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Abstract—The field of variational quantum algorithms, in par-
ticular Quantum Machine Learning (QML), produced numerous
theoretical and empirical insights in recent years. As Variational
Quantum Circuits (VQCs) can be represented by Fourier series
that contain an exponentially large spectrum in the number of
input features, hope for quantum advantage remains. Nevertheless,
properties of Quantum Fourier Models (QFMs) are not yet fully
understood, in particular how they could potentially outperform
classical alternatives. Viewing VQCs with Fourier lenses opens up
possibilities to analyse which classes of functions can be tackled
by variational algorithms such as QML, while also illuminating
and quantifying remaining constraints and challenges.

Considering that noise and imperfections remain dominant
factors in the development trajectory from noisy intermediate-
scale to fault-tolerant quantum computers, the aim of this work
is to shed light on key properties of QFMs when exposed to noise.
In particular, we systematically analyse the effect of noise on
the Fourier spectrum, expressibility and entangling capability of
QFMs by conducting large-scale numerical simulations of quantum
systems. This may help to better utilise hardware resources, and
guide the construction of tailored error correction schemes.

We find that decoherent noise exerts a uniform deleterious
effect on all the tested ansätze, manifesting in the vanishing
of Fourier coefficients, expressibility and entangling capability.
We note however, that the detrimental influence of noise is less
pronounced in some ansätze than in others, suggesting that these
might possess greater resilience to noise.

Index Terms—Quantum Machine Learning, Fourier Analysis,
Expressibility, Entanglement

I. INTRODUCTION

Given the remarkable advancements in machine learning, sig-
nificant optimism has been directed towards Quantum Machine
Learning (QML). However, such enthusiasm has frequently
been tempered by the prevailing limitations of contemporary
quantum hardware [1], together with algorithmic shortcomings.
On the other hand, exact capabilities of QML are not yet fully
understood, yet considerable opportunities to achieve advantage
over classical approaches remain. As the concept of QML (see
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the introductory review by Schuld et al. [2]) has received
considerable attention in the literature during the last years,
crucial limitations and trade-offs have been identified [3],
especially regarding trainability challenges [4] and model
complexity constraints [5]. Even despite technology progresses
from Noisy Intermediate Scale Quantum (NISQ) devices [6]
towards Fault-Tolerant Quantum Computing (FTQC), noise and
imperfections will continue to influence Variational Quantum
Circuit (VQC) performance and properties in the foreseeable
future, particularly when considering the best possible use of
available hardware resources [7].

In this work, we seek to shed light on key properties of VQCs
in QML, with a particular focus on providing numerical insights
into the impact of noise. Our contributions are illustrated in
Fig. 1. We emphasise that our results are hardware agnostic, that
is, they are not only applicable to error-corrected architectures,
but also to intermediate Quantum Processing Units (QPUs)
and algorithms (e.g. as in Refs.[8]–[14]), until full FTQC are
available.

Common metrics used to assess VQCs include expressibility
and entangling capability [16], which generally determine how
effectively a VQC can explore the Hilbert space. This exploration
is crucial because it it indicates the capacity of a VQC to learn
various functions, with the solutions to these functions residing
in this Hilbert space. However, a highly expressive VQC can
face challenges such as the Barren-Plateau (BP) problem [4],
where the optimisation landscape becomes difficult to navigate.
Therefore, a successful VQC must strike a balance: it needs
to be sufficiently expressive so that the portion of the Hilbert
space it accesses contains potential solutions, while maintaining
a manageable optimisation landscapes. Another way to gauge
this property is by examining the expressiveness, that is the
number and values of the VQC’s Fourier coefficients [15], which
dictate the types of functions the VQC can learn. Conversely, if
an ansatz lacks sufficient expressiveness, the “trainable Hilbert
space” it accesses is highly unlikely to contain viable solutions.
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Noise

(a) Quantum spectrum tree [15] where Λ is constituted by the
sum of the individual eigenvalues λ of each generator in the D-
dimensional input encoding. The spectrum Ω is determined by
the differences between each Λ where each coefficient cω(θ)
depends on a parameter vector θ. Noisy coefficients generally
have a reduced magnitude, which can lead to non-trainable
frequency components.
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(b) Implications of the above considerations on Hilbert space
level (solid grey), denoted by H: Expressibility and entangling
capability limits depend on the level of noise (arrows) and the
accessible space (dashed) of the model. Additionally, noise
further reduces this space when viewed through the Fourier
lens, as it reduces the ability to change frequency components
while adding untrainable frequency artifacts (hatched outside
of solid orange).

Fig. 1: Overview of factors (and their interplay) that influence
various properties of QML as studied in this work.

In addition to that, the entangling capability is a metric
to judge the amount of entanglement a VQC could create by
adjusting the trainable parameters, while being restricted by
its structure. This metric can be viewed as the “quantumness”
a particular circuit can achieve and is therefore crucial to set
it apart from classical surrogates.

Before we give an extensive overview of related work
in Sec. III, we first introduce the concept behind Quantum
Fourier Models (QFMs) in Sec. II. We then present our methods
in Sec. IV where we introduce the noise models used in this
work and how we measure the coefficients, entangling capability
and expressibility. In Sec. V we present our numerical results,
provide a discussion in Sec. VI and finally conclude in Sec. VII.

