
Polynomial Reduction Methods
and their Impact on QAOA Circuits

Lukas Schmidbauer
Technical University of

Applied Sciences Regensburg
Regensburg, Germany

lukas.schmidbauer@othr.de

Karen Wintersperger
Siemens AG, Technology

Munich, Germany
karen.wintersperger@siemens.com

Elisabeth Lobe
German Aerospace Center

(DLR), Institute of Software
Technology, Department

High-Performance Computing
Braunschweig, Germany

elisabeth.lobe@dlr.de

Wolfgang Mauerer
Technical University of

Applied Sciences Regensburg
Siemens AG, Technology

Regensburg/Munich, Germany
wolfgang.mauerer@othr.de

Abstract—Abstraction layers are of paramount importance in
software architecture, as they shield the higher-level formulation
of payload computations from lower-level details. Since quantum
computing (QC) introduces many such details that are often
unaccustomed to computer scientists, an obvious desideratum
is to devise appropriate abstraction layers for QC. For dis-
crete optimisation, one such abstraction is to cast problems
in quadratic unconstrained binary optimisation (QUBO) form,
which is amenable to a variety of quantum approaches. However,
different mathematically equivalent forms can lead to different
behaviour on quantum hardware, ranging from ease of mapping
onto qubits to performance scalability.

In this work, we show how using higher-order problem for-
mulations (that provide better expressivity in modelling optimi-
sation tasks than plain QUBO formulations) and their automatic
transformation into QUBO form can be used to leverage such
differences to prioritise between different desired non-functional
properties for quantum optimisation. Based on a practically
relevant use-case and a graph-theoretic analysis, we evaluate
how different transformation approaches influence widely used
quantum performance metrics (circuit depth, gates count, gate
distribution, qubit scaling), and also consider the classical compu-
tational efforts required to perform the transformations, as they
influence possibilities for achieving future quantum advantage.
Furthermore, we establish more general properties and invariants
of the transformation methods. Our quantitative study shows
that the approach allows us to satisfy different trade-offs,
and suggests various possibilities for the future construction of
general-purpose abstractions and automatic generation of useful
quantum circuits from high-level problem descriptions.

Index Terms—Quantum Software, QAOA, Graphs, Pseudo
Boolean Function, QUBO, PUBO

I. INTRODUCTION

Optimisation problems occur in the realm of practically rel-
evant problems, such as finding optimal time-schedules, pro-
duction planning, quality control, portfolio optimisation, social
network analysis, protein folding and drug discovery. Quantum
computers promise complexity theoretical advantages in this
field, from quadratic acceleration for finding optimal elements
in unstructured search spaces [1] via possible speedups using
adiabatic quantum computing and annealing [2], to in-principal
super-polynomial speedups for approximate combinatorial op-
timisation established using advanced reasoning [3].

Formulating an Optimisation Problem (OP) is an essential
prerequisite to enjoying possible advantages of large classes
of quantum algorithms. On the one hand, one could argue
that such formulations are purely mathematical, and are there-
fore a welcome abstraction layer that decouples the use of
quantum algorithms from knowledge of the inner working
of quantum systems. On the other hand, the performance of
quantum algorithms usually strongly depends on the concrete
formulation [4]–[7]. In contrast to noiseless classical com-
puters, this dependence is partly a consequence of current
Noisy Intermediate Scale Quantum (NISQ) devices, which
suffer from errors induced during execution—invalidating the
quantum state [8], [9]. Therefore, the question arises to what
extent the degrees of freedom in the formulation of opti-
misation problems impact the performance of the quantum
algorithms and thus to what extent these processes can be
decoupled in the overlying design automation process. Fig. 1
illustrates the higher-level process of formulating a real world
problem and transforming it to a suitable representation for
quantum computers. Here, dashed arrows abstract concrete
procedures or algorithms, such as the Quantum Approximate
Optimisation Algorithm (QAOA). It also illustrates the present,
yet undesirable, coupling of domains through non-functional
requirements.

QAOA is a widely used approach to solve combinatorial
OPs [10] on gate-based quantum computers. To do so, the
OPs are transformed into Quadratic Unconstrained Binary
Optimisation (QUBO) problems, or equivalently, except for
an affine transformation, Ising models [11], [12] (apart from
QAOA, it is well known that other approaches like Variational
Quantum Eigensolver (VQE) [13] or quantum annealing (in-
spired) approaches [4], [14], [15] can solve QUBO problems).
The goal of a QUBO problem is to find x⃗∗ ∈ {0, 1}n which
solves

min f(x⃗) such that x⃗ ∈ {0, 1}n (1)

for a given Pseudo-Boolean Function (PBF) f : {0, 1}n → R,
where f has a degree of at most 2. The generalisation for func-
tions f of arbitrary degree is called Polynomial Unconstrained
Binary Optimisation (PUBO).

mailto:lukas.schmidbauer@othr.de
mailto:karen.wintersperger@siemens.com
mailto:elisabeth.lobe@dlr.de
mailto:wolfgang.mauerer@othr.de

Real world problem

Optimisation Problem

Pseudo-Boolean Function

Reduction to QUBO

N
FR

s

AR 2AR 1 AR 3

HW 2HW 1 HW 3

SW
E

/M
od

el
lin

g
D

om
ai

n
To

ol
/C

om
pi

le
r

D
om

ai
n

Le
ve

l
of

A
bs

tr
ac

tio
n

Figure 1: Influence of reduction process and quantum hard-
ware properties on non-functional requirements (NFRs) across
domains. AR denotes algebraic representations of a QUBO
problem, HW represents transpilation results to different quan-
tum backends. Dashed line: transpilation process, dotted line:
dependency.

For practically relevant problem sizes, it is hard to stay
within the restrictions imposed by noise and qubit count
of NISQ-devices. Nonetheless, it is important to extrapolate
findings beyond current HW capabilities to assess their scaling
behaviour. Thus, we use metrics, namely the circuit depth,
the number of introduced gates, the gate distribution, the
number of qubits and the runtime of reductions to analyse
the performance of quantum algorithms. Furthermore, current
hardware natively supports one- and two-qubit gates. Higher-
order gates can be executed via decompositions into a multi-
tude of natively supported gates. Starting from an arbitrary
PBF f (i.e., a PUBO) that encodes an OP analogously to
above, we investigate two variants to reduce it to a QUBO and
arrive at a QAOA circuit, as illustrated by the flow diagram
in Fig. 2 (which can also be seen as a more detailed view on
the abstraction layer in Fig. 1).

We focus on the problem Hamiltonian HP of a single layer,
since HP depends on the encoded OP and is therefore the
decisive part of our analysis (we deliberately ignore HM , as
it would only increase the circuit depth by one). The otherwise
p-layer deep QAOA circuit [10], [16] produces the state∣∣∣β⃗, γ⃗〉 = e−iβpHM e−iγpHP · · · e−iβ1HM e−iγ1HP |s⟩ . (2)

The first variant, map/decompose (MD) (Fig. 2: left path),
directly encodes terms provided by f into gates in the circuit
and then starts a decomposition step. This comes with the
downside of higher circuit depth and more gates in the circuit.
The second variant, reduce/map/decompose (RMD) (Fig. 2:
right path), order-reduces f with deg(f) > 2 to a quadratic
PBF f ′ (i.e., a QUBO), maps terms from f ′ to the circuit and

then decomposes them to the hardware gate-set. A reduction
introduces additional variables, and therefore increases the
number of required qubits. To avoid burdening the comparison
with hardware-specific details, we assume that the hardware
gate-set consists of single-qubit RZ , RX operations, and the
two-qubit gate C–X .

