problems; see
Bayerstadler et al. [18] for a review.

Our work is particularly motivated by efforts that ob-
serve concentrations of optimal qaoa parameters across
instances, which has received substantial consideration in
the literature. In 2020, Streif and Leib [28] observed a clus-
tering of optimal parameters when training qaoa circuits
for random Max-Cut instances, which inspired them to
propose training qaoa without quantum hardware access.
Wybo and Leib, recently used these methods to analyse
fixed parameter qaoa landscapes for Ising formulations
of the maximum cut and the maximum independent set
problems [71]. Here, they also observed a promising
performance of qaoa with fixed parameters. Sack and
Serbyn [29] reported similar parameter concentrations
in 2021 also for Max-Cut instances. They provided a
theoretical definition of the effect based on the closeness
of optimal sets in parameter space. Their highlighting the
importance of picking good initialisation values for qaoa
parameters evolved into warm start qaoa: Here, the fo-
cus lies on finding optimal initialisation parameters [54];
this is obviously tightly linked to optimal parameters con-
centrating in certain regions. Predicting the location of
those clusters would benefit warm start efforts. Following
that, Akshay et al. published a thorough analytic analysis,
providing a new definition and concrete analytic insights
[35]. They, for instance, showed that qaoa circuit param-
eters concentrate as an inverse polynomial in problem size.
Galda et al. [30] demonstrated the transferability of qaoa
parameters between different Max-Cut instances in 2023,
and explained their findings with local graph properties.
They also investigated optimisation landscapes of certain
sub-graphs and observed stark similarities between differ-
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ent sub-graphs. This overlaps with earlier observations
by Brandao et al. in 2018 [27] that fixed parameters of
the optimisation landscape concentrate around certain
values for different instances. All these findings suggest
the existence of higher level problem structures shared
between instances that significantly influence the shape
of the underlying optimisation landscapes.

Classical theoretical computer science has studied struc-
tural properties of problems for decades. Among the most
fundamental structural observations are phase transitions
in constraint satisfaction problems: At a certain point,
problem instances transition from under-constrained to
over-constrained. The parameter correlated with this ef-
fect depends on the problem: For the seminal problem of
Boolean satisfiability (sat), it is known to be the ratio
of numbers of clauses to the number of variables in an
instance [72]. For graph colouring, the connectivity of the
underlying graph is the relevant determinant. Finding a
solution is especially hard at the phase transition. While
the phase transitions provide a high level description of
problem hardness, more complex structural properties are
known. Hogg argued in 1996 [73] that real-world applica-
tions model interactions between physical or social entities.
Thus, interaction likelihood strongly depends on the dis-
tance between entities based on some appropriate distance
measure, leading to recurring local structures. In 2004,
Pari et al. [74] showed that even trivially sampled random
sat instances do possess structured solution spaces. The
probability of a potential solution satisfying the sat for-
mula depends on the Hamming distance to other solutions.
A few years later in 2011, Achlioptas et al. [75] discovered
a clustering of the solution space of sat instances. They
further proved that under-constrained sat formulas have
exponentially many small clusters in their solution space.
The presence of community structures in the solution
space of industrial sat instances was demonstrated in
2012 by Ansótegui et al. [76].

B. Quantum Approximate Optimisation Algorithm

More often than not, the Quantum Approximate Op-
timisation Algorithm (qaoa) is associated with the
quadratic unconstrained binary optimisation (qubo) prob-
lem, which is NP-complete in its decision form and rel-
atively straight forward to solve with qaoa. A qubo
problem is defined by Boolean quadratic formula of the
form

∑︁
i ̸=j ai,jxixj +

∑︁
i aixi, where ai,j , ai ∈ R are real

valued weights of the Boolean variables xi ∈ F2, with
F2 := {0, 1}. The goal is to find a variable assignment to
maximise this qubo formula. This can be easily formu-
lated as a ground state problem of an Ising Hamiltonian∑︁

i ̸=j −Ji,jσz
i σ

z
j −∑︁i hjσ

z
i , with Ji,j , hj ∈ R and σz

i be-
ing the Pauli-Z operator on the i-th qubit. Therefore,
it seems reasonable to view qaoa as a dedicated qubo
solver. This approach is analogous to how sat solvers are
employed in classical systems. There is a rich community
of sat experts working on newer and better solvers, while

the users on the other side can rely on the interface of
abstract sat formulas to solve their concrete use cases
without them needing to dive deep into the intricacies of
Boolean satisfiability. Similarly, if we look at qaoa as
just another qubo solver, this takes the majority of quan-
tum out of quantum computing as the qubo formalism
serves as a classical interface. This is arguably a major
reason why qubos have been a welcoming entry point to
quantum computing, particularly for researchers who do
not feel the need to understand details of the computa-
tional process [22, 77]. Accompanying that, promising
methods of solving qubo problems with means other than
quantum computing have enjoyed a certain amount of
attention [78–82].

While our results apply to qubo problems, our consid-
erations are not restricted to this scenario, but consider
qaoa as proposed by Farhi et al. to solve general combi-
natorial optimisation problems [69], of which qubos only
form a restricted subset.

Definition 1. Let z ∈ Fn
2 be a n-bit binary string.

Further {cα}mα=1 shall be a set of Boolean clauses with
cα(z) = 1 iff z satisfies cα and cα(z) = 0 otherwise.
Maximising

c(z) =

m∑︂
α=1

cα(z) (1)

is known as the Boolean constraint optimisation problem.

We can bring Definition 1 to the quantum world by
defining a corresponding basis state vector |z⟩ for each
bit string z ∈ Fn

2 . The obvious choice for |z⟩ is the
computational basis vector |z⟩ ∈ {|0⟩, |1⟩}⊗n encoded by
z. Then we map the clause values cα(z) to eigenvalues
of quantum operators Cα representing the clauses. For
a one to one mapping, we get a projector Cα per clause
cα that projects onto the subspace spanned by all states
representing satisfying assignments of cα. With Hermitian
operators being closed under addition, we have that C =∑︁m

α=1 Cα is itself a Hermitian operator. This allows us
to define the Hamiltonian time evolution operator e−iγC .
Hamiltonian C describes the energy of a quantum system,
and energy levels are eigenvalues of C. The solution z of
Definition 1 maximises Eq. (1) and thus the corresponding
eigenstate |z⟩ of C has eigenvalue λmax = max σ(C).
Here, σ(C) is the set of eigenvalues of C. From the
Hamiltonian point of view, solving the combinatorial
optimisation problem is equivalent to finding a state with
maximal energy of a system described by the Hamiltonian
C. Farhi et al. came up with qaoa by trotterising an
interpolated Hamiltonian time evolution from an easy to
prepare maximal energy state of a system described by
a simple Hamiltonian to the state of maximal energy of
the system described by the constraint Hamiltonian C, in
which the problem structure of Definition 1 is encoded.

Definition 2 (qaoa circuit as in Ref. [69]). We consider
a constraint Hamiltonian C implementing the constraint
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cost function Eq. (1) for z ∈ Fn
2 and a mixer Hamiltonian

X =
∑︁n

j=1 σ
x
j , with σx

i = 1⊗i−1 ⊗ σx ⊗ 1n−i. Then, the
qaoa circuit

Up(β,γ) = e−iβpXe−iγpC · · · e−iβ1Xe−iγ1C (2)

produces the state

|β,γ⟩p = Up(β,γ)|+⟩⊗n (3)

with real angles β,γ ∈ Rp, p ∈ N.

Definition 2 actually defines a parameterised family of
circuits {Up(β,γ)}β,γ,p. For the Hamiltonian implemen-
tation of Eq. (1), the evaluation c(z) can be performed
by calculating the expectation value ⟨z|C|z⟩. Farhi et al.
showed that limp→∞⟨β,γ|pC|β,γ⟩p = maxz c(z). This
lets one define an algorithm to approximate the combi-
natorial optimisation problem with the circuit defined in
Eq. (2).

Definition 3 (qaoa). Consider a combinatorial opti-
misation problem with constraint cost function c(z) and
z ∈ Fn

2 . For a fixed p ∈ N, choose a set of angles
β,γ ∈ Rp that maximises the qaoa cost function

Fp(β,γ) = ⟨β,γ|pC|β,γ⟩p (4)

Then construct the circuit Up(β,γ), with which the state
|β,γ⟩p will be prepared and measured in the computational
basis to produce a binary string z ∈ Fn

2 . Repeat this
sampling step m times with the same circuit to get a binary
string that is close to maxz c(z) with high probability.

Strictly speaking, Definition 3 defines a heuristic and
not an algorithm. The process of finding optimal angles
β,γ ∈ Rp is not further specified and open to interpreta-
tion. As shown by Farhi et al. [69], Fp can be simplified for
specific problems—they consider Max-Cut on 3-regular
graphs—which allows for finding an efficient classical eval-
uation of Fp. It would also be feasible to evaluate Fp

on quantum hardware. The possible parameter optimisa-
tion methods are plentiful [7, 15, 16], and their impact is
subject to ongoing research.