II. QUANTUM FOURIER MODELS

We consider an n-qubit quantum circuit whose expectation
value, measured on each qubit (n-local) using the observable
M, is given by

f(x,θ) = ⟨0|⊗nU†(x,θ)MU(x,θ)|0⟩⊗n, (1)

which is parametrised by the D-dimensional input x =
(x1, . . . , xD) ∈ RD and the trainable parameter vector θ =

(θ1, . . . ,θL+1) ∈ [RK ]L+1 with L layers of K parameters per
layer1.

We frame the unitaries U(x,θ) as multiple layers (ℓ ∈
[1, L]) of consecutive encoding S(ℓ)(x) and trainable unitaries
W (ℓ) :=W (ℓ)(θℓ) as follows:

U(x) =W (L+1)S(L)(x)W (L) · · ·W (2)S(1)(x)W (1) (2)

where an additional last trainable layer W (L+1) is added.
To allow for an arbitrary circuit structure and placement of
unitary and encoding gates, we construct S(ℓ)(x) to comprise
combinations of D unitaries S(ℓ)

i (x), each of which encodes
one single input feature xi:

S
(ℓ)
i (x) = exp (−ıeTi xG(ℓ)

i ) = exp (−ıxiG(ℓ)
i ) (3)

with Hermitian generator G(ℓ)
i and standard basis vector ei.

As shown in the seminal works of [17], [18], such an
architecture allows rewriting Eq. 1 as a partial Fourier series

f(x,θ) =
∑
ω∈Ω

cω(θ)e
ıωTx

=
∑
ω∈Ω

|cω(θ)|
(
cos(φ(θ)) cos(ωTx)

− sin(φ(θ) sin(ωTx)
)
,

(4)

where Ω contains the frequencies resulting from the eigenvalues
{λ(ℓ)i,j } of each generating encoding Hamiltonian G

(ℓ)
i , and

{cω(θ)} = {|cω(θ)|eıφ(θ)} are the corresponding complex
Fourier coefficients.

The resulting set of frequencies is

Ω =

{
×D

i=1 {Λi,j − Λi,k} | j,k ∈
L∏

ℓ=1

J1, dℓK

}
, (5)

where Λj present the sum of all dℓ eigenvalues of the ℓ-th
generator grouped across all layers, given by

Λi,j = λ
(ℓ)
i,1 + · · ·+ λ

(ℓ)
i,L. (6)

Here, Eq. 5 shows a finding from Ref. [19] where it was
shown that the set of frequencies is constituted by the Cartesian
product over all the individual sets that stem from each input
encoding. Note that while there are no theoretical constraints
on the encoding strategy of each input, the practically useable
set of frequencies only increases if each data encoding is
orthogonal to the others.

Another descriptive metric of the Fourier spectrum that also
provides an upper bound for the expressibility was introduced
in Ref. [15] in form of the frequency redundancy which is
defined by the size of the redundancy generator

R(ω) ={
(j,k) | ×D

i=1 {Λi,j − Λi,k} = ω ∧ j,k ∈
L∏

ℓ=1

J1, dℓK

}
.

(7)

1Without loss of generality, we choose the same number of parametrised
gates for each layer.



By increasing the number of layers, the number of frequen-
cies |Ω| increases linearly as the number of redundancies∑

ω∈Ω|R(ω)| increases exponentially considering single qubit
Pauli-encodings. Notably, it was also shown in Ref. [17], that
the exact same result can be achieved by increasing the number
of qubits instead. It is well known that the increasing number
of frequencies stem from the gaps between the eigenvalues of
the encoding generating Hamiltonians, which can visually be
represented by a tree structure [15], as shown in Fig. 1a.

The coefficients cω(θ), parametrised by the trainable parame-
ters in the VQC, are solely determined by the circuit architecture,
although they are partially affected by the encoding as shown
in Ref. [20]. The way parameters act on the coefficients is
not trivial with an analytical description of this relation as
published recently in Refs. [21], [22].

III. RELATED WORK

Various aspects can be considered, when working with QFMs,
which range from the Fourier analysis, over the relation to
trainability, dequantisation, expressibility and entanglement
to the influence of noise. In this section, we review the main
related work focusing on these topics.

A. Fourier Analysis

The seminal work [18] and following study in Ref. [17]
sparked a whole subfield of research within QML. With the
former paper introducing the “Data-Reuploading” technique
that enables a non-linear transformation between input and
output of a VQC with only unitary transformations, the latter
extended this work by deriving first formulations on how the
spectrum of a QFM changes with the input encoding. Ref. [19]
then further extended this to a formulation for multidimensional
input features where they found that for some ansätze, the
spectrum size grows faster than the available degrees in
Hilbert space. While aforementioned work considered a fixed
encoding strategy, which results in an evenly spaced spectrum,
Jaderberg et al. [23] found that by adding a trainable parameter
to the input, the distances between the frequencies can be
changed. The expressibility of QFM and the redundancies of
eigenvalues that effectively determine the resulting spectrum
was linked in [15], which also demonstrated that the variance
of a frequencies coefficients is linearly dependent on the
number of its redundancies. Nemkov et al. [21] introduced an
analytical description between Fourier coefficients and trainable
parameters. Wiedmann et al. [22] use this analytical description
to argue that certain coefficients, and therefore also frequencies,
can vanish dependent on the trainable parameters, which leads
to a reduction of the hypothetical spectrum.