Higher-order f (PUBO)

Quadratic f ′ (QUBO)

Logical QAOA circuit

HW-specific circuit

Logical QAOA circuit

HW-specific circuit

Reduce

Map

Map

vs

Benefits

Runtime

Qubits

Decomposed gates
Gate distribution

Circuit depth

Figure 2: Overview of reduction strategies for higher-order un-
constrained problems f to QAOA, and their consequences for
execution on quantum hardware. Dashed line: Decomposition
part of the transpilation process.

This leads to our research questions:

RQ1 How do circuits based on higher-order functions
originating from map/decompose (MD) and re-
duce/map/decompose (RMD) differ in (a) depth, (b)
size, and (c) structure?

RQ2 What are the implications on the quantum software
regarding abstraction from hardware specific pecu-
liarities?

The rest of this paper is structured as follows: We first
introduce the fundamental concept of quadratisation in Sec. II,
followed by details on formal representation and properties of
PBFs in Sec. III, which also introduces a graph representation
to visualise PBFs and the effect of reductions. The experi-
mental analysis in Sec. IV is based on a practical use case,
a scheduling problem, to understand important performance
metrics of quantum circuits for strategies MD and RMD. We
conclude by discussing the impact of our findings on quantum
software in Sec. V.

The paper is augmented by supplementary website and a
comprehensive reproduction package [17] (links in PDF) that
allows for extending our work.

https://github.com/lfd/qsw24-reduction-methods
https://doi.org/10.5281/zenodo.11402739

II. RELATED WORK

Improving the performance of quantum algorithms is an in-
tensively studied topic at many levels of abstraction. Published
findings concern issues from high-level software engineering
to low-level design of compilers [18]. Often, well established
concepts from classical computing are evaluated in the quan-
tum computing context. Ahmad et al. [19] investigate modular
architecture centric designs. Scheerer et al. [20] evaluate archi-
tectural patterns for fault-tolerant systems. Faro et al. [21] and
Saurabh et al. [22] propose techniques to integrate quantum
computation into data centres by the means of existing system
architectures. At a lower level, Codognet et al. [23] compare
annealing(-inspired) approaches, and Schmale et al. [18] re-
view compiler phases for trapped ion devices. Often, changes
in one domain affect the performance in a lower domain.
Guimares and Tavares [24] Safi et al. [25] and Wintersperger et
al. [26] address the HW-SW co-design aspects of quantum
computing, which tries to balance restrictions in the realisabil-
ity of hardware and positive effects in the software domain,
such as qubit connectivity or error proneness of NISQ devices.

In principle it is possible to realise interaction gates in-
volving more than two qubits, for example, with trapped-
ion quantum computers [27], [28]. However, this is currently
not possible on other platforms such as superconducting
qubits, and not provided by any commercial quantum devices.
Nonetheless, higher order gates can be replaced by decom-
posing them into multiple smaller gates that lead to the same
quantum operation. For QAOA, an interesting decomposition
is concerned with rotation gates around the Z-axis. Suppose
the single-qubit RZ gate can be implemented natively. Then
the two-qubit RZZ := RZ2 gate can be decomposed into a
symmetric arrangement of two C–X-gates around a single-
qubit RZ gate. This method can be extrapolated to RZn gates
and is motivated by the works of Campbell and Dahl [29],
with reference to ZX-calculus [30]. They analyse the effect of
decomposition for the four corner graph colouring problem.
They were able to execute small instances of QAOA with
COBYLA—a classical optimiser for β⃗ and γ⃗ (see Eq. 2)—and
found better performance for the mere decomposition strategy
(MD), which differs from our findings. They suggest that the
use of higher order terms can be beneficial, which motivates
our work.

In contrast to the MD strategy, one can also modify the OP
so that higher-order gates are no longer needed. This is also
interesting in view of using quantum annealing, as currently
available devices can only handle interactions between a
maximum of two qubits [14].

One particular approach is quadratisation [31], which elim-
inates the need for RZn , n > 2 gates. A function f ′(x⃗, y⃗) is a
quadratisation of f(x⃗), if f ′(x⃗, y⃗) is a quadratic (deg(f ′) = 2)
PBF in x⃗ = x1, . . . , xn and y⃗ = y1, . . . , ym, and satisfies:

f(x⃗) = min
y⃗∈{0,1}m

f ′(x⃗, y⃗) ∀x⃗ ∈ {0, 1}n. (3)

Note that with this also the minimum over x⃗ is preserved.

A variety of methods, reviewed by Dattani [32], are
known to construct a quadratisation. Typical approaches in-
clude rewriting f(x⃗) through logical reasoning of minima or
exploiting substructures in f(x⃗) (e.g., via a priori knowl-
edge [33]; splitting the objective function [34]; excluding
monomials [33]; partial monomial assignment [35] or using
Gröbner basis techniques [36]). It is not uncommon that
some methods require f to satisfy particular properties (e.g.,
restricted degree [37]; exclusively negative or positive mono-
mials [38], [39] or non-binary variables [40]). A versatile
method proposed by Boros [41] quadratises an arbitrary PBF
f : {0, 1}n → R constructively by iteratively replacing a pair
of variables xixj in the multi-linear representation of f by a
new variable yh. To ensure the constraint specified in Eq. 3
and enforce yh = xixj in the minimisation of f , a penalty p
is added to the reduced PBF, which fulfils

xixj = yh ⇒ p = 0

xixj ̸= yh ⇒ p > 0,
(4)

where p is usually chosen as

p(xi, xj , yh) = 3yh + xixj − 2xiyh − 2xjyh. (5)

III. FUNDAMENTALS

A. Pseudo Boolean Functions and their Graph Representation

a) Pseudo Boolean Functions: Following Boros et
al. [31], a PBF f : {0, 1}n → R can be expressed in an
algebraic representation by multi-linear polynomials [41]

f(x1, . . . , xn) =
∑

S⊆{1,...,n}

αS

∏
j∈S

xj , (6)

where αS

∏
j∈S xj is called a monomial of f and αS ∈ R.

For example, f(x1, x2, x3) = πx1+3x1x2−17x2x3 is a PBF
and πx1, 3x1x2 and −17x2x3 are monomials of f .

In the following, we introduce terminology related to PBFs.
Let mS be a monomial of the PBF f , where S ⊆ {1, . . . , n}
is a subset of indices. Then, we define the degree of f by the
maximum degree over f ’s present (αS ̸= 0) monomials:

deg(f) = max
S⊆{1,...,n},αS ̸=0

deg(mS), (7)

where we define the degree of a monomial mS by the number
of variables it contains:

deg(mS) = |S| ∈ {0, . . . , n}. (8)

Note that xk = x for all k ∈ N for all binary variables x ∈
{0, 1}. Furthermore, we define the degree-k (k ∈ N0) density
of f by the ratio actual

possible degree-k monomials. Since there are(
n
k

)
possible degree-k monomials1,

dk =
tk(
n
k

) ∈ [0, 1], (9)

1For the construction of a degree-2 monomial, there are n(n − 1) vari-
able combinations. For a degree-3 monomial, there are n(n − 1)(n − 2)
combinations, etc. Since multiplication is commutative in each monomial,
permutations, of which there are k! many, are irrelevant. Consequently, there
are n!