Even for p = 1, the parameter optimisation prob-
lem of F1(β, γ) is NP-hard [32]. We restrict our
considerations to a single layer, as is common prac-
tice [7, 26, 29, 30, 33, 34, 36, 54, 55, 69, 70]. For the
sake of simplicity, we also focus on constraint Hamiltoni-
ans with two-level eigenspectra. This avoids some effort in
notation for the following theorems, but still allows us to
solve problems in NP. Note that the structural properties
we prove below also exist for constraint Hamiltonians C
with more than two distinct eigenvalues. Also, two-level
constraint Hamiltonians include all decision problems with
classical proofs z ∈ Fn

2 , most notably the complete class
of NP. Despite the restriction to |σ(C)| = 2 and p = 1,
our setting therefore covers a large body of non-trivial,
interesting computational problems.

Before we proceed with our analysis, let us fix termi-
nology regarding qaoa. The unitary gates e−iγiC defined

by the Hamiltonian time evolution of C are usually called
phase separation gates or just phase separators. As be-
comes clear in Eq. 7 below, it separates the solution space
from the search space by a complex phase, and hence
earns its name. The term e−iβiX is usually called mixer,
and X is the mixer Hamiltonian. Together, a phase sepa-
rator and mixer pair forms a layer e−iβiXe−iγiC . In this
case we speak of the i-th layer of a p-layer qaoa circuit
Up(β,γ).

III. THE OPTIMISATION LANDSCAPE

Now we want to take a look at the optimisation land-
scape induced by the decision problem derived from
Definition 1, which asks whether there exists an assign-
ment z ∈ Fn

2 satisfying all clauses—or, equivalently, if
c(z) =

∏︁
α cα(z) = 1. This directly translates to the

Hamiltonian implementation C =
∏︁

α Cα which, as a
product of projectors, remains a projector itself. Thus,
the eigenspectrum of C is σ(C) = {0, 1}. Since C is Hermi-
tian, there exists a unitary diagonalisation C = U( 1 0 )U

†.
Note that we can collect all eigenvalues λ = 1 in the upper
left block of the diagonal matrix by simply applying a
permutation operator, which we can subsume into the
unitaries U and U†. Using the power series expansion
of the exponential function, we see that the exponenti-
ation can be passed through the diagonalisation. Let
H be a diagonalisable operator with H = UDU† with
D = diag(d1, . . . , dn) and unitary U . Then using the
power series expansion of the exponential function, we get
eH =

∑︁∞
k=0

1
k! (UDU

†)k. Since U is a unitary operator,
the inner contributions U†U = 1 vanish in the product,
and (UDU†)k = UDkU†. It follows that

eH =

∞∑︂
k=0

1

k!
UDkU = U

(︄ ∞∑︂
k=0

1

k!
Dk

)︄
U†. (5)

Since D is diagonal, we find that

∞∑︂
k=0

Dk = diag

(︄ ∞∑︂
k=0

dk1 , . . . ,

∞∑︂
k=0

dkn

)︄
= diag(ed1 , . . . , edn).

(6)
Consequently, we can express the phase separator by
e−iγC = U

(︁
e−iγ1

1

)︁
U†. Let |z⟩ be a computational basis

state. Then
(︁
e−iγ1

1

)︁
U†|z⟩ = e−iγU†|z⟩ = U†e−iγ |z⟩ iff

|z⟩ has eigenvalue 1 under C, and
(︁
e−iγ1

1

)︁
U†|z⟩ = U†|z⟩

otherwise. If we apply the full phase separator gate
on the state, we obtain e−iγC |z⟩ = U

(︁
e−iγ1

1

)︁
U†|z⟩ =

UU†eiγ |ϕ⟩ = eiγ |z⟩ iff |z⟩ has eigenvalue 1 under C, and
UU†|z⟩ = |z⟩ otherwise. We conclude that e−iγC adds a
global phase to a computational basis state |z⟩ if and only
if |z⟩ has the eigenvalue 1 under C, and leaves the state
invariant otherwise. Applying e−iγC to an arbitrary super-
position of computational basis states |ψ⟩ =∑︁2n−1

z=0 ωz|z⟩
can be characterised by
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e−iγC |ψ⟩ = e−iγ
∑︂
|z⟩∈T

ωz|z⟩+
∑︂
|z⟩/∈T

ωz|z⟩. (7)

Here, T = {|z⟩ | c(z) = 1} is the target space of C, which
directly maps to the solution space of Eq. (1). At this
point, the amplitude symmetry is broken in the qaoa
circuit, which allows for establishing interference effects
whose pattern can be controlled by γ and β. This, even-
tually, allows us to benefit from quantum effects in the
computational process.

The angle parameters β also have an interesting effect
on state amplitudes. As we will shortly show in detail,
solely the Hamming distances between states and the
target/non-target partition of the state space suffice to
describe the inner workings of qaoa circuits for decision
problems. However, we need to analyse the effect of mixer
layers before we can commence to proving this statement.

Lemma 1 (Projector version of [24]). Let X =
∑︁n

j=1 σ
x
j

be the n-qubit mixer Hamiltonian. The effect of e−iβX on
an arbitrary basis state |z⟩ ∈ Fn

2 can be characterised by

e−iβX |z⟩ =
∑︂
k∈Fn

2

f(β, z, k)|k⟩ (8)

where f is defined as

f(β, z, k) := (cosβ)n−dH(z,k)(−i sinβ)dH(z,k), (9)

and dH(z, k) is the Hamming distance of z and k.

Proof. Given that X is a 1-local Hamiltonian, we can
analyse its time evolution by only considering its effect
on single qubits. Let us look at n = 1 first: In this
case, X = σx, and e−iβX |z⟩ = cosβ|z⟩ − i sinβ|z ⊕ 1⟩ for
z ∈ F2, which performs a bit flip with probability (sinβ)

2.
For arbitrary n ∈ N, this generalises to

e−iβX |z⟩ =
n⨂︂

l=1

(cosβ|zl⟩ − i sinβ|zl ⊕ 1⟩). (10)

We would now like to express this state as a superposition
of computational basis states, which can be achieved by
reconstructing each of its components |k ∈ Fn

2 ⟩. From
Eq. (10), we see that the amplitude of |k⟩ acquires a
multiplicative pre-factor of either −i sinβ for each flipped,
or cosβ for each preserved qubit, respectively. In other
words, the eventual amplitude of state |k⟩ is given by
f(β, z, k) = (cosβ)

n−dH(z,k) · (−i sinβ)dH(z,k).

Now that we have characterised the mixer and phase
separation layers individually, we have the tools to further
our analysis. Next in line is the optimisation landscape,
which is a central point of interest when analysing qaoa
circuits.

Lemma 2. A qaoa circuit with p = 1 constructed for
general decision problems induces the optimisation land-
scape

F1(β, γ) =
1

2n

∑︂
k∈T

|ck(β, γ)|2 (11)

with

ck(β, γ) :=

n∑︂
d=0

(︃
#d(k)

(︁
e−iγ − 1

)︁
+

(︃
n

d

)︃)︃
fn(β, d) (12)

where #d(k) = |{z ∈ T | dH(z, k) = d}| and fn(β, d) =

(cosβ)
n−d

(−i sinβ)d. Here, dH(z, k) is the Hamming dis-
tance between the bit strings of the binary representations
of z and k.

Proof. By fixing p = 1 in Eq. (3), we obtain the
state |β, γ⟩1 = e−iβXe−iγC |+⟩⊗n. After applying
the phase separating gates to |+⟩⊗n and linearly
pulling the mixer operators into the sums, we arrive
at 1√

2n

(︁
e−iγ

∑︁
z∈T e

−iβX |z⟩+∑︁z/∈T e
−iβX |z⟩

)︁
. From

Lemma 1, it follows that

|β, γ⟩1 =
1√
2n

(︄
e−iγ

∑︂
z∈T

∑︂
k∈Fn

2

f(β, z, k)|k⟩+

∑︂
z/∈T

∑︂
k∈Fn

2

f(β, z, k)|k⟩
)︄ (13)

By reordering the sums and factoring out |k⟩ in Eq. (13),
we can express the state |β, γ⟩1 as 1√

2n

∑︁
k∈Fn

2
ck(β, γ)|k⟩

with ck(β, γ) = e−iγ
∑︁

z∈T f(β, z, k) +
∑︁

z/∈T f(β, z, k)
(note that we omit parameters (β, γ) on ck and other
quantities below when the dependency is clear from the
context). If we apply C to |β, γ⟩ we basically filter out
all |k⟩ /∈ T by linearly pulling C into the sum, therefore
obtaining C|β, γ⟩ = 1√

2n

∑︁
k∈T ck(β, γ)|k⟩. We conclude

that

F1(β, γ) = ⟨β, γ|1C|β, γ⟩1

=
1

2n

⎛⎝∑︂
k∈Fn

2

ck(β, γ)⟨k|

⎞⎠(︄∑︂
k∈T

ck(β, γ)|k⟩
)︄

(14)

=
1

2n

∑︂
k∈T

ck(β, γ)ck(β, γ) =
1

2n

∑︂
k∈T

|ck(β, γ)|2.