B. Trainability

While there has been a significant effort to build mathemat-
ical formulations and find analytical relations around QFM, the
trainability of such models has to be regarded as well. One of
the fundamental problems is called BP phenomenon, introduced
in Ref. [24]. Generally it describes the exponential decay of
gradients in a VQC caused by (1) the circuit expressibility,

(2) degree of entanglement, (3) locality of the observable [4],
[25] and (4) noise [4], [26].

One could argue, that reducing mentioned sources would
help, but it ultimately boils down to the fact that if a circuit
does not exhibit a BP, it is classically simulable, ruining any
potential advantage [27]. However, while this holds true for
a majority of use cases, it is not generally applicable. Also,
Ref. [20] showed that the encoding strategy plays a significant
role in the trainability of QML models.

C. Dequantisation

To assess whether QML offers advantages over classical
Machine Learning (ML), one approach is dequantisation, where
classical methods replicate or surpass QML’s performance.
Schreiber et al. [28] demonstrated that such a classical
surrogate model can outperform QFMs for small problem
instances, but this becomes intractable as the number of
Fourier coefficients grows exponentially with input features.
To mitigate this, Fontana et al. [29] and Landmann et al.
[30] proposed approximating VQC outcomes by respectively
trimming frequencies or using Random Fourier Features (RFFs).
Sweke et al. [31] established that efficient dequantisation for
regression is possible with RFFs if the spectrum of the QFM is
polynomially concentrated, requiring a polynomial number of
frequencies.

All insights in the above mentioned references, result from
looking at the VQC, optimisation algorithm and training data as
a whole, which is reasonable, given that this is the most likely
way that QML approaches problems. However, this holistic way
of considering QML makes it hard to validate the actual VQC
structure that are at the core.

D. Expressibility and Entanglement

Characterising the properties of VQCs to identify suitable
ansätze for variational quantum algorithm is a common
approach, while the implications are often left as open questions
in the field. In this context, Sim et al. [16] conducted an
extensive study to measure the expressibility (cf. Sec. IV-C)
and entangling capability (cf. Sec. IV-D) of different ansätze.
expressibility, which indicates how effectively an ansatz can
explore the Hilbert space, has been shown to be related to the
redundancies in the Fourier spectrum [15].

The role of entanglement in QML and other variational algo-
rithms remains far from fully understood. When dealing with
input data that is inherently quantum in nature, entanglement is
often considered as the key resource for successful learning [32].
Wang et al. [33] demonstrated that increasing entangling
capability up to a certain threshold can lead to improved
model performance. However, when the input data is classical,
empirical studies, such as those in Refs. [34], [35], have shown
that a low-entanglement circuits can perform similarly well,
or even better than highly entangled ones on specific learning
tasks. Furthermore, Joch et al. [36] highlighted the potential
downside of excessive entanglement in learning scenarios,
suggesting that too high an entangling capability can lead to
the BP phenomenon. This indicates a critical threshold beyond



which entanglement may no longer be beneficial for learning
tasks. To our knowledge, there is currently no established
connection in previous work between the entangling capability
of a circuit and its Fourier spectrum, to which we contribute
in this work.

E. Noise

Given that fault-tolerance is not yet fully in reach, the
influence of noise on QFM remains an open question. Fontana
et al. [37] measure the effect of noise on the Fourier spectrum
to make suggestions for noise mitigation and diagnostics.
By cutting or filtering of certain noise-induced coefficients
or frequencies, noiseless landscapes can be approximately
reconstructed. Apart from Ref. [37], which focuses on the
Quantum Approximate Optimisation Algorithm (QAOA) and
Variational Quantum Eigensolver (VQE), we are not aware of
other publications, investigating the direct influence of noise on
the Fourier spectrum and other properties of VQCs, especially
in the QML domain. With this article, we aim to contribute to
filling this research gap.

IV. METHOD

A. Noise

In our work we investigate decoherent types of noise that
are of stochastic nature and not necessarily follow unitary
evolutions. As introduced in Ref. [6], we investigate three
main decoherent noise channel categories, namely (1) damping
noise (i.e. environmental effects, decoherence) encompassing
Amplitude Damping (AD) and Phase Damping (PD), (2) de-
coherent gate errors, including Bit Flip (BF), Phase Flip
(PF) and Depolarisation (DP) noise, and (3) State Preparation
and Measurement (SPAM) errors. Additionally we consider a
Coherent Gate Error (CGE).

