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Abstract. Noisy Intermediate-Scale Quantum (NISQ) computers, despite their
limitations, present opportunities for near-term quantum advantages in Nuclear
and High-Energy Physics (NHEP) when paired with specially designed quantum
algorithms and processing units. This study focuses on core algorithms that solve
optimisation problems through the quadratic Ising or quadratic unconstrained
binary optimisation model, specifically quantum annealing and the Quantum
Approximate Optimisation Algorithm (QAOA).
In particular, we estimate runtimes and scalability for the task of particle Track
Reconstruction (TR), a key computing challenge in NHEP, and investigate how
the classical parameter space in QAOA, along with techniques like a Fourier-
analysis based heuristic, can facilitate future quantum advantages. The findings
indicate that lower frequency components in the parameter space are crucial for
effective annealing schedules, suggesting that heuristics can improve resource
efficiency while achieving near-optimal results. Overall, the study highlights
the potential of NISQ computers in NHEP and the significance of co-design
approaches and heuristic techniques in overcoming challenges in quantum algo-
rithms.

1 Introduction

Noisy Intermediate-Scale Quantum (NISQ) computers, while limited by imperfections and
small scale, hold promise for near-term quantum advantages in Nuclear and High-Energy
Physics (NHEP) when coupled with co-designed quantum algorithms and special-purpose
quantum processing units [1]. Developing co-design approaches is essential for near-term us-
ability, but inherent challenges exist due to the fundamental properties of NISQ algorithms [2].
In this contribution we therefore investigate the core algorithms, which can solve optimisation
problems via the abstraction layer of a quadratic Ising model or general Quadratic Uncon-
strained Binary Optimisation (QUBO), namely Quantum Annealing (QA) and the Quantum
Approximate Optimisation Algorithm (QAOA). As an example for a variety of applications in
NHEP utilising QUBO formulations [3], we focus on Track Reconstruction (TR) [4, 5]. TR
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is a good example of pattern recognition and optimisation in NHEP, and with TrackML [6],
there exist curated datasets for algorithmic development along well-documented performance
metrics. While QA and QAOA do not inherently imply quantum advantage, QA runtime
for specific problems can be determined based on the physical properties of the underlying
Hamiltonian, although it is a computationally hard problem itself [7]. Our primary focus is on
two key areas: Firstly, we estimate runtimes and scalability for the common NHEP problem
of TR addressed via a QUBO formulation [8]. This analysis is conducted by identifying
minimum energy solutions of intermediate Hamiltonian operators encountered during the
annealing process. Secondly, we investigate how the classical parameter space in the QAOA,
together with approximation techniques such as a Fourier-analysis based heuristic, proposed
by Zhou et al. [9], can help to achieve (future) quantum advantage, considering a trade-off
between computational complexity and solution quality.

The remainder of this article is structured as follows: In Sec. 2 we provide a brief
introduction to QA and explain how annealing schedules and energy levels link to Spectral
Gaps (SGs). Sec. 3 then introduces QAOA, how it can be used to derive annealing schedules,
and what heuristics exist for doing so. In Sec. 4, we briefly introduce the task of TR and
describe our experimental setup with the results in Sec. 5. Finally, we conclude in Sec. 6. We
ensure reproducibility [10], by providing the code as well as the numerical results that we use
in the figures of this work in Ref. [11]. Notably, our experiments are performed using classical
simulations of QAOA and QA with Qiskit [12].

2 Quantum Annealing

QA is, roughly speaking, a restricted version of adiabatic quantum computing [7] which is
used to find minimum energy solutions to a problem (cost) Hamiltonian ĤC . The solutions are
obtained by an adiabatic transition from a system, prepared in the ground state of an initial
Hamiltonian Ĥ0, to ĤC . QA is restricted to a certain subclass of all possible Hamiltonians [7],
which are equivalent to QUBO problems, to which any NP problem can be reduced [13]. The
overall time-dependent Hamiltonian of the annealing process is determined by the “protocol”
f (t) that guides the transition between the Hamiltonians via

ĤQA(t) = −
(

f (t)ĤC + (1 − f (t))Ĥ0

)
(1)

By default, D-Wave annealers [14] implement a linear transition given by f (t) = s B t/T ,
where T is the chosen annealing time, and t ∈ [0,T ]. It is known that the minimum time
Tmin required for an adiabatic transition depends on the spectrum of the Hamiltonian ĤQA,
in particular the minimum energy gap (SG ∆min) between ground state and first excited state
encountered when running the protocol given in Eq. 1 by Tmin = O(1/∆2

min). Harder problems
with longer required runtimes therefore comprise smaller minimum SGs.