(n−k)!k!
=

(n
k

)
ways to construct a degree-k monomial.

where tk denotes the number of actual terms of
degree-k. For example, the function f(x1, x2, x3) =
3 + 1x1x2 − 2x2x3 + 7x1x2x3 has degree 3, since
max{deg(m{}),deg(m{1,2}),deg(m{2,3}),deg(m{1,2,3})} =
max{|{}|, |{1, 2}|, |{2, 3}|, |{1, 2, 3}|} = 3. Furthermore, the
degree-k densities of f are as follows:

d0 =
1(
3
0

) = 1, d1 =
0(
3
1

) = 0,

d2 =
2(
3
2

) =
2

3
, d3 =

1(
3
3

) = 1, dk>3 = 0.
(10)

b) Graph Representation for Pseudo Boolean Functions:
An undirected graph G(V,E) is, as usual, given by vertices
vi ∈ V and its edges e = {vi, vj} ∈ E. We also consider
multigraphs that can have duplicate edges so that E becomes
a multiset. With reference to Eq. 6, the set V = {v1, . . . , vn}
is isomorphic to the set of variables in f . While xi, for i ∈
{1, . . . , n}, is a variable in f , vi represents that variable in G.
The multiset of edges E is constructed over f ’s monomials.
Let S ⊆ {1, . . . , n} be a subset of indices and let

PS = {{va, vb}| a ∈ S ∧ b ∈ S ∧ a ̸= b ∧ αS ̸= 0} (11)

be the two-combination set of S. Then PS is the set of
edges generated by iterating over possible two-combinations
of variables in a monomial specified by S. Then, E is the
multiset-sum over all PS . For example, the graph G(V,E) of

f(x1, . . . , x6) = 3x1−2x2x3+5x1x2x3x6−2x1x2x4x5 (12)

is defined by V = {v1, . . . v6} and

E =
∑

S⊆{1,...,6}

PS

= P{2,3} + P{1,2,3,6} + P{1,2,4,5}

= {{v2, v3},
{v1, v2}, {v1, v3}, {v1, v6}, {v2, v3}, {v2, v6}, {v3, v6},
{v1, v2}, {v1, v4}, {v1, v5}, {v2, v4}, {v2, v5}, {v4, v5}}.

This graph can be seen in Fig. 3, where its vertices are
drawn as the corners of a regular hexagon. Here, multi-edges

v1

v2v3

v4

v5 v6

Figure 3: Multigraph of Eq. 12 before the reduction.

are drawn as separate edges in the graph, but can also be
visualised by using an edge weight on a single edge. Hence, an
equivalent notation of (multi-)edges uses exponential notation:
{vi, vj}β is called a multi-edge iff β > 1, β ∈ N.

Notice that the graph representation is concerned with the
structure of f , but not the numerical influence of a monomial
of f , that is, the value of αS . Let G(V,E) be the graph corre-
sponding to a PBF f . If G has multi-edges, then deg(f) > 2
and equivalently, if deg(f) ≤ 2, G has no multi-edges. The
inverse relation is not true in the general case. An example
is f(x1, x2, x3) = x1x2x3. The corresponding graph G is
fully connected, but has no multi-edges, while deg(f) = 3.
Sec. III-C discusses the implications for the reduction process.

B. Variants of Boros Reduction

Boros reduction [41] can iteratively reduce a higher order
PBF f to a quadratic one, while leaving the choice of the
next variable pair during an iteration ambiguous (see Sec. II).
Although any variable pair in a monomial of f is valid, a
sensible choice involves characteristics of f . We therefore
evaluate the following three choices for the next variable:

1) Sparse: Gets the largest degree monomial. Chooses its
first variable pair for the next iteration step

2) Medium: Gets all monomials with largest degree.
Searches for the variable pair that appears most often.

3) Dense: Searches for the variable pair that appears most
among all monomials.

The open source framework quark (see Ref [42]) implements
these methods. They influence the reduction process and its
outcome to the point where knowledge about the hardware
topology can be used in advance to adjust the reduction
process to optimise the hardware specific quantum circuit. The
variants are named according to the properties they induce in
the resulting QUBO.

C. The Influence of Reductions

Recall that Boros reduction introduces a penalty term in
every iteration: p(xi, xj , yh) = 3yh + xixj − 2xiyh − 2xjyh.

a) The Effect on multi-linear Polynomials: Let f :
{0, 1}n → R be a PBF, such that deg(f) > 2. A reduction
results in a quadratic PBF f ′: deg(f ′) = 2. During the
reduction, the new variables y1, . . . , ym are introduced, which
adapt the domain of f ′:

f ′ : {0, 1}n+m → R. (13)

Furthermore, the reduction process preserves the minimum of
f in f ′, which follows from the quadratisation process of
Eq. 3. This property lays the ground to the use of reductions
in the reformulation of PBFs. Take into consideration that
it might be necessary to scale the added term p with a
large positive factor when solving f ′ such that the penalty
for breaking the constraint outweighs possible benefits in the
objective function. This, however, does not influence the graph
structure.

b) The Effect on the Graph Representation: Let f be
a PBF, such that its graph G(V,E) contains multi-edges.
For example, Fig. 4 shows such a function. The multi-edge
{v0, v1}4 is replaced by a single edge (from the penalty term)
in the first step. Additionally, the penalty term connects the
new node y1 to the former nodes v0 and v1. Due to x0x1

https://gitlab.com/quantum-computing-software/quark

v0

v1

v2

v3

v0

v1

v2

v3

y1

v0

v1

v2

v3

y1

y2

f1(x0, x1, x2, x3) = x0x1 +
x0x1x2 + x0x1x3 + x0x1x2x3

f2(x0, x1, x2, x3, y1) =
4y1 + x0x1 − 2x0y1 −

2x1y1 + y1x2 + y1x3 + y1x2x3

f3(x0, x1, x2, x3, y1, y2) =
4y1+4y2+y1x2−2y2y1−2y2x2+
x0x1−2x0y1−2x1y1+y1x3+y2x3

x0x1 = y1 y1x2 = y2

G
1 G
2

G
3

Figure 4: A complete multi reduction evolution. Blue symbols represent the variable pair to be replaced; orange lines and
symbols represent edges and terms introduced via the penalty term in the current step. All variable-selection types (i.e., Sparse,
Medium, Dense) lead to identical results, assuming multiple valid choices are resolved by choosing the first pair for each type.

being replaced in every monomial by y1, edges from these
monomials are now mapped to y1.