The following paragraphs describe the individual noise
models, inspired by Ref. [6]. For the decoherent noise types,
we utilise the Kraus formalism with each Kraus operator Ki

acting on the density matrix ρ as

ρ→
∑
i

KiρK
†
i . (8)

1) Decoherent Gate Errors: The general idea of decoherent
gate error channels is to apply some combination of Pauli-
operations {I,X, Y, Z} with a certain probability after each
(noiseless) quantum gate. As a proof-of-concept, we only
consider one-qubit channels in our experiments, although multi-
qubit Pauli-channels are possible [6].

a) Bit Flip (BF): The BF error is modelled by the Kraus
operators

K0 =
√

1− pbfI, K1 =
√
pbfX, (9)

with the probability of a BF error being pbf.
b) Phase Flip (PF): Similarly, the PF error is modelled

by the Kraus operators

K0 =
√

1− ppfI, K1 =
√
ppfZ, (10)

with the probability ppf of a PF error.

c) Depolarisation (DP): The DP error creates a fully mixed
state with probability pdp and is modelled by

K0 =
√
1− pdpI, K1 =

√
pdp/3X,

K2 =
√
pdp/3Y, K3 =

√
pdp/3Z.

(11)

2) Damping Errors: The group of errors to which we refer
as damping errors corresponds to noise effects that occur over
time when a quantum system interacts with the environment.
Notable, the probabilities for damping depend on the relaxation
time T1 and dephasing time T2 of a quantum system in question.
As we are working with no particular QPU, in our experiments
we assume fixed probabilities and apply the damping channels
at the end of a circuit.

a) Amplitude Damping (AD): AD describes the natural
decay of the excited state |1⟩ to the ground state |0⟩ due to
energy exchange with the environment. The corresponding
Kraus operators are

K0 =
[
1 0
0
√
1−pad

]
, K1 =

[
0
√
pad

0 0

]
, (12)

with AD probability pad.
b) Phase Damping (PD): Similarly, PD describes the

transition of a quantum system towards classical behaviour,
defined by the Kraus operators

K0 =
[
1 0
0
√

1−ppd

]
, K1 =

[
0 0
0
√
ppd

]
, (13)

with PD probability ppd.
3) State Preparation and Measurement (SPAM) Errors: State

Preparation and Measurement (SPAM) on a real quantum device
can be faulty, just like any other operation. Typically on current
QPUs, a state is prepared in the all-|0⟩ state, and a measurement
returns either |0⟩ or |1⟩ with some probability, depending on the
algorithm. However, there is a probability that State-Preparation
(SP) fails, or that the measurement returns a |1⟩ instead of a
|0⟩ and vice versa. Essentially, SPAM errors can be modelled
with BF errors, applied to all qubits.

a) State-Preparation (SP): For SP these BF errors are
applied at the beginning of a circuit with probability psp.

b) Measurement (ME): For the ME the additional BF errors
with probability pme are applied at the very end of a circuit.

4) Coherent Gate Error (CGE): Notable, since each opera-
tion is applied to the quantum system using an imperfect real
QPU, the actual gate operation may deviate from the intended
one. This coherent error can usually be mitigated in QML
by accordingly adjusting the parameter that parametrises a
gate. However, for the sake of completeness we provide this
error in form of a Gaussian distribution, from which an error
ϵ ∼ N (0, p2cge) is drawn randomly for each gate.

B. Coefficients

Based on the definition of a QFM from Eq. 4, we can
investigate the coefficients of such a model after parametrisation
using the Fast Fourier Transform (FFT). Given the correct
number of frequencies, which is in the simplified scenario
of Pauli-encoding and a single encoding layer, equal to the



number of qubits n, this transformation yields a numerical
estimate of the coefficients. Note that this set of coefficients
is a numerical approximation based on the expectation value
of the model given a range of input samples x ∈ X and a
fixed parameter vector θ. As stated in Eq. 4, these coefficients
depend on the parameters. For each ansatz we assume that this
set of coefficients is characterised by the mean and the standard
deviation which is what we evaluate in the following numerical
experiments. We also calculate the covariance matrices

Covc =
(

Cov(Re(c),Re(c)) Cov(Re(c),Im(c))
Cov(Im(c),Re(c)) Cov(Im(c),Im(c))

)
. (14)

To estimate the model spectrum, we need to sample the
parameter space Θ. We estimate the mean value of a coefficient
contributing to the frequency ω,

µc(ω) =
1

|Θ|
∑
θ∈Θ

|FFTX (f(·,θ))(ω)| , (15)

and the relative standard deviation

σc(ω) =
1

|Θ|
∑
θ∈Θ

√
|FFTX (f(·,θ))(ω)− µc(ω)|2

µc(ω)
. (16)

FFTX represents the discrete Fourier transform over X . Analyt-
ical coefficients can be obtained by expanding the expectation
value using trigonometric polynomials [21], [22]; we use these
to cross-validate FFT result.

C. Expressibility

For the expressibility we utilise the Kullback-Leibler (KL)
divergence [38] between the distributions obtained by sampling
from the Haar integral

∫
Haar (|ψ⟩⟨ψ|)⊗tdψ and the model∫

θ
(|ψθ⟩ ⟨ψθ|)⊗t

dθ, as introduced in Ref. [16]:

DKL

(
P̂Model(F ;θ)∥PHaar (F )

)
(17)

Here, the fidelity F = |⟨ψφ | ψϕ⟩| is the probability of state
overlaps whereas the distributions of state overlaps is then
p (F = |⟨ψφ | ψϕ⟩|).