Consider, as shown on the left-hand side of Fig. 1, the s-dependent discrete energy levels of
the ground state and the first excited state of one of the TR problem instances considered in this
work (see Sec. 4). Physical intuition suggests that there are regions with a large gap between
the two states, where the annealing process can proceed more rapidly without the encountering
level transitions. Conversely, in regions characterised by a small SG, the annealing process
must conducted at a slower rate to prevent the system from entering higher energy states, as
this would result in sub-optimal or invalid solutions. The minimum SG is observed at around
s = 0.85 and persists at low levels until s = 1.

The annealing schedule, denoted by f (t), can be adapted to accommodate the properties of
the problem under consideration. Intuitively, this means that during the first three-quarters of
the time, the transition from Hamiltonian Ĥ0 to ĤC can proceed swiftly, and that it needs to
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Figure 1: Left: Energy values for ground and first excited state of the Hamiltonian given in
Eq. 1 over interpolation parameter s for an example TR problem instance considered in this
work. Right: Corresponding SG (i.e., the difference between energy levels of the first excited
and the ground state). Lines do not provide an interpolation, but are only used to guide the
eye; insets magnify the region around the minimal SG.

slow down in the last quarter. However, givent the computational complexity of the energy
spectrum of the Hamiltonian (Eq. 1) and its unavailability prior to the problem’s formulation,
alternative means of determining good schedules are necessary.

3 Quantum Approximate Optimisation Algorithm

One such possibility is to use insights gained from QAOA computations. As QA, the QAOA
is designed to optimise QUBO problems. It employs a quantum circuit with p ∈ N layers of
unitary operators defined by 2p parameters β⃗, γ⃗ ∈ Rp. A QAOA layer j ∈ [1, p] comprises
two unitaries:

UM(β j) = e−iβ jĤM and UC(γ j) = e−iγ jĤC (2)

with UM representing mixer Hamiltonian ĤM , and UC based on the cost Hamiltonian ĤC , of
which the ground state encodes the optimal solution to a given QUBO problem. The mixer
unitary UM typically consists of X̂-rotations of size β j on each qubit, while the cost unitary UC

uses single, or multi-qubit Ẑ-rotations of size γ j. The initial state |s⟩ of the QAOA algorithm
is usually chosen as the ground state of HM , in which each qubit is in an equal superposition
of |0⟩ and |1⟩, prepared using a layer of Hadamard gates. The repeated application of these
layers results in the parameterised quantum state

|γ, β⟩ = UM(βp)UC(γp) · · ·UM(β1)UC(γ1) |s⟩ , (3)

which corresponds to the discretised time evolution governed by the Hamiltonians HM and
HC . A general example of a three-qubit QAOA circuit with p = 2 is illustrated in Fig. 2. It
has been established that the quality of the approximation increases for a larger number of
layers [15]. However, it is important to note that the overall solution quality is significantly
influenced by the parameter values β⃗ and γ⃗.
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Figure 2: QAOA circuit for cost
Hamiltonian HC and parameter
vectors β⃗, γ⃗ of size p = 2.



3.1 Annealing Schedule Derivation

It is known [9] that the optimal parameter vectors (γ⃗∗, β⃗∗) = arg minγ⃗,β⃗ ⟨γ⃗, β⃗|HC |⃗γ, β⃗⟩, where

⟨γ⃗, β⃗|HC |⃗γ, β⃗⟩ is the observed mean energy of the final quantum state, can be interpreted as
(smooth) annealing path with total annealing time given by T =

∑p
i=1(|γ∗i |+ |β

∗
i |). The path itself

is constructed from supporting points f (ti) =
γ∗i

|γ∗i |+|β
∗
i |

that are connected via linear interpolation,
with time ti chosen as the mid-point of interval γ∗i , β

∗
i . However, finding optimal parameters

γ⃗∗, β⃗∗ is shown to be NP-hard [16], albeit for smaller depths, empirical and theoretical results
ascertain that optimal values can be well approximated for many subject problems [17].