More generally, suppose the variable selection type chooses
the variable pair xixj and therefore the multi-edge {vi, vj}β
in a PBF fγ : {0, 1}n → R and its corresponding graph
Gγ(Vγ , Eγ) for iteration step γ. The multi-edge {vi, vj}β is
replaced by a single edge {vi, vj}, as every occurrence of
xixj is replaced by yγ apart from the term introduced in the
penalty term itself. Additionally, the penalty term introduces
{vi, yγ}, {vj , yγ}. Let m denote a monomial in fγ . Either (a)
xixj ∈ m or (b) xixj /∈ m. Let I = {{vτ , vi} ∈ Eγ | τ ∈
{1, . . . , n} \ {j}} be the subset of edges connected to vi -
excluding the ones connecting vi and vj . Analogously, let
J = {{vτ , vj} ∈ Eγ | τ ∈ {1, . . . , n} \ {i}} be the subset
of edges connected to vj - excluding the ones connecting vi
and vj . Every edge e ∈ I ∪ J stemming from (a) in Gγ

will be reconnected to yγ in Gγ+1. Conversely, every edge
e ∈ I∪J stemming from (b) in Gγ is invariant in Gγ+1. Fig. 5
visualises the above stated, while the penalty term induced
edges are coloured in orange. The remaining edges, that is the
ones not connected to vi or vj in Gγ , are invariant in Gγ+1.
This locality can be used for parallel execution of multiple
reduction steps and thus aids in the speedup necessary for
efficiently deploying the RMD strategy. Apart from parallel
execution it lays the ground for an efficient data structure that
does not need to reiterate over all monomials in search for the
next variable pair in each reduction step.

An edge in the graph corresponds to either a degree-2 mono-
mial or a higher degree monomial. Every edge, corresponding
to a higher degree monomial is a potential candidate for the
reduction. The Dense variable selection type restricts its choice
to variable pairs that occur most often among all monomials
- or equivalently the biggest multi-edges. The Sparse and
Medium variable selection types lift that constraint and thus
might select other edges. This is the only difference, yet it
leads to vastly different properties of the resulting QUBO. We

vi

vj

yγ

...

(b)

...
(a)

...

x
ix

j

x iyγ

x
j y

γ

...

Figure 5: Effect of a reduction on vi and vj . Dotted lines:
Removed edges. Orange lines: Edges introduced by the penalty
term. {vi, vj}β corresponds to xixj , which is replaced by yγ .
The remapping of (a) (xixj ∈ m) and the invariance of (b)
(xixj /∈ m) is analogous for vi (not drawn).

observe differences in the edge distribution on nodes among
the three variable selection variants concerning the graph
representation. While the Sparse method concentrates its edges
among the former variables, the Dense method distributes its
edges among all nodes, including newly introduced ones. The
Medium method lies in between these two. Fig. 6 illustrates
the graph representation for a PBF f (deg(f) = 4), in the top
left corner and shows the graph for the resulting quadratic PBF
f ′ for each variable-selection type. The graph of a quadratic
PBF f ′ is a representation of its QUBO (except for linear
and constant terms), and thus describes coupling structure and
density, since the pair-combination sets PS of f ′ are pairwise
disjoint. Therefore, the properties of f ′ in Fig. 6 characterise
the structure of the QUBO. Sec. IV discusses further differ-
ences that are relevant for our performance measurements.

Reductions leave some graph properties invariant:

x0

x1

x2

x3

x4

x5

x6

x7

x8

14

14
9

9

9

9

9

9

14

14

9

9

9

9

9

14

14

9

9

9

9

14

9

9
9

9

14

9

9

9

14

9

9

9

9

9

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10x11x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31 x32 x33

x34

x35

x36

x37

x38

x39

x40

x41

x42

x0

x1

x2

x3

x4

x5

x6
x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20
x21

x22

x23

x24

x25

x26

x0

x1

x2

x3

x4x5

x6

x7

x8

x9

x10

x11

x12

x13 x14

x15

x16

x17

Initial f Sparse f ′

Medium f ′ Dense f ′

Figure 6: A complete multi reduction evolution in terms of the
graph structure. The symmetric graph in the top left corner
shows the initial PBF f (deg(f) = 4). The other nodes show
a particular variant of Boros [41] reduction method starting
from the initial PBF. Nodes circled in blue represent the initial
variables.

1) The total size of multi-edges in the graph strictly de-
creases.

2) The degree of any node in the graph does not increase
(excluding the new node in each iteration).

While we defer formal proofs to the supplementary website,
note that they provide insights into the reductions: Usually, the
starting PBF f := f0 (deg(f0) > 2) corresponds to a graph
with multi-edges 2. When using the Dense variable-selection
method, the algorithm at first reduces f0 to ft after t ∈ N
reduction iterations. The graph corresponding to ft might not
contain multi-edges anymore, however ft might still not be a
quadratisation of f0. Hence, the algorithm enters stage two,
where it can no longer select multi-edges and is therefore less
efficient in terms of introduced variables, since it can no longer
replace the same variable pair in multiple monomials. We can
calculate the amount of introduced variables in stage two for ft
by evaluating each monomial. A prerequisite of entering stage
two is that the sets PS for ft are pairwise disjoint. It is easy
to see that for any monomial m with deg(m) = k > 2, we
require k− 2 new variables to reduce it to degree 2. Take for
example the monomial m = x1x2x3. Here, one extra variable
is needed for the quadratisation of m regardless of the choice
of the variable pair.

2PBFs with pairwise disjoint sets PS do not induce multi-edges in their
graph representation; for example, this is the case for f(x1, . . . , xn) =
x1x2x3 + x4x5x6 + . . .+ xn−2xn−1xn.

IV. EXPERIMENTS

A. Experimental Setup

Our experiments evaluate a PBF f that encodes higher-order
terms and can scale in the number of variables. It is motivated
by an industrial job-shop scheduling problem: Production jobs
must be assigned to machines such that the total runtime of
a factory (the makespan) is minimised. For each job, only a
single operation can be performed, and all machines are of
the same type, so each job can in principle be run on each
machine. The jobs require certain tool setups and are divided
into multiple setup groups. Changing the setup takes additional
time, which constrains optimal assignment. Here, we only
aim for the allocation of jobs to machines, and leave the
exact ordering jobs to classical post-processing. The problem
is modelled as a PUBO using binary variables xij with

xij =

{
1 if job i is assigned to machine j,
0 otherwise.

(14)

This yields a problem size of n = N · M qubits for N
jobs and M machines. The goal is to minimise the maximum
runtime including setup change times over all machines, which
is expressed as minimising the differences between runtimes
over all pairs of machines. Normally, there are many more
jobs than machines and the job durations di are longer than
the setup change times. The setup change times between two
jobs i and i′ are given by the entries of the N×N matrix Rii′ ,
while another N ×M matrix Sij describes the setup change
time between a job i and the initial setup of machine j. Using
the variables from Eq. 14, the objective term is given by

Hobj =
∑
j<j′

[(
N∑
i=1

xij(di + Sij) +
∑
i<i′

xijxi′jRii′

)
(15)

−

(
N∑
i=1

xij′(di + Sij′) +
∑
i<i′

xij′xi′j′Rii′

)]2
.