(15)

The step from Eq. (14) to Eq. (15) follows since all pairs in
{|k⟩ | k ∈ Fn

2}× {|k⟩ | k ∈ T} comprise orthogonal states.
Note that ck(β, γ) essentially contains a sum over all
z ∈ Fn

2 with an optional phase factor of e−iγ if z ∈ T .
Thus, we find that

ck(β, γ) =
∑︂
z∈Fn

2

χT (z)e
−iγf(β, z, k)+(1− χT (z))f(β, z, k).

(16)
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Here χT (z) = 1 iff z ∈ T and otherwise χT (z) = 0. By
recalling the definition of f(β, z, k) in Eq. (9), we recognise
(cosβ)

n−d
(−i sinβ)d as the basic shape of f , where d

is the Hamming distance between two concrete states
k, z ∈ Fn

2 . This means that for a fixed angle βc, f(βc, k, z)
is actually a function of the Hamming distance between
two states. Therefore, while the sum in Eq. (16) iterates
over all 2n states z, there are effectively only n+1 different
basic terms in the sum—one for each possible distance
d. Thus, if we count the number of occurrences #d(k) =
|{z ∈ T | dH(z, k) = d}| of each distance d between k and
other states in the target set, we can reorder the sum to
obtain:

ck(β, γ) =

n∑︂
d=0

#d(k)e
−iγfn(β, d)+(︃(︃

n

d

)︃
−#d(k)

)︃
fn(β, d)

with

fn(β, d) := (cosβ)
n−d

(−i sinβ)d. (17)

Now it is simply a matter of factoring out fn and #d to
arrive at Eq. (12).

IV. THE QAOA APPROXIMATION THEOREM

We now state and prove our main result.

A. Intuition

A straightforward description of an optimisation land-
scape might be directly derived by considering all point
to point interactions between all states in superposition.
Obviously, there are exponentially many state such in-
teractions to consider. In Section III, we captured those
effects in f(β, k, z) (see Eq. (9)) and showed that there
are only n+1 different outcomes that can occur based on
the Hamming distance between two states. Now we use
this reduction in complexity of the effect domain to derive
an approximation theorem for the expected optimisation
landscape E(F1) of a specific problem.

B. Formalisation

In Section III, we presented a closed form of the op-
timisation landscape based on the Hamming distances
between states. The components |ck(β, γ)|2 in Eq. (12)
play a crucial role in F1(β, γ) (see Eq. (11)). As they are
functions of the optimisation angles, we find it prudent to
first obtain an intuitive visual understanding of their in-
terrelationship. Each contribution |ck(β, γ)|2 can be seen
as a landscape for a specific value of k itself. Consider
Fig. 3 that depicts, as an illustration, vertical slices of

three |ck(β, γ)|2 for k ∈ T = {10, 13, 14} and dimension
n = 5. The macroscopic similarities between the three
are visually obvious, which motivate the idea to take the
mean over all |ck(β, γ)|2. To further quantify this idea, we
look at the overlaid cross sections for all three components
compared with their mean in Fig. 4. Here, we evaluate
|ck(β, γ)|2 for all k ∈ T = {10, 13, 14} across 0 ≤ β ≤ π at
a fixed γc = 1.2 and calculate the mean of all |ck(β, γc)|2
at each point. The chosen constant 1.2 does not have
any particular computational or physical significance, but
results in a “typical” two-dimensional sub-space of the
optimisation landscape. We again observe how the mean
value nicely captures the higher level structures shared
between all individual components. In fact, this intuition
can be expressed as a precise mathematical relationship,
as F1 is nothing more than this mean value scaled by a
factor of |T |

2n , since

|T |
2n

|ck(β, γ)|2 =
|T |
2n

1

|T |
∑︂
k∈T

|ck|2 =
1

2n

∑︂
k∈T

|ck|2 = F1(β, γ).

(18)
As remarked above, the global structure of F1 is very
similar across different instances of a given problem. This
renders the expected value of an optimisation landscape
for a problem an interesting object of study, as it captures
the salient properties across instances. In particular, we
argue that the ability to efficiently approximate is well
suited to improve the understanding of qaoa, as we show
in Section V, and also leads to practical implications
that can help optimise the use of qaoa, as we detail in
Section VI.

Before that, and based on these observations, let us
however first state and prove our main theorem for ef-
ficiently approximating the expected value of F1(β, γ)
across instances of a computational problem:
Theorem 1. Let #d(k) be defined as in Lemma 2, then
we can approximate the expected value of F1(β, γ) for a
random instance of a problem by

Ẽ(F1(β, γ)) =
E(|T |)
2n

E
(︂
|ck(β, γ)|2

)︂
with

E
(︂
|ck(β, γ)|2

)︂
=

n∑︂
d1,d2=0

wd1,d2
(γ)fn(β, d1)fn(β, d2)

∗
,

(19)
where wd1,d2(γ) is

wd1,d2
(γ) =E

(︂
#d1

(k)#d2
(k)
)︂(︁
e−iγ − 1

)︁(︁
eiγ − 1

)︁
+

E
(︂
#d1

(k)
)︂(︁
e−iγ − 1

)︁(︃ n
d2

)︃
+

E
(︂
#d2(k)

)︂(︁
eiγ − 1

)︁(︃ n
d1

)︃
+

(︃
n

d1

)︃(︃
n

d2

)︃
.

We calculate mean values over all k in the instance specific
target set T . The absolute approximation error is bounded

by
⃓⃓⃓
E(F1(β, γ))− Ẽ(F1(β, γ))

⃓⃓⃓
≤
√︃

Var(|T |)Var
(︂
|ck|2

)︂
.
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FIG. 3. Three landscape components |ck(β, γ)|2 for k ∈ {10, 13, 14} = T and a state space of dimension n = 5 are depicted in
this order from left to right. The landscapes are represented by an array of vertical cross sections along β.

0

1

2

3

-1 0 1
β

Va
lu

e

k-component 10 13 14

|ck|2 |ck|2

FIG. 4. Cross section of the optimisation landscape com-
ponents |ck(β, γc)|2 depicted in Fig. 3 at γc = 1.2 for k ∈
{10, 13, 14} ⊂ T (note matching colours). The dashed line
shows E

(︁
|ck(β, γc)|2

)︁
for these three components, and illus-

trates how the mean value captures the globally relevant fea-
tures of instance-specific information.

Proof. We start by reformulating |ck(β, γ)|2. Recall
that |ck(β, γ)|2 = ck(β, γ)ck(β, γ)

∗ and ck(β, γ) =∑︁n
d=0

(︁
#d(k)

(︁
e−iγ − 1

)︁
+
(︁
n
d

)︁)︁
fn(β, d). Then we use the

distributivity of the complex conjugate over addition and
multiplication to pull it into the sum:

ck(β, γ)
∗
=

n∑︂
d=0

(︃
#d(k)

(︂(︁
e−iγ

)︁∗ − 1
)︂
+

(︃
n

d

)︃)︃
fn(β, d)

∗

=

n∑︂
d=0

(︃
#d(k)

(︁
eiγ − 1

)︁
+

(︃
n

d

)︃)︃
fn(β, d)

∗

where the second equality follows from (ez)∗ = ez
∗
. From

this we see, that

|ck(β, γ)|2 =

(︄
n∑︂

d1=0

(︃
#d1(k)

(︁
e−iγ − 1

)︁
+

(︃
n

d1

)︃)︃
fn(β, d1)

)︄
·(︄

n∑︂
d2=0

(︃
#d2

(k)
(︁
eiγ − 1

)︁
+

(︃
n

d2

)︃)︃
fn(β, d2)

∗
)︄

and further

|ck(β, γ)|2 =

n∑︂
d1,d2=0

(︄
#d1(k)#d2(k)

(︁
e−iγ − 1

)︁(︁
eiγ − 1

)︁
+

#d1
(k)
(︁
e−iγ − 1

)︁(︃ n
d2

)︃
+

#d2
(k)
(︁
eiγ − 1

)︁(︃ n
d1

)︃
+

(︃
n

d1

)︃(︃
n

d2

)︃)︄
.