This metric yields zero if P̂Model(F ;θ) = PHaar (F ), meaning
the states sampled from the QFM are Haar distributed. For the
least expressive case, i.e. the idle circuit, the KL divergence
becomes ln(nbins) where nbins describes the number of bins
that are used for discretising the probability distribution using
a histogram. For the remainder of this work, we refer to the
expressibility as the inverse of KL divergence.

D. Entangling Capability

There are different ways to calculate the entangling capability
of a VQC, some of which we discuss in this section.

1) Meyer-Wallach (MW) Measure: The MW entangling capa-
bility [39], [40] is defined as the trace of the squared partial
density matrix ρk where k indices the subsystem:

Q(|ψ⟩) = 2

(
1− 1/n

n−1∑
k=0

Tr
[
ρ2k
])

. (18)

This metric has the property that if Tr
[
ρ2j
]

= 1 ∀j,
implying Q = 0, |ψ⟩ is a product state whereas Q = 1 iff
Tr
[
ρ2k
]
= 1/2 ∀k meaning the state is maximally mixed.

Notable, this metric is only valid when working with pure
states, but not for mixed states as they occur in decoherent
noisy circuits.

2) Entanglement of Formation (EF): The EF [41] can be
used as a metric on mixed states. In the extensive review on
entanglement measures from Ref [42] it is defined as

Q(|ψ⟩) := inf

{∑
i

piE (|ψi⟩ ⟨ψi|) : ρ =
∑
i

pi |ψi⟩ ⟨ψi|
}
(19)

which is the average entanglement over all pure state decom-
positions of the density matrix ρ. The entanglement for pure
states is then calculated using the MW measure as introduced in
Eq. 18. Finding a pure state decomposition however is a non-
trivial task. In this work we utilise an eigenvalue and eigenstate
decomposition of the density matrix ρ. Based on the resulting
decomposition, we proceed with calculating the entanglement
of each eigenstate while weighting it by its eigenvalue as
depicted in the left part of the right hand side of Eq. 19.

V. NUMERICAL RESULTS

This section describe the numerical results of our work.
Generally, we consider a circuit with the structure as introduced
in Eq. 1 with L = 1 layers, D ∈ {1, 2} input features
and n ∈ [3 . . . 6] qubits. Note that by convention, such a
model would have two trainable layers, which is also used
when calculating expressibility and entanglement, even if we
discard the input gates in that case. For the trainable part,
we investigate in the ansätze depicted in Fig. 2. We use the
Strongly-Entangling Ansatz (SEA) as introduced in Ref. [43]
and a circular structure for the Hardware-Efficient Ansatz (HEA).
Circuit 15 and Circuit 19 stem from Ref. [16] and are chosen
based on their different structural properties and distinguishable
expressibility and entangling capability.

In the following experiments, we apply the types of noise,
described in Sec. III-E to each ansatz, with seven linearly
increasing noise levels from 0% to 3% yielding a resolution
of 0.5%. The trainable parameters are randomly uniformly
sampled from [0 . . . 2π]. For each parameter sample, we
perform n-local measurements on all qubits and then collect
and average the expectation value over all samples. We use five
different seeds for the parameter sampler to ensure statistical
stability against initialisation. Throughout all our experiments,
for each of the five seeds we use 250 samples per parameter
value, which is scaled exponentially with the number of qubits
if not stated otherwise (e.g. for a three qubit circuit with 10
parameters, we sample 10× 250× 23 times for each seed).

All our results are fully reproducible [44], with the code
available in Ref. [45], which is closely intertwined with the
“QML-Essentials” package [46].

A. Coefficients
In this subsection we present the main result of our work,

which is the effect that noise has on the Fourier coefficients of a
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(a) SEA from Ref. [43].
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(c) Circuit 15 from Ref. [16].
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(d) Circuit 19 from Ref. [16].

Fig. 2: ansätze investigated in this work, exemplarily for 4
qubits. Rot3 represents an arbitrary single qubit rotational gate,
which takes three parameters. The single qubit Pauli-rotation
gates R{X,Y,Z} are parametrised by one parameter each.

QFM. As the standard deviation across seeds is small (i.e. < 6%
for µc(ω)), figures show the mean of µc(ω), σc(ω) or Covc
over the five seeds. Note that if the samples for a coefficient
result in a µc(ω), smaller than 10−14, it is assumed to be zero,
indicating that the corresponding ω is not the spectrum.

1) Input Encoding: As the coefficient values are greatly
impacted by the encoding strategy [20], we first investigate
in three different rotational Pauli-encodings around X , Y ,
and Z axis to encode one-dimensional data (D = 1) in a
noiseless setting and observe how this not only changes the
spectrum but also the real and imaginary part. In Fig. 3 we can
observe that all circuits suffer from an exponential decay in the
absolute coefficient value over the frequencies, varying across
the structure. These findings are in line with the ones from [15].
Furthermore, the HEA with four to six qubits and Circuit 15
with five qubits resulted in µc(ω) smaller than 10−14 for some
frequencies, not exhibiting a full spectrum, as the other ansätze.
However, we note that the absolute coefficient for individual
parameter samples was above the threshold, indicating that a
full spectrum is possible with these ansätze, but unlikely due
to sampling resolution in parameter space.