As the order of jobs is not considered, we evaluate the
maximum number of setup changes here. To avoid that the
runtimes of two machines are equalised by adding additional,
unwanted setup changes, we add a second term that minimises
the setup changes on each machine separately:

Hr =

M∑
j=1

[
N∑

i<i′

xijxi′jRii′ +

N∑
i=1

xijSij

]
. (16)

Moreover, each job has to be assigned exactly once which is
described by the following constraint:

Hsingle =

N∑
i=1

 M∑
j=1

xij − 1

2

. (17)

The PBF f : {0, 1}n → R (deg(f) = 4) arises naturally from
these preliminary steps as

f = AHobj +BHr + CHsingle, (18)

https://github.com/lfd/qsw24-reduction-methods

where C > A,B must hold to ensure valid solutions are
preferred. We use A = 1, B = 2 ·maxi di, C = 4 ·maxi d

2
i

and choose R and S to have full rank.
For each of Fig. 7, 8 and 9, the x axis shows the number

of variables before the reduction of f , that is, problem size
n. Dependent on this characteristic, we evaluate run-time and
variable overhead of the proposed reduction variants. Addi-
tionally, we compare number of introduced gates, circuit depth
and polynomial structure for both paths of MD and RMD.
For this, we create the problem-specific part of the QAOA
circuit for a single layer without mixer. To compare both
paths, we decompose RZn , n ≥ 2 gates into their symmetric
representation given by Campbell and Dahl [29]. Here, we
do not optimise for circuit depth. While this influences the
comparison of circuit depths, we note optimising the depth of
a quantum circuit is in itself NP-complete [43].

B. Experimental Results

Fig. 7 (bottom) shows the runtime for each variable-
selection type of Boros [41] reduction method. While the

#
V

ariables
after

reduction
[log]

R
untim

e
[s],[log]

0 25 50 75 100

101

101.5

102

102.5

103

103.5

10-2

100

102

104

Variables prior to reduction

Strategy RMD

RMD-variant Sparse Medium Dense

Figure 7: Top: Number of qubits (i.e. variables) after the
reduction over problem size as captured by the number of vari-
ables before the reduction used to assess the spatial feasibility
(reduce/map/decompose (RMD) strategy). Bottom: Runtime
(pure reduction) over problem size and reduction type for the
RMD strategy to assess computational feasibility.

total number of steps for a reduction, that is the number
of introduced variables, can be estimated using f ’s multi-
graph (see Sec. III-C), the total runtime also depends on
the search and replacement implementation. The latter one is
shared among the variable-selection variants. Fig. 7 (bottom)
shows a diverging runtime trajectory between the Sparse
and Dense variable-selection type. This traces back to the
search strategy as the dominant part for the next variable
selection type. The Sparse variant introduces more variables,
as Fig. 7 (top) illustrates, which means that the replacement
occurs more often, which increases the runtime3 on the one
hand. On the other hand, the Sparse variant has a far less
computationally intensive search strategy, which results in an
overall significantly lower runtime, compared to the Dense
variant. Since the Medium selection-type is computationally
less expensive than the Dense type concerning the search
strategy, we expect a lower runtime. Fig. 7 confirms this.

Apart from the computational feasibility of the reductions,
their spacial influence on PBFs is relevant to quantum com-
puting, as the number of variables translates to the number
of qubits in the quantum circuit. Fig. 7 (top) shows the
dependency of the number of variables after the reduction (y-
axis) on the the number of variables before the reduction (x-
axis) grouped by the variable-selection type. For the absolute
values, the underlying polynomial and its structure is decisive,
since it determines the size and coupling density of the
corresponding multi-graph G(V,E). In contrast to the runtime,
the variable-overhead mirrors the roles of the Sparse, Medium
and Dense types. While the Sparse type took the least amount
of time, it introduces significantly more variables. The reason
behind this is the less efficient selection type, which chooses
smaller (multi-)edges on average in the graph representation
during the reduction process. The upper bound for the number
of introduced variables during a reduction is given by the
polynomial’s degree. To be more precise, let f : {0, 1}n → R
be the function of interest, such that deg(f) = i. There are
at most

(
n
k

)
= O(nk) degree-k monomials (see Sec. III-A).

At maximum, one needs k − 2 extra variables per degree-k
monomial (see Sec. III-C) and thus O(

∑i
k=3 kn

k) = O(ni)
extra variables for the quadratisation of f . In our case, that
is deg(f) = 4, the number of introduced variables is upper
bounded by O(n4). Note that Fig. 7 (top) shows the sum of
the number of introduced variables and variables before the
reduction on the y-axis (i.e., n+m; see Eq. 13).

We now want to characterise the underlying function f in
terms of densities to get a better understanding of the above
stated upper bound and to anticipate the influence on the
quantum circuit. Fig. 8 shows the degree-k densities dk, as
introduced in Sec. III-A, of f before the reduction (MD) and of
its quadratic counterpart f ′ grouped by the variable-selection
type (RMD). For the quadratic PBF f ′, dk>2 = 0, since
there are no monomials m in f ′, such that deg(m) > 2. The
density d1 does not change in this case, since f incorporates

3The replacement occurs on different polynomials, which affects the
runtime. We estimate this effect to be marginal for the given implementation.

k = 1 k = 2 k = 3 k = 4

0 25 50 75 10
0 0 25 50 75 10

0 0 25 50 75 10
0 0 25 50 75 10

0

0%

25%

50%

75%

100%

Variables prior to reduction

D
en

si
ty

d
k

Strategy MD RMD

RMD-variant Sparse Medium Dense None

Figure 8: Polynomial density over problem size as measured
by the number of variables prior to reduction. The graph
shows the reduction from a higher order polynomial (MD) to
a quadratic PBF (RMD) for different variable selection types.

the maximum number of degree-1 terms already. In each
reduction step, a new variable is introduced. At the same time,
a unique degree-1 term is added to f through the penalty
term (see Sec. III-A). For the general case, as the number
of reduction steps increases, d1 converges to the maximum
value, that is d1 → 1, regardless of the number of degree-1
terms in the original function4. Interestingly, the convergence
behaviour of d2 is dependent on the variable-selection type.
Fig. 8 shows this through our quantitative analysis. While the
Dense selection type seems to converge to d2 > 90%, the
Sparse type converges to d2 < 10%. Similar to Fig. 7, the
Medium type lies in between the Sparse and Dense type. This
has immediate consequences for the quantum circuit, since
there are more variables in case of the Sparse method, but
less two-qubit interactions between them, as indicated by the
lower density. As not all possible pairs interact, the two-qubit
gates can be parallelised more easily. Take into consideration
that the underlying function f does not feature every degree-
4 and degree-3 monomial. In fact, the densities d3 and d4
converge to zero, which is caused by the choice of f . We
estimate, that our findings for the convergence hold for similar
structured functions as well. Recall the definition of d2 from
Eq. 9. Since

lim
n→∞

d2 = lim
n→∞

t2
Θ(n2)

=

{
0 if t2 ∈ o(n2)

c if t2 ∈ Θ(n2)
, (19)

such that 0 < c ≤ 1, we argue that, based on Fig. 8, the Dense
selection type is efficient in terms of encoding information.5

4The rationale being limi→∞
t1+i(
n+i
1

) = 1 ∀t1 ∈ {0, . . . , n}.

5This cannot be traced back to the penalty term, since it adds exactly 3
edges per iteration (see Sec. III-C). It is therefore a linear function in terms
of the iteration count and does not close the gap to the quadratic function.