Now from |ck(β, γ)|2 = 1
|T |
∑︁

k∈T |ck(β, γ)|
2 it follows by

reordering the sum that

|ck(β, γ)|2 =

n∑︂
d1,d2=0

(︄
#d1(k)#d2(k)

(︁
e−iγ − 1

)︁(︁
eiγ − 1

)︁
+

#d1(k)
(︁
e−iγ − 1

)︁(︃ n
d2

)︃
+

#d2
(k)
(︁
eiγ − 1

)︁(︃ n
d1

)︃
+

(︃
n

d1

)︃(︃
n

d2

)︃)︄

where #d(k) = 1
|T |
∑︁

k∈T #d(k). Finally, Eq. (19) fol-
lows from the linearity of the expected value. From
Eq. (18) we deduce that E(F1) = E

(︂
|T |
2n |ck|2

)︂
=

E(|T |)
2n E

(︂
|ck|2

)︂
+ Cov

(︂
|T |, |ck|2

)︂
. Therefore we con-

clude that
⃓⃓⃓
Ẽ(F1)− E(F1)

⃓⃓⃓
=

⃓⃓⃓
Cov

(︂
|T |, |ck|2

)︂⃓⃓⃓
≤√︃

Var(|T |)Var
(︂
|ck|2

)︂
.
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C. Generality

The approximation theorem only operates on the Ham-
ming distance structure of problem target spaces. Recall,
however, that a target space is isomorphic to the solution
space of a problem by an encoding function. A more com-
plex constraint Hamiltonian might also need to operate
on ancilla qubits that are not part of the target space. We
now show that for every problem in NP, it is possible to
efficiently construct an ancilla register independent con-
straint Hamiltonian. This guarantees a wide applicability
of Theorem 1.

Theorem 2. For every problem in NP there exists a
family of constraint Hamiltonians {Cn}n∈N that can be
efficiently constructed such that

Cn|z⟩|0⟩ =
{︄
|z⟩|0⟩ z proves the decision property
0 otherwise

(20)
for proofs z of length n.

Proof. By definition a problem is in NP if and only if
there exist an efficient verifier v that returns v(z) = 1 on
all valid proofs z of the decision property and v(z) = 0
on all other inputs. Thus, there also exits an effi-
ciently constructable family of quantum circuits {Vn}n∈N :

Vn|z⟩|0⟩ = |z⟩|z⟩ with z =
(︁
v(z), v2, . . . , vp(n)

)︁
, where

|0⟩ = |0⟩⊗p(n) is an ancilla register of size p(n) for some
polynomial p. Now, the construction of Cn looks as fol-
lows: Cn := V †

n (1
⊗n ⊗ |1⟩⟨1| ⊗ 1p(n)−1)Vn.

Remark 3. Theorem 2 ensures us that if a problem is
in NP, we only have to consider its target space T of
problems when applying Theorem 1. Remember that T
is isomorphic to the solution or proof space of a problem.
In essence, Theorem 1 addresses structural properties of
the expected solution space of a problem. So, the combi-
nation of Theorem 1 and Theorem 2 shows the existence
of macroscopic structures on a problem level that signif-
icantly influence the optimisation landscapes induced by
qaoa circuits for at least all NP problems.

V. APPLICATION

After having set the foundations for a methodology to
understand structural properties of optimisation problems
across instances, let us now commence with applying the
framework to several concrete examples. We consider five
different subject problems respectively scenarios (uniform
random sampling, clustered sampling, Boolean satisfia-
bility, k-clique, and one-way functions in the form of qr
factoring) that build on each other to best introduce the
application of the qaoa approximation theorem on real
problems. Overall, the selection of examples is carefully
curated to highlight different aspects of using our ap-
proximation theorem: We first compare the two possible

approaches of either analytically or empirically analysing
the target space structure of a problem at hand. Then
we demonstrate with a purposefully constructed sampling
method that the existence of a stochastic dependence of
two states with a certain Hamming distance in a random
instance significantly influences he optimisation landscape.
Following that, we use sat as a first straight forward real
world example with an easy to construct constraint Hamil-
tonian. After that, we show that for all problems in NP,
even with more complicated constraints, there is a con-
struction for an appropriate constraint Hamiltonian that
satisfies the preconditions of our approximation theorem.
As a final example, we highlight the case of integer factor-
ing to argue that problems based on one-way functions
are interesting subjects for our methods as their target
space can be relatively easy characterised.

A. Uniform Random Sampling

Central in our theory is the target space T of the con-
straint projector C. Given a concrete interpretation, every
state in T corresponds to a problem solution.1 Thus, our
notion of target spaces T is an abstraction of concrete
problem solution spaces. Sampling a random target space
T equals sampling a random problem minus the abstrac-
tion of a target state interpretation. Furthermore, the
description of a sampling procedure for T defines an ab-
stract random problem, where the problem itself becomes
a random variable in the probabilistic point of view. To
provide a smooth onramp to more complex examples
further below, we start by simply sampling T by ran-
domly drawing states from the state space with uniform
probability.

From Theorem 1, we see that E(F1) can be efficiently
approximated if the quantities (a) |T |, (b) E

(︂
#d(k)

)︂
for

all 0 ≤ d ≤ n, and (c) Cov
(︂
#d1(k),#d2(k)

)︂
for all 0 ≤

d1, d2 ≤ n are provided. Recall that the expected value
is calculated over all instances of a specific problem, thus
#d(k) are random variables describing the mean value
1
|T |
∑︁

k∈T #d(k) over the target set T of a random problem
instance. There are, in general, two approaches: We can,
if possible, determine the distribution of the random
variables #d(k) by analytical means, or by an empirical
numerical approach. For uniform sampling as considered
in this motivating example, it is relatively straightforward
to execute the necessary analytic calculations.

1. Analytic Approach

Definition 4. We consider an urn model with balls of
m ∈ N different colours. The population of all balls in

1 Note that given different interpretations, a state in T can encode
different solutions of different problems, too.
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the urn is described by X = (X1, X2, . . . , Xm), where Xi

is the number of balls with colour i. Then, if n balls
are drawn without replacement, the probability of having
xi balls of colour i in the sample is given by the multi-
variate hypergeometric distribution P (x) = HypG(X,x)
with x = (x1, x2, . . . , xm). Recall that, by textbook
knowledge, the hypergeometric distribution is defined by
P (x) =

∏︁m
i=1

(︁
Xi

xi

)︁
/
(︁
N
n

)︁
, with N :=

∑︁m
i=1Xi.

The size of T is trivially given, as we always sample
a fixed number of states. In the following discussion
we will encounter expected values over different sample
spaces, we will differentiate this by ET (·) and EI(·) be-
ing defined to be the mean over all states in the target
space T and over all instances in the set of problem in-
stances I. No subscript is used if the sample space is
clear from context. Further note that #d(k) is the sample
mean of T where T is sampled from the sample space

of all problem instances I. Therefore, EI
(︂
#d(k)

)︂
=

ET (#d(k)) as the sample mean #d(k) is an unbiased
estimator of the expected value ET (#d(k)). The same
also holds for #d1(k)#d1(k). To calculate ET (#d(k)),
we need to know the distributions of {#d(k)}nd=0. To
compute EI

(︂
#d1

(k)#d2
(k)
)︂

= ET (#d1
(k)#d2

(k)) we
use that ET (#d1

(k)#d2
(k)) = ET (#d1

(k))ET (#d2
(k)) +

Cov(#d1
(k),#d2

(k)). For Cov(#d1
(k),#d2

(k)), the joint
probability distribution of {(#d1

(k),#d2
(k))}nd1,d2=0 is

required.

As T is uniformly sampled from the complete state
space, this basically leads to an urn model without re-
placement. Therefore, except for some edge cases, the
random variables #d(k) can be described by a Hypergeo-
metric distribution, see Lemma 3.

Lemma 3. In case of uniform target sampling the probabilities P (#d(k) = x) and P (#d1
(k) = x1,#d2

(k) = x2) are
defined as follows:

P (#d(k) = x) =

⎧⎪⎨⎪⎩
1 d = 0 ∧ x = 1

0 d = 0 ∧ x ̸= 1

HypG(X,x) otherwise
(21)

with X =
(︁(︁

n
d

)︁
, 2n − 1−

(︁
n
d

)︁)︁
and x = (x, |T | − 1− x). Furthermore,

P (#d1
(k) = x1,#d2

(k) = x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (#d1(k) = x1)P (#d2(k) = x2) d1 = 0 ∨ d2 = 0

P (#d1
(k) = x1) d1 = d2 ∧ x1 = x2

0 d1 = d2 ∧ x1 ̸= x2
HypG(X,x) otherwise

(22)

with X =
(︂(︁

n
d1

)︁
,
(︁
n
d2

)︁
, 2n − 1−

(︁
n
d1

)︁
−
(︁
n
d2

)︁)︂
and x = (x1, x1, |T | − 1− x1 − x2).