While there is no obvious difference in µc(ω) throughout the
different encoding strategies, things change when we look at
the real and imaginary parts of the individual coefficients cω(θ)
separately, as depicted in Fig. 4. Here, Circuit 15 exhibits an
imaginary part in the coefficients, only for the case of an RY

encoding, missing a degree of freedom in the imaginary part
for the RX and RZ encoding. Therefore, in the subsequent
experiments, we use the RY encoding for Circuit 15, and RX

for the remaining ansätze.
2) Impact of Noise on the Real- and Imaginary Parts:

Fig. 4 suggests that, the coefficients are evenly distributed in
the real and imaginary part, with no clear correlation between
the parts (apart from Circuit 15 with RX and RY encoding).
To corroborate this observation, we next compute the elements

SEA HEA Circuit 15 Circuit 19

R
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R
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R
Z
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The individual frequency components are colour-coded.

of the coefficients covariance matrix, as introduced in Eq. 14.
In our experiment, we calculate these coefficients for noiseless
samples and for samples subjected to each noise type at a
probability of 3%. Since all circuit sizes yield consistent results,
we focus on six-qubit circuits operating at the first and the last
frequencies, as shown in Fig. 5.

These results align with those in Fig. 4, demonstrating that
the variances of both the real and imaginary parts of the
coefficients are approximately equally high across configu-
rations. However, the covariance between these components
is significantly smaller or even zero. This suggests that the
real and imaginary parts of a coefficient are not strongly
correlated, allowing us to consider only the absolute value
of the coefficients in subsequent experiments. While additional
variance experiments are detailed in Sec. V-B, Fig. 4 highlights
that decoherent gate errors significantly reduce the variance of
the coefficients, regardless of circuit structure. In contrast, other
noise types appear to have no substantial impact on variance.

As shown in Fig. 4 coefficients are centred around zero for
all configurations in a noiseless setting. Generally, this also
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applies to noisy scenarios with the exception of the AD channel,
which shifts the coefficients of ω = 0 towards positive values,
as shown in Fig. 6. This indicates that the offset due to the
Z-basis measurement is skewed when applying an AD channel.

B. Impact of Noise on the Absolute Value

Next, we examine how noise affects the coefficient mean
and standard deviation across different ansätze configurations
for one-dimensional inputs (D = 1). The results are shown in
Fig. 7 for each type of noise, evaluated on six qubit circuits.
Note that we conducted the same set of experiments for circuits
with three to five qubits, which provided similar outcomes, but
accordingly with fewer frequencies. A selection of the results
is provided in Sec. V-C while the supplementary material in
Ref. [45] provides full result sets.

Fig. 7a shows that decoherent gate errors generally lead to
an exponential decay of coefficient mean; except for HEA and
Circuit 19, where higher frequency components tend to increase
with increasing noise level. This may seem counter-intuitive,
but can be explained by a low coefficient mean for these
frequencies without noise. Adding noise randomly distorts the
expectation value, leading to a uniform increase (on average)
of all frequencies in the spectral representation. The effect
is less pronounced for lower frequency components as they
typically have a higher mean value.

The relative standard deviation remains constant or decreases
with noise for all frequencies and ansätze, while frequencies
ω ̸= 0 generally lead to higher σc(ω). Since σc(ω) is
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Fig. 7: Absolute coefficient mean µc(ω) and the corresponding
relative standard deviation σc(ω) over noise levels for various
types of noise and six qubit circuits. The individual frequency
components are colour-coded.

proportional to µc(ω), this implies that the absolute variance
also decreases exponentially with increasing noise level under
the influence of decoherent gate errors. Interestingly, in case
of the SEA, the standard deviation for ω = 0 increases with
increasing noise level. Circuit 19 provides the highest standard
deviation at 0% noise level which then decays rapidly when
a small amount of decoherent noise is added. The remaining
ansätze obtain σc(ω) values of a similar order of magnitude.

Generally SPAM, damping noise and CGE have minimal effect
on both, coefficient mean relative standard deviation. However,
we observe two exceptional high-frequency cases in Circuit 15
for CGE, where coefficients increase, with decreasing standard
deviations decrease (see Sec. V-D for a detailed discussion).



C. Two-Dimensional Inputs

To assess the impact of noise on circuits with multiple input
features, we conduct the same set of experiments detailed in
Sec. V-B, also for D = 2, with the difference of only sampling
a fixed number of times (i.e. 300) for all qubit numbers to
save computational resources, resulting in a higher standard
deviation in µc(ω) of up to 29% between seeds for some six
qubit cases. As different encoding strategies are presented in
Ref. [19], this work focuses on a subsequent Pauli-encoding
along different rotational axes. This is similar to the two-
dimensional case, where it just satisfies the requirement of
orthogonality. Given the substantial similarities across different
noise types and frequencies, we present a curated selection of
combined results for D ∈ {1, 2} across all qubit numbers and
ansätze in Fig. 8. The comprehensive results are available in
our supplementary material in Ref. [45]. Our focus is on the
effects of noise on two specific coefficient classes: the zero-
frequency coefficient (ω = 0) and the coefficient corresponding
to the maximum frequency in all input dimensions in the
respective spectrum, determined at the 0% noise level (ω =
ωmax). For intermediate frequencies, as illustrated in Fig. 3,
the coefficients decrease. Nevertheless, the effect that noise has
on these intermediate coefficient, can also be observed either
at ω = 0, or ω = ωmax.