#
D

ecom
posed

gates
[log]

C
ircuit

depth
[log]

0 25 50 75 100

102

103

104

105

106

102

103

104

105

Variables prior to reduction

Strategy MD RMD

RMD-variant Sparse Medium Dense None

Figure 9: Single- and two-qubit gates (excluding gates that
implement the mixer operation) in one QAOA layer over
problem size as captured by the the number of variables for
strategies map/decompose (MD) and reduce/map/decompose
(RMD). Top: Gate count used as proxy for gate errors; bottom:
Circuit depth (not optimised; gates inserted lexicographical) as
proxy for decoherence effects.

The top part of Fig. 9 classifies the variable-selection
types based on the number of introduced gates in a single
QAOA layer without the mixer. The variable-selection types
encode approximately the same information in their respective
quadratic polynomials, since they introduce approximately the
same number of gates. In terms of the number of introduced
gates in a QAOA circuit, the RMD strategy is superior to the
MD strategy. Take into consideration, the decomposition of
higher-order gates influences this metric. The number of gates
is an important measure in the design of quantum circuits, as
the cumulative effect of gate-errors invalidates the quantum
state in the NISQ-era.

In contrast to the bare number of gates, the circuit depth
takes into account possible parallel execution of gates. It
determines the quantum algorithm’s runtime and therefore
the extent of decoherence effects. The bottom part of Fig. 9
visualises circuit depth, where the RMD strategy features a
lower circuit depth than the MD strategy. In short, the RMD
strategy suffers from more variables, while at the same time

encoding less gates in the circuit, which results in far shorter
circuits. Although the Medium type introduces more variables
compared to the Dense type (see Fig. 7 top), it features approx-
imately the same circuit depth at bigger problem instances.
Take into consideration that we do not optimise the circuit
depth here. Apart from that, the circuit depth is considerably
lower for the Sparse type, since it introduces considerably
more variables.

V. IMPLICATIONS ON QUANTUM SOFTWARE

In modern software architectures, abstraction layers strive to
conceal details about lower layers to allow software engineers
to concentrate their work on the relevant architectural state. In
essence, the SWE/Modelling Domain and the Tool/Compiler
Domain are coupled through non-functional requirements,
originating from both domains. It is important to analyse
the effect of decisions in one domain to other abstraction
layers. One could argue that more abstraction layers benefit
software engineering. However, as Schönberger et al. [44]
showed, this is not necessarily the case for quantum software.
Furthermore, abstraction layers need to be specified without
hiding relevant information. For instance, the runtime limita-
tion of (quantum) algorithms is a cross-abstraction-layer non-
functional requirement, for which we showed a substantial
increase, when using the RMD strategy. On the other hand,
other non-functional requirements are positively influenced
by the RMD strategy. Hence, the best fitting balance is to
be found, while considering both upstream and downstream
influences of decisions in abstraction layers.

By incorporating hardware specifications in advance, we can
simultaneously lift constraints about the formulation of OPs
(i.e., using PUBOs) and optimise for hardware efficient execu-
tion. For this we compared two strategies, namely map/decom-
pose (MD) and reduce/map/decompose (RMD) with regard to
their impact on important metrics of quantum circuits.

Our findings suggest that the use of polynomial order-
reduction methods benefits the performance of quantum al-
gorithms, provided that the hardware incorporates sufficiently
many qubits. Therefore, the QUBO model, which translates
to two-qubit interactions, is a non-critical aspect of modelling
OPs from a software engineering perspective. Thus, the use
of higher-order terms to model complex relations is possible,
while simultaneously optimising for non-local properties of
quantum circuits, namely the circuit depth and the number of
gates. In contrast to that, the mere decomposition of gates,
provides a local hardware specific remodelling. The circuit
depth and the number of gates in a circuit are an indicator of
the circuit’s performance in the NISQ-era, where decoherence
effects and gate errors invalidate the quantum state.

Using variant Dense to deploy higher-order OPs to fully
connected quantum hardware such as trapped ion devices [45]
achieves relatively low qubit overhead. For hardware with
lower coupling densities, such as the heavy-hex topology [46],
the Sparse or Medium type provide lower densities in the
reduced polynomial, while using more qubits. We also see
that the Sparse variant focuses its edges among the former

variables, which benefits in-homogeneous hardware topologies
with concentrated density regions, which also appear in quan-
tum annealing devices [14]. The mapping and routing of logi-
cal quantum circuits to concrete hardware is an NP-complete
problem and is thus usually approached with approximation
techniques [30], [47]–[50]. Selecting a particular reduction
variant to suit the hardware topology can therefore aid in the
approximation. However, further research is needed to assess
this influence quantitatively.

VI. CONCLUSION AND OUTLOOK

We have discussed that the high-level domain of software
engineering and modelling activities is coupled, through non-
functional requirements, with the low-level domains of com-
pilers, tool-chains and quantum hardware. This complicates
finding appropriate abstraction layers. By giving an in-depth
analysis of a family of automated transformations from a
relatively high-level description of optimisation problems in
PUBO form to circuits for specific quantum hardware, we
have shown that the process allows for exercising control over
various non-functional properties of the resulting computation.

As determined by a numerical experimental analysis, the
RMD strategy provides benefits in terms of quantum circuit
depth, size and structure, as long as the underlying hardware
offers a sufficient amount of qubits for the problem at hand. As
our analysis only depends on the PBF’s structure, the results
can be extrapolated to similarly structured PBFs.

We provide points of reference that the Dense variable-
selection type for the RMD strategy offers polynomial den-
sities for its degree-2 terms converging to 1, whereas they
converge to 0 for the Sparse type. By mapping these different
quadratic polynomials (i.e., QUBOs), resulting from the prob-
lem’s PUBO, to a QAOA circuit, they influence its depth, size
and structure decisively. As an outlook, we are not limited to
the these variable selection types, since the reduction process
is of iterative nature. As both types can be arbitrarily mixed
during a reduction process, this allows us to achieve essentially
arbitrary degree-2 densities in the resulting polynomial and
thus a variety of opportunities to aid in the approximating of
the otherwise NP-complete mapping problem [47].

Using reduction methods in an online algorithm demands
a higher level of algorithmic optimisation, especially for the
Dense variable-selection type. This is to ensure that possible
quantum advantage of the resulting circuit is not compensated
by excessive preparatory classical effort (nevertheless, it is
worth pointing out that the runtime scales in polynomial
time for each selection type). Through the introduction and
mathematical analysis of a graph structure, all selection types
suggest potential for parallel execution of the transformation,
which is a result of the local influence of a reduction step.
Acknowledgements We acknowledge support from German Federal
Ministry of Education and Research (BMBF), funding program
“Quantum Technologies—from Basic Research to Market”, grant
#13N15647 and #13NI6092 (LS, WM) and #13N16093 (KW). WM
acknowledges support by the High-Tech Agenda Bavaria.