Proof. This proof is structured in two parts. We start
by showing the correctness of Eq. (21), which in turn
necessitates distinguishing between two cases. As #d(k)
describes the distance relationship of a random state in T
to all other states in T (including itself), #0(k) is always
1, from which the first two cases of Eq. (21) follow. For
d ≥ 0, we need to consider the sampling process of T .
Assume we start with just one random state in T , and
then sample the rest. This is described by an urn model
with X1 =

(︁
n
d

)︁
balls of colour d, and X2 = 2n − 1−

(︁
n
d

)︁
other balls. Note that by picking a random reference state
in T , there are only 2n − 1 balls left in the urn to draw
the |T | − 1 states left to fill the target space. Therefore,
the probability of sampling x states of Hamming distance
d from the random initial state is given by

P (#d(k) = x) = HypG
(︁
(X1, X2), (k, |T | − 1− x)

)︁
,

which concludes the proof of Eq. (21).
We need to consider three cases for Eq. (22). If

d1 = 0, the only possible samples (x1, x2) must have
x1 = 1, with the same reasoning as above. Thus,
P (#d1

(k) = x1,#d2
(k) = x2) = δ1,x1

P (#d2
(k) = x2),

where δi,j is the Kronecker delta function. Further note
that δ1,x1

= P (#d1
(k) = x1). The case of a vanish-

ing second argument, d2 = 0, is symmetric to d1 = 0.
Therefore, if follows that P (#d1

(k) = x1,#d2
(k) = x2) =

P (#d1
(k) = x1)P (#d2

(k) = x2) iff d1 = 0 or d2 = 0. If
d1 = d2, then obviously x1 = x2 needs to be satisfied,
in which case P (#d1

(k) = x1,#d2
(k) = x2) reduces to

P (#d1
(k) = x1) = P (#d2

(k) = x2). For all other d1 and
d2, re-consider the sampling process from an urn without
replacement: This time, we are interested in two colours
d1 and d2. Consequently, the urn contains

(︁
n
d1

)︁
balls of

colour d1,
(︁
n
d2

)︁
balls of colour d2, and 2n − 1−

(︁
n
d1

)︁
−
(︁
n
d2

)︁
other balls. The probability of obtaining k1 states of
Hamming distance d1 and k2 states of Hamming distance
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d2 in a sample of size |T | is therefore given by

P (#d1(k) = x1,#d2(k) = x2) = HypG(X,x)

with X =
(︂(︁

n
d1

)︁
,
(︁
n
d2

)︁
, 2n − 1−

(︁
n
d1

)︁
−
(︁
n
d2

)︁)︂
and x =

(x1, x2, |T | − 1− x1 − x2).

Now that we know the distribution of our random
variables #d(k), we can deduce properties like expected
values and covariances. In Lemma 4, we use Lemma 3 to
determine ET (#d(k)) and Cov(#d1

(k),#d2
(k)).

Lemma 4.

ET (#d(k)) =

{︄
1 d = 0

|T | (
n
d)
2n otherwise

(23)

Cov(#d1(k),#d2(k)) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 d1 = 0 ∨ d2 = 0

|T | 2
n−|T |
2n−1

(nd)
2n

(︃
1− (nd)

2n

)︃
d1 = d2 = d > 0

−|T | 2
n−|T |
2n−1

( n
d1
)( n

d2
)

22n otherwise

(24)

Proof. In large, this proof follows the structure of the
proof of Lemma 3. We start by show the correctness
of Eq. (23). If d = 0, we trivially have E(#0) =
0P (#0 = 0) + 1P (#0 = 1) = 1. For all d > 0,
P (#d(k) = x) is described by the Hypergeometric distri-
bution as in the second case of Eq. (21), with an expected
value of |T |

(︁
n
d

)︁
2−n as required.

We now prove Eq. (24). Assume that d1 = 0, then with
#d1d2(k) := #d1(k)#d2(k) we have

E(#d1d2(k)) =
∑︂
k

0 ·#d2(k)P (#d1(k) = 0,#d2(k) = x)+∑︂
k

1 ·#d2(k)P (#d1(k) = 1,#d2(k) = x)

=
∑︂
k

#d2(k)P (#d1(k) = 1,#d2(k) = x)

and of course P (#d1
(k) = 1) = 1 for d1 = 0 and

thus E(#d1
(k)#d2

(k)) =
∑︁

k #d2
(k)P (#d2

(k) = k) =
E(#d2

(k)). Together with Eq. (23), it follows that

Cov(#d1
(k),#d2

(k)) =E(#d1
(k)#d2

(k))−
E(#d1

(k))E(#d2
(k))

=E(#d2
(k))− E(#d2

(k)) = 0.

The case for d2 = 0 is symmetric. We conclude that
Cov(#d1

(k),#d2
(k)) = 0 iff d1 = 0 or d2 = 0. Note that

Cov(#d(k),#d(k)) = Var(#d(k)), which is given by

Var(#d(k)) = |T |2
n − |T |
2n − 1

(︁
n
d

)︁
2n

(︄
1−

(︁
n
d

)︁
2n

)︄
since the sampling process is described by a multivariate
hypergeometric distribution as shown in Lemma 3. The

third and second case also directly follow from the covari-
ance of the multivariate hypergeometric distribution from
Lemma 3.

With the two lemmas above, we can efficiently calculate
Ẽ(F1). This demonstrates a use case that benefits from
our approximation theorem: Given a problem for which
the target space structure with respect to Hamming dis-
tances between targets can be modelled analytically, the
expected optimisation landscape can be approximately
derived solely from this model. While instance specific
analytic formulations of F1 are known for the Ising model
problem [67] from a physics-centric point of view, our ap-
proach accesses the problem from a previously unexplored
angle that benefits from insights from theoretical com-
puter science. We also conclude that an efficient descrip-
tion of such models allows for an efficient approximation
of a qaoa optimisation landscape. Further investigations
into the complexity theoretical implications of this could
provide insights into the link between the structure target
spaces, the complexity of problems and the computational
power of qaoa, albeit we need to leave these questions
to future research, as our primary goal in this paper is to
establish the framework and derive direct practical utility.

2. Sampling Approach

Approximating E(F1) with an efficient theoretical
model of the target space is obviously the preferred way
to address a given problem, if feasible analytically. How-
ever, it is also possible to determine

{︂
E
(︂
#d(k)

)︂}︂n

d=0

and
{︂
E
(︂
#d1(k)#d2(k)

)︂}︂n

d1,d2=0
empirically by sampling

from a set of problem instances. Above, we described
the problem instances of the uniform sampling example
by giving a sampling routine for a random target space.
Recall that this defines problem instances as random vari-
ables. If we now want to determine the expected values
and covariance matrix empirically, we need a concrete
sample of instances. Which in this example will be a set
of realisations of problem random variables.

In our experiments, we sampled 500 random instances
for each state space dimension from 8 ≤ n ≤ 11. The
upper bound of n = 11 keeps computational cost of
explicitly evaluating F1 at a reasonable level, whereas the
lower bound n = 8 ensures a sufficiently large state space.
For the scope of this paper, this range is sufficient to
show the effects of increasing the state space dimension.
Every instance has a target set of 2n−1 states, making it
scale with the size of the whole state space. As defined
above, #d(k) = 1

|T |
∑︁

k∈T #d(k). Let T be the set of
target sets of all sampled instances. Then, empirically
determining E

(︂
#d(k)

)︂
means calculating the mean of

#d(k) over the set T of all sampled target sets. To clarify
over which set a mean is calculated, we introduce the
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notation f(x)
A
= 1

|A|
∑︁

x∈A f(x). Then,

#d(k)
T
T
=

1

|T |
∑︂
T∈T

1

|T |
∑︂
k∈T

#d(k).

The same holds for E
(︂
#d1

(k)#d2
(k)
)︂
, with

#d1
(k)#d2

(k)
T
T
=

1

|T |
∑︂
T∈T

1

|T |
∑︂
k∈T

#d1
(k)#d2

(k).

3. Comparison

As we can see in Fig. 5, both approaches lead to approx-
imations that fit the expected value of F1 exceptionally
well. In all our experiments we used the sample mean
(over all instances) as an estimator for the expected land-
scape E(F1). We calculated the mean of F1 by evaluat-
ing F1(γ, β) for every instance at 100 sample points for
0 ≤ β ≤ π at the cross section for γ = 1.2. This shows the
versatility of our approximation: Theoretical models can
be used to get excellent results. This is not always feasible
for more complex problems where the inherent structural
properties of the target space are not as straightforward.
However, we also showed that an empirical approach leads
to equally excellent results in such cases. We therefore ar-
gue that our approximation theorem can be a useful tool
that is equally well suited for theoretical considerations
and empirical analyses.