3.2 Structure of the QAOA parameter space

In order to ascertain the optimal parameters, there are several approaches that may be adopted.
Firstly, there is the possibility of inspiration by adiabatic time-evolution as evidenced in the
works of [9, 18]. Secondly, there is the option of utilising classical optimisation routines [19,
20], where parameter vectors γ⃗, β⃗ are obtained via an iterative quantum-classical scheme. In
the standard formulation of QAOA, the depth p is selected in advance. In essence, larger
values of p yield monotonically improving solution quality on perfect hardware. However, for
noisy systems, a trade-off exists between enhanced solution quality and an escalating amount
of noise and imperfections caused by deeper circuits with growing p which has to be taken
into account. In the simplest case, the initial set of values for γ⃗, β⃗ may be chosen randomly,
although more informed choices are possible (see, e.g., [21]).

The Fourier strategy introduced by Zhou et al. [9] comprises two heuristic improvements
to the basic scheme: (1) By executing multiple runs of the algorithm iteratively with growing
values for p, good initial estimates for γ⃗, β⃗ are determined. The optimal parameters obtained in
run p are used to provide suitable initial values for the deeper circuit p + 1. (2) To reduce the
effective dimension of the parameter space, the set of 2p parameters (γ⃗, β⃗) ∈ R2p is replaced
by a new set (u⃗, v⃗) ∈ R2q with q ≤ p so that each of the elements γi, βi of the former set
(with i ∈ [0, p − 1]) can be expressed as a discrete sine/cosine transform of the set u⃗, v⃗. By
choosing a specific value of q, the dimension of the effective optimisation parameter space can
be delimited at will, at the possible expense of solution quality, but also a reduced complexity
of the classical optimisation sub-task of QAOA.

4 Methodology

In this work, we address the NP problem of Track Reconstruction (TR), a key computing
challenge in NHEP. While several classical heuristic methods [22, 23] have been proposed to
recognise tracks in the event data of the Large Hadron Collider (LHC), recent publications
also approach this problem from the perspective of quantum computing [5, 24], for instance
through casting it in QUBO form [8, 25].

The QUBO formulation that is employed in this work is introduced by Bapst et al. [8],
and also based on the corresponding implementation 1. While a comprehensive formulation is
provided in Ref. [8], the central concept is to reconstruct complete tracks from smaller track
segments consisting of three hit-points, referred to as triplets. The QUBO is then given by

Q(a⃗, b⃗, T⃗ ) =
N∑

i=1

aiTi +

N∑
i=1

N∑
j<i

bi jTiT j, (4)

1github/derlin/hepqpr-qallse
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where a⃗ ∈ RN and b⃗ ∈ RN×N are constant bias and coupling weights, respectively, and
T⃗ ∈ {0, 1}N denotes variables for potential triplets.

With growing problem size, the QUBO formulation becomes too large to fit on current
quantum systems, requiring one qubit per variable, and therefore also unfeasible to simulate
classically. This limitation is particularly evident in the case of full TR, where the number of
potential triplets increases rapidly with the complexity of the data. To address this challenge,
we adopt a strategy, similar to the approach in Ref. [25], where we only focus on angle
segments of a carefully selected data fraction [8] of the hitpoints in the detector for the TR
process. This approach also allows to obtain multiple problem instances from the data of one
event.

In particular, for our numerical experiments, we filter 10% of the TrackML data [6] for
one event, and divided it separately into 32 and 64 angle segments. Additionally, we filtered
20% of data for one event, and obtained 64 angle segments. As we are simulating the quantum
systems classically, we discard all QUBOs encompassing more than 23 variables, leading to
98 problem instances in total. While only a part of the tracks can be analysed this way, such
reduced problems can act as a proof-of-concept on the potential of QA and QAOA approaches
on TR.

5 Experimental Results

5.1 Spectral Gap Analysis
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Figure 3: Average SG and the corresponding position of the minimum SG over interpolation
parameter s B t/T for 98 TR problem instances with varying sizes. In each qubit range we
computed SGs for 20 . . . 30 problem instances. Shaded areas represent the standard deviation.

As described in Sec. 2, the SG gives an indication of the required runtime of an algorithm.
For the TR instances considered in this work, we obtain the SGs of the interpolation from
Ĥ0 to ĤC by analytically computing the eigenvalues of Eq. 1 with 50 linearly increasing
values of the interpolation factor s ∈ [0, 1] (i.e. at s = 0 and s = 1, only Ĥ0 and ĤC are
represented, respectively). As shown in Fig. 3, the average SG does not exhibit significant
variation across different qubit numbers, demonstrating a notable consistency. This stability
suggests that the system’s energy landscape remains relatively predictable and stable as the
problem size changes, indicating that annealing schedules relying on these SGs might maintain
their performance characteristics regardless of the problem size. This could be advantageous
for tasks like TR, where scalability is paramount.