REFERENCES

[1] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” 1996. [Online]. Available: https://arxiv.org/abs/quant-ph/
9605043

[2] T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Rev.
Mod. Phys., vol. 90, p. 015002, Jan 2018. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.90.015002

[3] N. Pirnay, V. Ulitzsch, F. Wilde, J. Eisert, and J.-P. Seifert, “An
in-principle super-polynomial quantum advantage for approximating
combinatorial optimization problems via computational learning
theory,” Science Advances, vol. 10, no. 11, p. eadj5170, 2024. [Online].
Available: https://www.science.org/doi/abs/10.1126/sciadv.adj5170

[4] M. Schönberger, I. Trummer, and W. Mauerer, “Quantum-inspired
digital annealing for join ordering,” Proc. VLDB Endow., vol. 17, no. 3,
p. 511–524, nov 2023. [Online]. Available: https://doi.org/10.14778/
3632093.3632112

[5] M. Schönberger, I. Trummer, and W. Mauerer, “Quantum optimisation
of general join trees,” in Proceedings of the International Workshop on
Quantum Data Science and Management, ser. QDSM@VLDB, 2023.

[6] M. Schönberger, S. Scherzinger, and W. Mauerer, “Ready to leap (by co-
design)? join order optimisation on quantum hardware,” in Proceedings
of ACM SIGMOD/PODS International Conference on Management of
Data, 2023.

[7] T. Krüger and W. Mauerer, “Quantum annealing-based software
components: An experimental case study with SAT solving,” in
Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, ser. ICSEW’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 445–450.
[Online]. Available: https://doi.org/10.1145/3387940.3391472

[8] F. Greiwe, T. Krüger, and W. Mauerer, “Effects of imperfections on
quantum algorithms: A software engineering perspective,” in 2023 IEEE
International Conference on Quantum Software (QSW), 2023, pp. 31–
42. [Online]. Available: https://doi.org/10.1109/QSW59989.2023.00014

[9] M. Franz, L. Wolf, M. Periyasamy, C. Ufrecht, D. Scherer et al., “Un-
covering instabilities in variational-quantum deep q-networks,” Journal
of The Franklin Institute, 8 2022.

[10] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” 2014.

[11] Z. Bian, F. A. Chudak, W. G. Macready, and G. Rose, “The ising
model : teaching an old problem new tricks,” 2010. [Online]. Available:
https://api.semanticscholar.org/CorpusID:15182277

[12] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The
theory of variational hybrid quantum-classical algorithms,” New Journal
of Physics, vol. 18, no. 2, p. 023023, Feb. 2016. [Online]. Available:
http://dx.doi.org/10.1088/1367-2630/18/2/023023

[13] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia et al., “The variational
quantum eigensolver: A review of methods and best practices,”
Physics Reports, vol. 986, pp. 1–128, 2022, the Variational Quantum
Eigensolver: a review of methods and best practices. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0370157322003118

[14] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver,
“Perspectives of quantum annealing: methods and implementations,”
Reports on Progress in Physics, vol. 83, no. 5, p. 054401, May 2020.
[Online]. Available: http://dx.doi.org/10.1088/1361-6633/ab85b8

[15] I. Sax, S. Feld, S. Zielinski, T. Gabor, C. Linnhoff-Popien et al.,
“Approximate approximation on a quantum annealer,” in Proceedings
of the 17th ACM International Conference on Computing Frontiers.
New York, NY, USA: Association for Computing Machinery, 2020, p.
108–117. [Online]. Available: https://arxiv.org/pdf/2004.09267

[16] S. Hadfield, Z. Wang, B. O’Gorman, E. Rieffel, D. Venturelli et al.,
“From the quantum approximate optimization algorithm to a quantum
alternating operator ansatz,” Algorithms, vol. 12, no. 2, p. 34, Feb.
2019. [Online]. Available: http://dx.doi.org/10.3390/a12020034

[17] W. Mauerer and S. Scherzinger, “1-2-3 reproducibility for quantum
software experiments,” in IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2022, pp. 1247–1248.

[18] T. Schmale, B. Temesi, A. Baishya, N. Pulido-Mateo, L. Krinner et al.,
“Backend compiler phases for trapped-ion quantum computers,” in 2022
IEEE International Conference on Quantum Software (QSW). IEEE,
Jul. 2022. [Online]. Available: http://dx.doi.org/10.1109/QSW55613.
2022.00020

[19] A. Ahmad, A. A. Khan, M. Waseem, M. Fahmideh, and T. Mikkonen,
“Towards process centered architecting for quantum software systems,”

in 2022 IEEE International Conference on Quantum Software
(QSW). IEEE, Jul. 2022. [Online]. Available: http://dx.doi.org/10.
1109/QSW55613.2022.00019

[20] M. Scheerer, J. Klamroth, and O. Denninger, “Fault-tolerant hybrid
quantum software systems,” in 2022 IEEE International Conference
on Quantum Software (QSW). IEEE, Jul. 2022. [Online]. Available:
http://dx.doi.org/10.1109/QSW55613.2022.00023

[21] I. Faro, I. Sitdikov, D. G. Valiñas, F. J. M. Fernandez, C. Codella
et al., “Middleware for quantum: An orchestration of hybrid
quantum-classical systems,” in 2023 IEEE International Conference
on Quantum Software (QSW). IEEE, Jul. 2023. [Online]. Available:
http://dx.doi.org/10.1109/QSW59989.2023.00011

[22] N. Saurabh, S. Jha, and A. Luckow, “A conceptual architecture for
a quantum-hpc middleware,” in 2023 IEEE International Conference
on Quantum Software (QSW). IEEE, Jul. 2023. [Online]. Available:
http://dx.doi.org/10.1109/QSW59989.2023.00023

[23] P. Codognet, D. Diaz, and S. Abreu, “Quantum and digital annealing
for the quadratic assignment problem,” in 2022 IEEE International
Conference on Quantum Software (QSW). IEEE, Jul. 2022. [Online].
Available: http://dx.doi.org/10.1109/QSW55613.2022.00016

[24] J. D. Guimaraes and C. Tavares, “Towards a layered architecture for
error mitigation in quantum computation,” in 2022 IEEE International
Conference on Quantum Software (QSW). IEEE, Jul. 2022. [Online].
Available: http://dx.doi.org/10.1109/QSW55613.2022.00022

[25] H. Safi, K. Wintersperger, and W. Mauerer, “Influence of HW-SW-co-
design on quantum computing scalability,” in 2023 IEEE International
Conference on Quantum Software (QSW). IEEE, Jul. 2023. [Online].
Available: http://dx.doi.org/10.1109/QSW59989.2023.00022

[26] K. Wintersperger, H. Safi, and W. Mauerer, “Qpu-system co-design
for quantum hpc accelerators,” in Architecture of Computing Systems,
M. Schulz, C. Trinitis, N. Papadopoulou, and T. Pionteck, Eds. Cham:
Springer International Publishing, 2022, pp. 100–114.

[27] T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar et al.,
“Realization of the quantum toffoli gate with trapped ions,” Phys.
Rev. Lett., vol. 102, p. 040501, 1 2009. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.102.040501

[28] Y. Shapira, R. Shaniv, T. Manovitz, N. Akerman, L. Peleg et al.,
“Theory of robust multiqubit nonadiabatic gates for trapped ions,”
Phys. Rev. A, vol. 101, p. 032330, 3 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.101.032330

[29] C. Campbell and E. Dahl, “QAOA of the highest order,” in 2022 IEEE
19th International Conference on Software Architecture Companion
(ICSA-C), 2022, pp. 141–146.