B. Clustered Sampling

The uniform sampling example was chosen deliberately
trivial to showcase the analytical approach. As a conse-
quence, one important aspect of more realistic problems
remains unaddressed: Owing to the uniform sampling
process, the states in T are independent of each other.
This is, in general, not the case for real-world problems.
sat instances, for example, often have clustered solution
spaces. Industrial sat instances exhibit community-like
structures in their solution spaces [76]. But contrary to
intuition, even uniformly sampled sat instances possess
solution structures [74]. Inspired by this observation, we
conduct further experiments with a random clustered
sampling process: Three cluster seeds are sampled uni-
form at random from the complete state space. Then,
per seed, 30 new states are added to the target set. Each
state is reached by a random walk starting from its corre-
sponding seed by flipping a random bit each step, with a
step probability of 1⁄2. Note that reaching a basis state
|k⟩ from another basis state |z⟩, with k, z ∈ Fn

2 means
that qubit l was flipped if and only if kl ≠ zl. The
process of empirically determining

{︂
E
(︂
#d(k)

)︂}︂n

d=0
and

{︂
E
(︂
#d1

(k)#d2
(k)
)︂}︂n

d1,d2=0
stays the same as in the uni-

form example above.
Figure 6 shows the empirical estimate of E(F1) com-

pared to the actual mean value F1 and the introduced
absolute error. As can be seen, we clearly introduce some
error by approximating. But although the variance of F1

drops significantly with higher dimensions, the absolute
error never surpasses the standard deviation of F1. Also
note how the whole co-domain of F1 is compressed. This
is a direct consequence of the scaling coefficient |T |/2n in
Eq. (11) as we chose to generate fixed dimension indepen-
dent sized target sets. Recall that E(F1) describes the
result probability of sampling a solution state from |γ, β⟩1,
which unveils an interesting relation between the size of
the solution space and the solution sample probability.

C. Boolean Satisfiability

After two artificially constructed sampling examples,
it is time to consider our first real problem. While sat
is one of the cornerstones of NP-complete problems in
theoretical computer science, it also has considerable
practical impact [83], and has also been intensively studied
in the quantum domain [84–88].

Most importantly, it is known to often exhibit struc-
tured solution spaces [75], and is a natural combinatorial
decision problem, which makes it perfectly suited for our
framework.

Note that in both above sampling examples, we only
discussed the target set and completely disregarded any
actual realisation of the qaoa circuit in our analysis.
However, if the complete target set were known, it
would be trivial to construct a constraint Hamiltonian
C =

∏︁
k∈T |k⟩⟨k| by simply projecting onto every target

state. This is obviously not an adequate approach for
hard computational problems, as full knowledge about
the solution space cannot be expected. Unfortunately,
explicitly projecting onto every state in T violates this
requirement for difficult problems. We therefore show
now that we still can apply our approximation theorem
even if this requirement is added to the picture.

Let C = {ci}mi=1 a Boolean formula in conjunctive nor-
mal form, with ci being the i-th clause. The sat problem
asks whether there exists a Boolean variable assignment
such that all clauses are satisfied. Each clause is a disjunc-
tion of literals. A literal is a possibly negated Boolean vari-
able. Let’s consider the clause c = x1 ∨x3 ∨x8. Then c is
satisfied by all possible assignments except for the charac-
teristic unsatisfying assignment [x1 ↦→ 0, x3 ↦→ 0, x8 ↦→ 1].
Let Ci be a projector onto this characteristic unsatisfying
assignment of the clause ci. Given {Ci}mi=0 we can con-
struct a constraint Hamiltonian C =

∏︁m
i=0(1− Ci) that

projects onto all satisfying assignments of C. This allows
us to just focus on the solution space, and set the stage
for using the approximation theorem.

For our experiments, we generated 500 random satisfi-
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FIG. 5. Comparison of analytic and sampling-based landscape approximation for the uniform sampling experiment. Left:
Landscapes for sampling methods. The difference between the analytically modelled and the empirically sampled landscape
approximations is negligibly small. Top Right: A two-dimensional heat-map (grey) that illustrates the vertical distribution
of F1(β, γ0 = 1.2) values of 500 random instances sampled as described in Section VA2. The heat-map is calculated over a
grid of 100 × 100 bins, where each column collects all F1 values in the corresponding β interval and sums up to 1. Bottom
Right: Cross-section through the above landscape at γc = 1.2. The expected landscape estimated by the mean value of
the data points displayed in the heat map above (black line) and two approximations of F1, where

{︂
#d(k)

}︂n

d=0
and{︂

(#d1(k),#d2(k))
}︂n

d1,d2=0
are determined empirically (orange line) and modelled theoretically (green line) are shown.

Again, exact and approximate results are in excellent agreement, with little variation.

able sat instances for each n ∈ {8, 9, 10, 11}, where the
number of variables directly translates to the dimension
(|V | = n) and the number of clauses is always |C| = 4n.
Each clause has three literals that are negated with prob-
ability 1⁄2. Glucose 4.2 [89] was used to enumerate all
satisfying assignments for each instance. In contrast to
the previous sampling examples, where we always sam-
pled a target set of fixed size |T |, the size of T depends
on the instance and its number of satisfying assignments
in this scenario. Therefore, we also have to determine |T |
empirically.

In Fig. 7 we see once again how well our approximation
fits the real mean values for F1. Note that compared to
the examples above, there seems to be a unusual amount
of variance on the y-axis. This is a result of different

target set sizes |T | across instances, which causes global
vertical shifts of function F1. If one is just interested in
the overall structure of F1 one could consider ignoring
the scaling factor induced by |T | altogether.

D. k-Clique

An efficient in-place projection like the sat constraint
Hamiltonian can not always be expected. So what if
ancilla bits are needed? In this example, we demonstrate
an approach following Theorem 2 by showing how to
construct an ancilla register independent of the constraint
Hamiltonian for k-Clique.

Definition 5. Given a graph G and k ∈ N, then the
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FIG. 6. Landscape cross-sections and approximation quality for clustered sampling for different state space dimensions in
columns. Top: Two-dimensional heat-map of sampled values for F1(β, γc) at γc = 1.2 and across 0 ≤ β ≤ π, overlaid with
the expected landscape estimated by the mean value of the sampled data points F1 (black line) and the approximated
expectation Ẽ(F1) (orange line). Bottom: Absolute approximation error (solid line) and standard deviation of F1 (dashed
line). The data demonstrate a small approximation error that lies strictly and considerably below the standard deviation of F1.

decision problem whether G has a clique ( i.e., a fully
connected sub-graph) of size k is called the k-Clique
Problem.

To solve k-Clique with qaoa, we first need to define
the state space. Let G = (V,E) be a graph with n
vertices, then we have a n-dimensional state space as we
map each vertex to a specific qubit. A basis state |z⟩ with
z ∈ Fn

2 marks vertices such that a vertex vi is marked iff
zi = 1. Then, |z⟩ represents a valid solution to k-Clique
iff K = {vi ∈ V | zi = 1} is a clique in G and |K| = k.

Let G be the complement of G and (i, j) an edge in G.
Then,

Ccliques =
∏︂

(i,j)∈G

(1− Pij)

with Pij = 10,i−1 ⊗ |1⟩⟨1| ⊗ 1i+1,j−1 ⊗ |1⟩⟨1| ⊗ j+1,n

(25)
projects onto all cliques in G. However, this also includes
cliques of sizes different from k, such as trivial cliques
as single vertices and edges. A second step is needed
to filter out the k-cliques. For this we have to define
an unitary operator DH that calculates the Hamming
weight of |z⟩. This is done by writing dH(z) on an ancilla
register but note that |z⟩|y⟩ ↦→ |z⟩|dH(z)⟩ is only invert-
ible for a fixed y (e.g., y = 0), which conflicts with DH

being unitary. Thus, we define DH : B⊗n ⊗ B⊗⌈ld(n)⌉ →

B⊗n⊗B⊗⌈ld(n)⌉ asDH : |z⟩|y⟩ ↦→ |z⟩|y + dH(z) mod 2m⟩
with m := ⌈ld(n)⌉+1. Since N/mN forms a group under
addition, there exists a unique inverse element for each
dH(z) which ensures DH to be invertible. Our construc-
tion is illustrated in Fig. 8.

With DH we can construct a second constraint Hamil-
tonian CdH=k = D†

H(1⊗n ⊗ |k⟩⟨k|)DH that projects onto
the space spanned by {|z⟩|y⟩ | y + dH(z) mod 2m = k}.
Therefore, if the ancilla register is initialised to |0⟩ the
application of CdH=k projects onto states with Hamming
distance k. Applying both projectors results in

C := CdH=k

(︂
Ccliques ⊗ 1⊗⌈ld(n)⌉

)︂
with

C|z⟩|0⟩ =
{︄
|z⟩|0⟩ z is k-clique in G
0 otherwise

(26)

This results in a qaoa state |β, γ⟩1 =

e−iβX⊗n

e−iγC 1√
2n

|+⟩⊗n|0⟩ after the phase sepa-
ration introduced by e−iγC the state evolves to
1√
2n
e−iβX⊗n(︁

e−iγ
∑︁

z∈K |z⟩|0⟩+∑︁z/∈K |z⟩|0⟩
)︁

finally,
after factoring out the ancilla register and applying the
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FIG. 7. Approximate expected value Ẽ(F1) of F1(β, γ) for a
random sat instance perfectly fits the actual expected land-
scape E(F1) over all sampled instances, even though sat in-
duces a higher variance in the values of F1. This is illustrated
by a cross section at γ = γ0 = 1.2. The two-dimensional heat-
map (gray) illustrates the vertical distribution of F1(β, γ0)
over a grid of 100 × 100 bins, where each column collects
all F1 values in the corresponding β interval and sums up
to 1. This histogram is overlaid by the expected Landscape
E(F1(β, γ0)) (black, solid) and the approximated mean
value Ẽ(F1(β, γ0)) (orange, dashed) obtained from the
approximation theorem. All three quantities are in very good
agreement.

mixer we end up with

1√
2n

(︄
e−iγ

∑︂
z∈K

∑︂
x∈Fn

2

f(β, z, x)|x⟩+

∑︂
z/∈K

∑︂
x∈Fn

2

f(β, z, x)|x⟩
)︄

⊗ |0⟩

Note that this qaoa circuit is invariant on the ancilla
register, which allows us to trace the ancilla qubits out.
Then, |β, γ⟩1 is identical to Eq. (13). The ancilla qubits
have no influence on the distribution of Hamming weights.
Therefore, they can be ignored and once again we only
have to reason about the problem specific solution space.