5.2 Annealing Schedules from QAOA

Given the similarity of the SGs throughout the considered problem instances, we randomly
pick one 11-qubit instance, for which we derive annealing schedules using QAOA as a proof-
of-concept. The first two discrete energy levels and the SG for this specific instance are shown
in Fig. 1.



As described in Sec. 3.2, we use the Fourier strategy [9] to obtain near-optimal parameters.
To this end, we sequentially optimise the set of Fourier parameters (u⃗, v⃗) ∈ R2q starting from
QAOA depth p = 1 up to p = 50 using the numerical COBYLA optimiser [19], and re-use the
optimised parameters from each previous depth p − 1 as initial values padded with zeros. We
employ different values for q ≤ qmax, while q ≤ p to limit the number of frequencies in the
course of the (β⃗, γ⃗) ∈ R2p parameters. Additionally, we directly optimise β⃗, γ⃗, starting from
p = 1 with a Random Parameter Initialisation (RI), up to p = 50, also re-using parameters
from the previous depth p − 1.

As demonstrated in Fig. 4, the obtained approximation ratios (i.e. the ratio between
achieved energy and optimal energy) rapidly approach the optimum, when employing the
Fourier initialisation. Furthermore, a low-dimensional approximation of the parameter space
is sufficient. The use of RI results in relatively lower approximation ratios, which indicates
that the Fourier landscape is also easier to optimise classically.
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significant overlap.

Since the parameter vectors γ⃗, β⃗ can be derived from the effective parameters u⃗, v⃗, it is
also possible to derive annealing schedules from these quantities, as described in Sec. 3.1.
The derived schedules are shown on the right side of Fig. 5, for the QAOA depth p = 50
and varying degrees of approximation (specified by qmax). The left side of Fig. 5 shows the
QAOA parameter vectors γ⃗, β⃗, which were used for the schedule computation. For RI, the
parameter values exhibit significant fluctuations compared to those obtained from the Fourier
strategy. However, the corresponding annealing schedule aligns with the intuition gained in
Section 2 as annealing progresses rapidly until s ≈ 0.85, as illustrated by the horizontal line,
and subsequently slows down.
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Figure 5: Left: Absolute parameter values β⃗ and γ⃗ obtained from the QAOA optimisation at
p = 50 for the TR problem instance considered in this work. Right: Annealing schedules
obtained from these parameters. The horizontal line denotes the position of the minimal SG.

The Fourier strategy, which achieves near-optimal parameters even with qmax = 5 (cf.
Fig. 4), results in smooth parameter trajectories that produce similar schedules as RI for
qmax ≥ 5. Using too few effective Fourier parameters (i.e. qmax = 1) leads to a suboptimal
annealing schedule, which is closer to the default linear schedule.



6 Discussion & Conclusion
The interplay between QAOA parameters and annealing schedules presents a challenging
chicken-and-egg problem: Achieving optimal QAOA parameters can inform effective an-
nealing schedules, while simultaneously, annealing motivates QAOA in the first place. This
intricate relationship underscores the importance of balancing computational complexity with
solution quality, particularly in the context of NISQ computing.

Our analysis has demonstrated that heuristics, such as the Fourier-based approach pro-
posed in Ref. [9], offer valuable intuition and practical benefits for navigating this complex
landscape. By focusing on lower-frequency components in the parameter space, we have
shown that it is possible to derive reasonable annealing schedules, reducing resource require-
ments while maintaining high solution quality. While the implications of these findings and
experimental validation of the obtained schedules on quantum annealers such as D-Wave
systems extend beyond the specific context of the TR problem, considered in this work, this
study suggest promising avenues for generalisation across a wide range of NP optimisation
problems within NHEP applications. As co-designed quantum algorithms continue to evolve,
the development of heuristic methods that bridge the gap between parameter optimisation and
annealing schedules will play a pivotal role in unlocking quantum advantage.

The aim of this research is to contribute to a growing understanding of the interplay
between QAOA parameters and annealing schedules, as demonstrated on a specific problem
in TR. As the field of quantum computing continues to advance, particularly from the NISQ
era to fault-tolerance, such investigations will be instrumental in realising the full potential of
quantum optimisation techniques to tackle complex, large-scale problems in diverse domains.
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