[30] A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, and S. Sivarajah,
“Phase gadget synthesis for shallow circuits,” 2019. [Online]. Available:
https://arxiv.org/abs/1906.01734

[31] E. Boros, Y. Crama, and E. Rodríguez-Heck, “Compact quadratizations
for pseudo-boolean functions,” Journal of Combinatorial Optimization,
vol. 39, no. 3, pp. 687–707, 2019. [Online]. Available: https:
//doi.org/10.1007%2Fs10878-019-00511-0

[32] N. Dattani, “Quadratization in discrete optimization and quantum
mechanics,” 2019. [Online]. Available: https://arxiv.org/abs/1901.04405

[33] R. Tanburn, E. Okada, and N. Dattani, “Reducing multi-qubit inter-
actions in adiabatic quantum computation without adding auxiliary
qubits. part 1: The "deduc-reduc" method and its application to quantum
factorization of numbers,” 2015.

[34] E. Okada, R. Tanburn, and N. S. Dattani, “Reducing multi-qubit in-
teractions in adiabatic quantum computation without adding auxiliary
qubits. part 2: The "split-reduc" method and its application to quantum
determination of ramsey numbers,” 2015.

[35] H. Ishikawa, “Higher-order clique reduction without auxiliary variables,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 1362–1369.

[36] R. Dridi and H. Alghassi, “Prime factorization using quantum annealing
and computational algebraic geometry,” Scientific Reports, vol. 7, no. 1,
Feb. 2017. [Online]. Available: http://dx.doi.org/10.1038/srep43048

[37] A. C. Gallagher, D. Batra, and D. Parikh, “Inference for order reduction
in markov random fields,” in CVPR 2011, 2011, pp. 1857–1864.

[38] M. Anthony, E. Boros, Y. Crama, and A. Gruber, “Quadratic
reformulations of nonlinear binary optimization problems,”
Mathematical Programming, vol. 162, no. 1–2, p. 115–144, Jun.
2016. [Online]. Available: http://dx.doi.org/10.1007/s10107-016-1032-4

[39] E. Boros and A. Gruber, “On quadratization of pseudo-boolean func-
tions,” 2014.

https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605043
https://link.aps.org/doi/10.1103/RevModPhys.90.015002
https://www.science.org/doi/abs/10.1126/sciadv.adj5170
https://doi.org/10.14778/3632093.3632112
https://doi.org/10.14778/3632093.3632112
https://doi.org/10.1145/3387940.3391472
https://doi.org/10.1109/QSW59989.2023.00014
https://api.semanticscholar.org/CorpusID:15182277
http://dx.doi.org/10.1088/1367-2630/18/2/023023
https://www.sciencedirect.com/science/article/pii/S0370157322003118
http://dx.doi.org/10.1088/1361-6633/ab85b8
https://arxiv.org/pdf/2004.09267
http://dx.doi.org/10.3390/a12020034
http://dx.doi.org/10.1109/QSW55613.2022.00020
http://dx.doi.org/10.1109/QSW55613.2022.00020
http://dx.doi.org/10.1109/QSW55613.2022.00019
http://dx.doi.org/10.1109/QSW55613.2022.00019
http://dx.doi.org/10.1109/QSW55613.2022.00023
http://dx.doi.org/10.1109/QSW59989.2023.00011
http://dx.doi.org/10.1109/QSW59989.2023.00023
http://dx.doi.org/10.1109/QSW55613.2022.00016
http://dx.doi.org/10.1109/QSW55613.2022.00022
http://dx.doi.org/10.1109/QSW59989.2023.00022
https://link.aps.org/doi/10.1103/PhysRevLett.102.040501
https://link.aps.org/doi/10.1103/PhysRevA.101.032330
https://arxiv.org/abs/1906.01734
https://doi.org/10.1007%2Fs10878-019-00511-0
https://doi.org/10.1007%2Fs10878-019-00511-0
https://arxiv.org/abs/1901.04405
http://dx.doi.org/10.1038/srep43048
http://dx.doi.org/10.1007/s10107-016-1032-4

[40] A. Rocchetto, S. C. Benjamin, and Y. Li, “Stabilizers as a
design tool for new forms of the lechner-hauke-zoller annealer,”
Science Advances, vol. 2, no. 10, Oct. 2016. [Online]. Available:
http://dx.doi.org/10.1126/sciadv.1601246

[41] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,” Discrete
Applied Mathematics, vol. 123, no. 1, pp. 155–225, 2002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0166218X01003419

[42] E. Lobe, “quark: Quantum application reformulation kernel,” 2023.
[Online]. Available: https://dl.gi.de/handle/20.500.12116/43045

[43] R. Majumdar, D. Madan, D. Bhoumik, D. Vinayagamurthy,
S. Raghunathan et al., “Optimizing ansatz design in qaoa for
max-cut,” 2021. [Online]. Available: https://arxiv.org/abs/2106.02812

[44] M. Schönberger, M. Franz, S. Scherzinger, and W. Mauerer, “Peel |
pile? cross-framework portability of quantum software,” 2022. [Online].
Available: https://arxiv.org/abs/2203.06289

[45] H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped
ions,” Physics reports, vol. 469, no. 4, pp. 155–203, 2008.

[46] D. C. McKay, I. Hincks, E. J. Pritchett, M. Carroll, L. C. G. Govia
et al., “Benchmarking quantum processor performance at scale,” 2023.

[47] M. Y. Siraichi, V. F. d. Santos, C. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proceedings of the 2018 International Symposium
on Code Generation and Optimization, ser. CGO 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 113–125.
[Online]. Available: https://doi.org/10.1145/3168822

[48] K. Yamanaka, E. D. Demaine, T. Ito, J. Kawahara, M. Kiyomi et al.,
“Swapping labeled tokens on graphs,” Theoretical Computer Science,
vol. 586, pp. 81–94, 2015, fun with Algorithms. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304397515001656

[49] Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima, “An efficient
method to convert arbitrary quantum circuits to ones on a linear
nearest neighbor architecture,” in 2009 Third International Conference
on Quantum, Nano and Micro Technologies, 2009, pp. 26–33.

[50] C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen et al., “Time-optimal
qubit mapping,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 360–374. [Online].
Available: https://doi.org/10.1145/3445814.3446706

http://dx.doi.org/10.1126/sciadv.1601246
https://www.sciencedirect.com/science/article/pii/S0166218X01003419
https://www.sciencedirect.com/science/article/pii/S0166218X01003419
https://dl.gi.de/handle/20.500.12116/43045
https://arxiv.org/abs/2106.02812
https://arxiv.org/abs/2203.06289
https://doi.org/10.1145/3168822
https://www.sciencedirect.com/science/article/pii/S0304397515001656
https://doi.org/10.1145/3445814.3446706

	Introduction
	Related Work
	Fundamentals
	Pseudo Boolean Functions and their Graph Representation
	Variants of Boros Reduction
	The Influence of Reductions

	Experiments
	Experimental Setup
	Experimental Results

	Implications on Quantum Software
	Conclusion and Outlook
	References