E. One-Way Functions

Theorem 1 is especially useful if we either have a theo-
retical understanding of the solution space of a problem
or if the solution space can be efficiently sampled. This
is the case for one-way functions: Instances can be easily
generated by first picking a state from solution space and
then generating the original input instance by applying

the inverse of the one-way function, as it is easy to com-
pute by definition. We will showcase this scenario with
qr-Factoring.

Definition 6. Given a value x = qr with q, r ∈ P, qr-
Factoring is the problem of computing q and r given
x.

fqr : {qr | q, r ∈ P} → P× P, fqr : qr ↦→ (q, r) (27)

Obviously the inverse of Eq. (27) is simply the integer
multiplication f−1

qr (q, r) = q · r. So, given a pre-computed
set of primes P ⊂ P, we can efficiently sample a pool of
qr-Factoring instances by f−1

qr ({(q, r)i}mi=1) with (q, r)i
being sampled from P × P at uniform random for all
0 ≤ i ≤ m. In fact, as we argued in Section VD, the
target space T without ancillary qubits fully suffices for
our approximate analysis. For qr-Factoring, a solution
(q, r) can be represented in T as follows: Let x(2) be the
binary representation of x ∈ N, and let z ∈ Fk

2 with
m ≤ n. Then pn(z) is a padding of z with n− k leading
zeros. Now, {(q, r)i}mi=1 is mapped to T by (q, r) ↦→
pn(q(2)) ◦ pn(r(2)) with n = max{⌈ld(q)⌉, ⌈ld(r)⌉}, where
◦ denotes concatenation of two bit strings.

With this mapping we performed a series of experiments
for different target space dimensions n ∈ {12, 14, 16, 18},
where we sampled {(q, r)i}100i=1 from Pn

2
× Pn

2
, with

Pn
2

:=
{︁
q ∈ P | q < 2

n
2

}︁
. Again,

{︂
E(#d(k))

}︂n

d=0
and{︂

E
(︂
#d1

(k)#d2
(k)
)︂}︂n

d1,d2=0
were empirically determined

as described above. The cardinality of the target set is
|T | = 2, as f−1

qr (q, r) = f−1
qr (r, q) and thus for each x = qr,

solution and target space each contain exactly two el-
ements. Figure 9 shows the approximated and actual
mean of F1 as well as the absolute approximation error
for n = 18. Although the margin for error apparently
is extremely tight for qr-Factoring, our approximation
nicely lies on top of the actual mean. Again, the abso-
lute error remains below the standard deviation. As is
likewise visible in Fig. 9, qr-Factoring exhibits only
small deviations between instances in their optimisation
landscapes. But even with this small margin of error, the
approximation tightly fits the real distribution, and the
error is bounded by the standard deviation of F1.

VI. PRACTICAL UTILITY

It is well known that the classical task of optimis-
ing parameters in qaoa requires substantial amounts
of computational effort: This aspect of the heuristic is
NP-hard [32] even for classically tractable systems; like-
wise, every polynomial time algorithm is susceptible to
instances for which the relative resulting error can be
arbitrarily large, thus rendering approximate approaches
likewise troublesome. The qaoa quantum circuit, in ad-
dition, usually needs to be evaluated for many different
sets of angles to gain the necessary information on the
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FIG. 8. Circuits for Hamming weight computation. DH is used to construct the constraint Hamiltonian for the k-Clique
problem. It is used to check whether a potential clique is of size k or not. For this DH adds the Hamming weight of register |z⟩
to another register |y⟩, while D†

H subtracts it from |y⟩. State |y⟩ is initialised with y = 0 and holds the Hamming weight of z
encoded as a bit string, after the application of DH . The DH gate adds the Hamming weight to |y⟩ by conditionally applying
U+1 to it for each qubit in |z >, with U+1|y⟩ = |y + 1⟩. The inverse operation D†

H subtracts the Hamming weight of z from
|y⟩, by conditionally applying U−1 for each qubit, with U−1|y⟩ = |y − 1⟩.

optimisation landscape that is required as input for the
classical parameter optimisation routine, albeit efforts
differ depending on the concrete choice [6, 64, 90]

Our approximation approach allows us to separate in-
stance sampling from optimisation landscape sampling.
Even at a fixed point (β, γ), directly sampling F1(β, γ) is
intractable for exact computation, as it contains a sum
over exponentially many terms. Likewise, determining an
expectation value E(F1) requires to consider a substantial
amount of points (β, γ) and instances. However, given
structural information about the target space in form of{︂
E
(︂
#d(k)

)︂}︂n

d=0
and

{︂
E
(︂
#d1

(k)#d2
(k)
)︂}︂n

d1,d2=0
, only

a sum over linear many terms has to be evaluated to
approximate E(F1) efficiently at a point (β, γ). The in-
puts

{︂
E
(︂
#d(k)

)︂}︂n

d=0
and

{︂
E
(︂
#d1

(k)#d2
(k)
)︂}︂n

d1,d2=0

of our approximation method can reasonably be obtained
empirically by statistical methods, or even theoretically
modelled as demonstrated in Section V A.

This separation enables a different approach to qaoa
that does not require an unbounded iteration involving
the quantum circuit. It starts by sampling (partial) target
spaces of random instances, from which the structural
metrics needed as input for Theorem 1 are gathered. Then,
a classical optimiser is utilised to determine the optimal
qaoa angles with regard to the approximate optimisa-
tion landscape, resulting from the previously sampled
target spaces. Because we used the expected landscape
of a random instance of the problem at hand, the found
parameters apply to the complete problem. Thus, param-

eter optimisation only needs to be performed once per
problem to find one single set of parameters for all in-
stances. Finally, the resulting angles are used to initialise
a qaoa circuit from which potential problem solutions
will be sampled on quantum hardware. Following this
approach, only the final sampling step needs to be per-
formed on real quantum hardware. The standard qaoa
procedure is in fact more of a heuristic than a quantum
algorithm, where we have to optimise a quantum circuit
for each instance. In our approach to qaoa we opti-
mise the parameters on a error bounded approximation
of the expected landscape. Thus, we end up with one
circuit for all problem instances. This mathematically
sound splitting of computation into a problem-global and
instance-specific phase significantly moves qaoa towards
the realm of true quantum algorithms, in stark contrast
to empirically motivated heuristics. Recall Fig. 2, where
we illustrated the difference between both approaches.

We explored this approach empirically (using numerical
simulations; see Appendix A for details about our repro-
duction package that allows researchers to directly employ
our approach or inspect our implementation) for the ex-
amples introduced above in Section V. For every example,
we randomly generated 50 instances to be solved with
both qaoa methods: standard qaoa and non-iterative
qaoa. The approximate optimisation landscape for the
non-iterative qaoa was calculated based on the dataset
generated earlier in Section V. After optimisation, we
visually verified each set of parameters for non-iterative
qaoa resides on one of the two main extrema of the land-
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FIG. 9. Top: 2D histogram of the F1 values for all instances
for n = 18 from the qr-Factoring example, overlaid by the
approximated landscape Ẽ(F1) (orange) and the expected
landscape E(F1) (black). Bottom: Absolute approxima-
tion error (solid line) compared to the standard deviation
of F1 (dashed line). The variance in F1 is negligible, which
makes the margin of error for approximations extremely tight.
Our approximation provides excellent results even under such
challenging conditions.

scape. After that, the parameters were used to create
a qaoa circuit for each problem instance. This circuit
then was compared with a qaoa circuit trained on the
actual instance. From both circuits, we sampled 50 poten-
tial solutions per instance (100 states were sampled per
instance for qr-Factoring to more accurately capture
the extremely low maximal possible success probability).
Fig. 13 shows the resulting approximate landscapes.