DP, as a representative of the class of decoherent gate errors,
uniformly causes an exponential decline of µc(ω) across all
coefficients and frequencies, with the exception of higher
frequencies in Circuit 19 (cf. Sec. V-B).
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For the zero-coefficient, we observe that applying an AD
leads to an increase in µc(ω). This effect is more pronounced
in circuits with a higher number of qubits and input features.
While this shift is more evident in the SEA and HEA, it is
less noticeable for Circuit 15 and Circuit 19, suggesting
these ansätze potentially exhibit greater resilience against AD.
For the remaining frequencies (specifically ωmax), AD has
an imperceptible effect. Similarly, SPAM errors, and PD, not
detailed in Fig. 8, exhibit no noticeable, or as in Fig. 7a only a
slight decrease in µc(ω) for all ω. Overall, these observations
align with the proofs on decoherent noise effects in Ref. [37],
showing (uniform) contractions for (DP) noise channels.

The relative standard deviation σc(ω) for D = 2, which
is not explicitly shown here, demonstrates similar behaviour,
as observed in Fig. 7b, with constant or decreasing values
throughout the noise levels, indicating an overall decrease
of variance with µc(ω). Regarding CGEs, their influence is
minimal, when ω is small. However, for high frequencies, there
is a significant increase in µc(ω) with increasing noise levels in
configurations with more than three qubits and D = 2. These
findings are presented in depth in the following subsection.

D. Effect of Coherent Noise

In certain configurations shown in Fig. 7 and Fig. 8, a
noticeable increase in higher-frequency coefficients can be
observed. This effect is attributed to the CGE, which are
modelled by adding ϵx ∼ N (0, p2cge) to the inputs The resulting
Fourier series becomes

fcge(x+ ϵx,θ) =
∑
ω∈Ω

cω(θ)e
ıωT (x+ϵx)

=
∑
ω∈Ω

cω(θ)e
ı(ω+ϵx)

Tx,
(20)

where we neglegt that similarly a ϵθ ∼ N (0, p2cge) is added to
the trainable parameters.

This demonstrates that CGE not only alter the coefficients
but also induce shifts in the frequency spectrum. Notably this
effect is very similar to what was observed in Ref. [23] in
the context of additional trainable parameters added to the
encoding. The increase in higher-frequency coefficients, as
shown in Fig. 7, is likely due to these spectral shifts, which
lead to a more uniform distribution of coefficients.

The impact of CGE on the frequency spectrum becomes
evident when comparing the number of frequencies with and
without coherent noise, as illustrated in Fig. 9. In particular,
coefficients that are computed to be zero in the FFT under
noiseless conditions become non-zero in the presence of CGE.

Notably, HEA and in case of RY encoding also Circuit 15
do not result in a complete frequency spectrum. This is likely
due to limitations in the ansatz structure and input encodings,
which restrict the set of achievable eigenvalue differences (cf.
Eq. 5). Such incomplete spectra are indicative of reduced
expressiveness in these configurations. While CGE seems to
solve this problem, we would like to point out that although
the circuit under CGE contains more frequencies, this does not
mean that they are individually tunable. This can result in a
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spectrum that is significantly correlated, a phenomenon that is
undesirable in the context of most learning problems.

E. Expressibility

The expressibility is calculated as introduced in Sec. IV-C
and quantified using the KL-divergence to the Haar distribution
(cf. Eq. 17). The experimental results for all ansätze and qubit
counts are presented in Fig. 10.
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Fig. 10: Expressibility (i.e. inverse of the KL divergence) under
the influence of increasing noise levels. The points represent
the mean and the small shaded areas around it refer to the
minimum and maximum across all five seeds.

We observe that all decoherent gate errors lead to an increase
in the KL-divergence, thereby reducing expressibility. This
effect is also consistent across SPAM and damping noise, though
the impact is less pronounced. The observed decrease in
expressibility aligns with the reduced variance of coefficients

noted in Sec. V-A and the connection to frequency redundancies
discussed in Ref. [15].

Coherent noise, on the other hand, has no measurable effect
on expressibility. This is not surprising since we omitted the
input gates for the CGE to act upon, leaving the system in
a coherent state. Effects of shifts in the trainable parameters
appear to cancel out over the parameter samples.

In a noiseless environment, the SEA achieves a higher express-
ibility compared to the other ansätze. However, when coherent
noise is applied, the expressiveness is quickly equalised. While
the effect is consistent across all circuits tested, it can be
observed that it becomes more pronounced as the number of
qubits increases. This suggests that all forms of decoherent
noise degrade the quantum nature of the circuits.