As for practical performance, we can see from Fig. 10
that parameters obtained by standard qaoa are mostly
located around extrema of the approximate optimisation
landscapes. However, the optimisation apparently also
often ends in local maxima, especially for qr-Factoring.
This suggests matching success rates for standard and
non-iterative qaoa. Indeed, we can see in Fig. 11 that
states sampled from non-iterative qaoa are valid solu-
tions with identical (or slightly better) probability than
states sampled from standard qaoa. Hard combinatorial
constraint satisfaction problems are known to have phase
transitions between trivially under- and over-constrained
instances, and the actually hard instances reside in the
parameter region of this very phase transition. For sat,
the level of under- or over-constrainedness is measured by
the coefficient of variables to clauses α = |C|/|V |, where

|C| and |V | denote the number of clauses and variables,
respectively. The phase transition of sat happens at
α ≈ 4. For our comparison, we generated 50 instances
for each value of α = 2, α = 4 and α = 6. As before,
the non-iterative qaoa approach is on par with standard
qaoa for under- (α = 2) and over-constrained (α = 6)
sat instances, as well as for hard sat instances right in
the phase transition at α = 4. This underlines the utility
of our approach not only for “average”, but also hard
instances. Fig. 12 visualises the outcome distribution in
detail.

Judging from the above evaluation, our non-iterative
qaoa algorithm at least matches standard qaoa success
probabilities, and occasionally shows slight advantage.
However, qaoa involves classical parameter optimisation
for every instance, while our approach is more resource
efficient: Only a constant number of quantum circuit
evaluations instead of sampling the circuit in every itera-
tion of the classical optimisation loop is required, and we
avoid instance-specific classical optimisation altogether:
One single up-front classical optimisation process is re-
quired to infer optimal parameters from the approximated
landscape per problem. Costly circuit evaluations in the
quantum-classical iteration of qaoa are replaced by clas-
sical instance sampling in non-iterative qaoa: The quan-
tum resource is only used for instance optimisation, not
for preparatory work.

VII. DISCUSSION

We have considered qaoa from a mixed perspective
comprising computer science and physics, and could not
only establish a new approximation theorem for the opti-
misation landscape, but have also suggested an algorithm
that translates these insights directly into useful advan-
tages. The evaluation of both aspects in the preceding
sections has shown that either improves upon the state
of the art in various ways.

However, our results also raise new questions. Obvious
issues include how to extend the approach to qaoa depths
larger than one; possible gains in post-nisq systems; a
more comprehensive evaluation on specific industrial prob-
lems and larger instance sizes; and the robustness to noise.
Likewise, the question of how computational power that
eventually arises from our algorithm is distributed be-
tween classical and quantum resources, and what impact
this distribution has on the properties like runtime or so-
lution quality, remains open. We need to leave addressing
these questions to future research.

For all subject problems analysed above in Section V our
approximation matches the expected landscape extremely
well, with negligibly small errors. Given that we could
show the absolute approximation error to be bounded

by
√︃

Var(|T |)Var
(︂
|ck|2

)︂
, it follows that for all problems

with constant solution space sizes (i.e., Var(|T |) = 0), our
approximation actually delivers exact results. It should
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FIG. 10. Each red cross marks a combination (β, γ) obtained from the standard qaoa algorithm for one single instance of
the subject problem. The parameter pairs are plotted on top the expected optimisation landscapes. As is visually apparent,
optimal parameters for different instances follow the problem-specific, but instance-independent patterns expected from our
considerations. Solutions for local optima of the instance-averaged landscape, as they arise for some qaoa executions, are typical
artefacts expected from numerical optimisation.
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FIG. 11. Probability of states sampled from the qaoa cir-
cuits to encode valid solution for the various subject problems
considered in this paper with a standard qaoa approach (in-
dividual parameter optimisation for each instance), and with
our non-iterative schema using a-priori parameters obtained
from the approximated landscape for all instances.

be noted that this requires knowledge of exact values
for

{︂
E
(︂
#d(k)

)︂}︂n

d=0
and

{︂
E
(︂
#d1

(k)#d2
(k)
)︂}︂n

d1,d2=0
,

which is usually not practically achievable, especially
for empirical sampling. This explains the approximation
errors observed for all subject problems with fixed target
sizes above—except for sat. This observation naturally
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𝛼

Standard QAOA Non-Iterative QAOA

FIG. 12. Probability of states sampled from the qaoa circuits
to encode a valid solution for sat instances of different hardness
α. The non-iterative qaoa variant is on par with standard
qaoa for trivially under- (α = 2) and over-constrained (α = 6)
instances, as well as for usually hard instances in-between at
α = 4 (a comparison between standard and non-iterative qaoa
over all sat instances is included in Fig. 11).

raises questions about the relationship between the esti-
mation accuracy of the target space structures and the
resulting approximation error. Here, a trade-off between
sample size and approximation quality is to be expected
and should be analysed in future work. An answer to
this question also could give interesting insight into the
variance of optimisation landscapes between individual
problem instances.

Our optimisation landscape approximation is solely
based on structural information about a problem. This
allowed us to prove the existence of conjectured instance
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for the expected value of F1(β, γ). Macroscopic similarities do not only arise between instances of different dimensions (left to
right), but also to a certain extent across problems (top to bottom).

invariants that stem from observed effects like parame-
ter clustering [27, 28]. The approximation allows us to
obtain a smooth representation of the complete optimi-
sation landscape. In Fig. 13, we collect such landscapes
for the subject problems discussed in Section V for differ-
ent dimensions of the target space T . This provides us
with some interesting observations: On the one hand, it

can be seen that macroscopic similarities exist between
all problems. They share very similar high level features
(with some problem specific differentiation). These macro-
scopic features are also present for structure-less target
sets like in the case of the uniform sampling example.
We thus conjecture that these features are truly prob-
lem independent and could be explained by either just



20

the approximation theorem presented in this work, or
in combination with straight forward and minimalistic
examples like uniform sampled target sets. Additional
structure causes some displacement and skewing. This
structure can be plausibly explained by local effects like
membership of a state to the target set depending on
the membership of other neighbouring states. As we can
additionally observe from Fig. 13, simply increasing the
state space dimension (i.e., going from left to right on
the panels for a specific problem) seems to compress the
landscape along β = 0 along the β-axis. This effect is
independent of the subject problem (i.e., does not change
when traversing the panels from top to bottom in the
plot). As it can also be observed in the uniform sampling
example, it must be independent of structural proper-
ties. While further examining these effects could provide
valuable insight into the behaviour of qaoa optimisation
landscapes, we need to leave the efforts required for such
an investigation to future work, as they go beyond the
scope of this paper. The approximation theorem devised
in this paper will likely serve as an analytical basis for
such considerations.

Focusing on two-level Hamiltonians and qaoa circuits
keeps the approximation framework simple and straight-
forward to use. We thus provide a well defined base
framework to analyse the essential connection of problem
structure and qaoa landscapes. At the same time, it is
extendable to accommodate, for instance, Hamiltonians
with more complex eigenspectra or qaoa circuits with
more layers, albeit we also need to leave such efforts to
future work. However, it seems pertinent to note that
the landscapes for the subject problems considered in
this work match empirical results with higher level eigen-
spectra and deeper qaoa circuits in their macroscopic
structure [19, 28]. The same holds true for Ising model
qaoa landscapes based on an instance-specific analytical
derivation [67].

We believe our work lays a foundation to map signifi-
cant insights from classical theoretical computer science
to quantum approaches along the lines of qaoa. In the
classical case, the analysis of solution space structures is
well established [73–76]. With the approximation theorem
(and the techniques introduced to derive it), we present a
handle to apply this knowledge to quantum optimisation.
This provides an opportunity for future progress in un-
derstanding and utilising the class of algorithms initiated
by qaoa.

VIII. CONCLUSION

Our new perspective on qaoa from a mixed physics and
theoretical computer science point of view allowed us to
accurately approximate the qaoa optimisation landscape
based on the inherent structural properties of a problem,
and prove a long-standing set of hypotheses about rela-
tionships between optimal qaoa parameters for different
instances of a problem. By directly linking the solution

space structure of problems to their qaoa optimisation
landscapes, we could devise an approximation theorem
that does not only provide structural insights, but also
impacts the practical use of qaoa.

Based on our results, we have constructed a non-
iterative qaoa algorithm that is more resource-efficient
than standard qaoa for various measures. Our evaluation
on five different scenarios and subject problems has shown
excellent agreement from the theoretical and practical
point of view, and provides concrete advantages over stan-
dard qaoa. Our new perspective on qaoa opens various
possibilities for future research to understand unsolved
issues about quantum optimisation.
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Appendix A: Reproduction Package

To make our experiments reproducible by other re-
searchers [91], we provide the complete source code for
the calculations performed in the paper, in form of a
long-term stable [92] reproduction package (link in PDF;
a DOI-safe version2 is also available). We ascertain that
the package is fully self-contained, and does not rely on
resources that may eventually vanish from public access.
In particular, we provide code that is easily extensible
to more subject problems than considered in the paper,
and include routines to (a) perform target space sampling;
(b) implement non-iterative qaoa; (c) perform numerical
simulations to explore performance and compare with
standard qaoa. Any raw data obtained from our simula-
tions, together with a complete pipeline to perform the
evaluation and visualisation presented in the paper, are
included.

2 Will be made available for the camera-ready version.

https://github.com/lfd/qaoa-structural-approximation
https://doi.org/10.5281/zenodo.13286242
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