F. Entanglement

We first utilise the MW measure as introduced in Sec. IV-D1
to compute the entanglement of the circuits without noise.
Subsequently, the EF (cf. Sec. IV-D2) is used to measure
the entangling capability for the mixed states with increasing
noise levels. The results for are shown in Fig. 11. Notable
for the noiseless circuits with the MW measure, an increasing
qubit count leads to a higher overall value for the entangling
capability, while the specific values for the SEA, HEA and Circuit
15 are similar. Circuit 19, which has controlled rotation gates
as entangling gates, results in a lower MW entangling capability
for more than 4 qubits.
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Notably, EF results in different values than the MW measure,
also for noiseless circuits, especially observable for Circuit
19. This observation may be a consequence of the properties
of the EF measure: At zero noise-probability for the EF, an
eigendecomposition results in only one pure state, over which
the MW measure is computed. However, this decomposition is
not unique (cf. Sec. IV-D), and only one of many possibilities,
potentially resulting in different values for the entangling
capability. Therefore, we interpret the values in Fig. 11 as
upper bounds of the entangling capability, which drop below
the MW entangling capability with applied noise in most cases.

Within the decoherent gate-, and SPAM-error groups a similar
behaviour can be observed for each ansatz. The values here
slightly decrease or remain constant for both decoherent gate-
and SPAM-errors, with some exceptions for three and four
qubits with BF- and ME-noise, where the entanglement slightly
increases from 0%-level noise to 0.5%. Similarly, for PD, the
entangling capability also decreases with noise for all ansätze.
For AD-noise entangling capability decreases more drastically
for all circuits, and number of qubits with increasing noise
level Although the state remains pure, when applying CGEs, a
decrease in EF can also be observed in this case. Our results
suggest that noise, even coherent noise, is overall detrimental
for the entangling capability, especially for AD-noise.

VI. DISCUSSION

In this work we explore the effects that noise has on the
coefficients, expressibility and entangling capability of a QFMs.
Empirically, we show an overall detrimental effect of noise
on all of these properties, with the main general findings for
QML outlined as follows: (1) We confirm the the statement of
uniform contraction of coefficients with noise made in Ref. [29],
and demonstrated that the decrease in the coefficient value is
even exponential for decoherent gate errors, which may have a
crucial impact on the kinds of functions that can be handled by
the QFM. (2) We show that the expressibility, measured by the
coefficients variance and the distance to the Haar distribution,
also vanishes (potentially exponentially) with the coefficients
value with increasing noise level. (3) The entangling capability,
which is a general indicator of the “quantumness” of a VQC is
affected by noise in a similar manner.

For all of the above, the ansätze that we investigated in
showed a consistent, but not uniform pattern. While our
findings are based on limited circuit and input dimension sizes
(up to six qubits and two features), we observe consistent
patterns as the number of qubits increases from three to six,
suggesting potential for broader applicability in larger circuits.
Additionally, similar results across one-dimensional and two-
dimensional inputs offer a good indication for generalisation
despite the exponential scaling of frequencies in the spectrum.

As each learning problem in QML has different requirements
on the ansatz that is employed, a general “all-fits-one” ansatz
is unlikely to exist. Nevertheless, based on our experiments,
we can make some statements on the measures of quality for
the tested ansätze:

(1) The SEA is, as the name suggests the ansatz with the
highest entangling capability, although the difference to the
HEA and Circuit 15 in that regard is small. Among the tested
ansätze, the SEA also utilises most trainable parameters per
qubit, resulting in a comparatively higher expressibility in a
noiseless setting (cf. Fig. 10), which, however quickly vanishes,
when applying only a small amount of noise. The corresponding
Fourier spectrum is full (at least for up to two input dimensions),
and comparatively uniformly distributed (cf. Fig. 3), also
indicating expressiveness. (2) In the HEA, the amount by which
the depth of the entangling sequence grows, is a constant,
compared to the other ansätze, where it scales linearly with the
number of qubits. This desirable property comes with the cost of
lacking the full Fourier spectrum on average, even at one input
dimension. (3) Circuit 15 demonstrates similar behaviour to the
SEA and HEA in the scaling of entanglement and expressibility
under noise. It further has a unique characteristic, where the
imaginary part in the coefficients appears exclusively for a RY

encoding. As the HEA, Circuit 15 does not consistently achieve
a full spectrum. Additionally, it seems to be more prone to
CGE as other ansätze, yet less to AD. (4) Circuit 19 achieves
a full spectrum for up to two input dimensions, as the SEA.
However, the coefficients vanish more quickly with increasing
frequency, even in the noiseless case (cf. Fig. 3), indicating
that not all parts of the spectrum may be effectively utilised.
Despite having the lowest MW entangling capability, Circuit 19
features tunable parameters in the controlled-RX gates, which
could potentially allow for adjusting this property. Like Ciruit
15, it seems to be more susceptible to CGE, and less to AD.

VII. CONCLUSION AND OUTLOOK

Given the potential for conducting an extensive array of
numerical experiments on this subject, the presented results
are expected to offer researchers valuable insights into the be-
haviour of QFM under noise conditions. However, an analytical
correlation between these factors and potential generalisations
to larger circuit sizes remains to be investigated in future
research. Also how different ansätze or encoding strategies,
such as the ones presented in Ref. [19] fit into this pattern
remains to be explored.

While we acknowledge that noise will lose its importance
once FTQC is established, the road to FTQC remains stony, and as
not every hardware architecture is suitable for error correction,
the effects of noise on QFM are still relevant as the proposed
results are hardware agnostic. In subsequent studies, we intend
to perform analytical derivations to further extend the results
presented and allow more definitive conclusions to be drawn,
also for different ansätze.
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