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Abstract—Software repositories are an essential source of
information for software engineering research on topics such
as project evolution and developer collaboration. Appropriate
mining tools and analysis pipelines are therefore an indispensable
precondition for many research activities. Ideally, valid results
should not depend on technical details of data collection and
processing. It is, however, widely acknowledged that mining
pipelines are complex, with a multitude of implementation
decisions made by tool authors based on their interests and
assumptions. This raises the questions if (and to what extent)
tools agree on their results and are interchangeable. In this
study, we use two tools to extract and analyse ten large software
projects, quantitatively and qualitatively comparing results and
derived data to better understand this concern. We analyse
discrepancies from a technical point of view, and adjust code and
parametrisation to minimise replication differences. Qur results
indicate that despite similar trends, even simple metrics such
as the numbers of commits and developers may differ by up
to 500%. We find that such substantial differences are often
caused by minor technical details. We show how tool-level and
data post-processing changes can overcome these issues, but find
they may require considerable efforts. We summarise identified
causes in our lessons learned to help researchers and practitioners
avoid common pitfalls, and reflect on implementation decisions
and their influence in ensuring obtained data meets explicit and
implicit expectations. OQur findings lead us to hypothesise that
similar uncertainties exist in other analysis tools, which may
limit the validity of conclusions drawn in tool-centric research.

Index Terms—Mining Software Repositories; Developer Net-
works; Empirical Software Engineering; Research Software

I. INTRODUCTION

In software projects, social entities, such as persons or
groups, interact with technical artefacts, including modules,
files and functions. The relationships between these two groups
can be described by socio-technical networks constructed from
software repositories, which capture a project’s entire history
of collaboration [1]]. Temporal socio-technical networks can
represent a project’s state at any point in time. This infor-
mation can help managers, new contributors and others to
gain a comprehensive understanding of the project, facilitating,
for example, the identification of the most suitable contact
persons for addressing specific issues, such as a bug in a
software module. The analysis of collaboration networks has
become a common tool in understanding evolutionary aspects
of organisational principles, primarily based on open-source
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software (OSS) projects [2], [3, [4], [S1, [, (61, [7], (8],
(91, [10], [L1], [21, (130, [14], [150, (16, (171, (18], [19],
[20], [21], [22], [23]. Patterns of interest include [2] the
formation of developer communities [1]], the emergence of
(non-)hierarchical team structures [9], and the identification
of core developers [7], [I8]. Socio-technical factors can also
aid in predicting quality aspects, including bugs, software
failures and future project success [22]] as well as in optimising
circumstances for collaboration [24] to increase developer
productivity [25] and reduce development time and costs.

To facilitate these analyses, the field of mining software
repositories (MSR) offers a plethora of methods and tools to
extract collaboration and communication data from a variety
of sources, including version control systems (VCS), mailing
lists, issue trackers and chats [26]. A series of processing
stages, such as matching multiple developer identities, bot
detection, file and temporal filtering, may be employed to
obtain a baseline data set. To construct the collaboration net-
work, contributors are initially linked to artefacts, mailing list
threads, issues or chat messages to which they contributed. A
bipartite projection eliminates the source nodes from the bipar-
tite network, instead connecting developers who contributed
to them. Alternatively, a temporal projection links developers
according to the temporal order of their contributions to a
source. Edge weights may reflect the strength of collaboration
between two developers. In co-change networks, weights can
be calculated from the number of lines of code (LoC) changed
in a file, function or module [22], [[7], [LL].

Although existing tools and scripts perform similar steps of
this complex pipeline, they differ in their underlying assump-
tions, algorithms, implementations and interpretations [27].
This raises the question of whether the results of previous
studies would have been the same if a different tool or analysis
pipeline had been employed. Studies on the promises and
perils of mining version control data have identified a number
of factors that can potentially lead to inaccurate analysis
results, but also identified and proposed mechanisms and
methods to enhance consistency. To date, there are only a few
studies that quantify the effects of these implementation details
on analysis results and their interpretation. In particular, there
is a lack of replication studies for developer networks [2].

Our objective is to quantify the impact and threats to validity
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of employing different mining tools on version control sys-
tems and utilising this baseline data in subsequent developer
network analyses. To this end, we conduct a replication study
to measure the similarity of the VCS data and collaboration
networks mined and constructed by two independently devel-
oped tools, namely Codeface [28] and Kaiaulu [29]].

Our results indicate significant uncertainties due to unknown
assumptions. While overall trends largely correspond, we
show that under specific circumstances, such as limitations
in file filtering and identity matching, minor implementation
and configuration details may have substantial impact. For
instance, the percentage of developer identities jointly found
by both tools may not exceed 60% for some subject projects
and even most active developers can be missed. Changing
tool parametrisation and implementing post-processing could
overcome parts of these issues in our case. However, not all
discrepancies can be eliminated by such means, and would
require major re-engineering efforts. Users are likely unaware
of the existence and magnitude of such limitations and could
derive wrong conclusions, decisions and best practices or
make predictions based on inaccurate ground truth data when
trusting their pipeline. This paper deliberately focuses on the
technical details responsible for this issue.

In summary, we contribute (1) quantitative insights into
the impact of different mining tool implementations on the
characteristics of the baseline data, (2) a qualitative analysis
of the causes of these differences and (3) actionable learnings
from and for the adjustment and replication of a tool to obtain
outcomes as close as possible to the desired baseline data.

II. RELATED WORK

A. Replication Studies

The limited number of available replication studies is con-
sidered a threat to validity in empirical software engineer-
ing [30], [31]. In general, advances in reproducibility engi-
neering, such as dedicated platforms [32], [33]] and archived,
self-contained reproduction packages bundling artefacts and
pipelines [34], contributed significantly to the improvement of
study reproducibility in the last years [35]. MSR studies yet
remain challenging, as artefacts and implementations are often
not published at all, only in parts, or in form of a diverse [36],
[33], possibly unusable [35], set of scripts and tools. However,
replication studies offer the potential to increase confidence in
findings of previous studies [37], extend or complement their
results [38]] and increase the impact of the field [36]. For
example, Dinh-Trong et al. [39] compare the development
process of the Apache project investigated in the original
work to the one of FreeBSD to enhance understanding of
OSS development processes. Bock et al. [3] refine the results
of a study on synchronous development, which associates
developer collaboration and communication with productivity
[25], by transferring the method to a different data set and
abstraction level. While replication studies are more common
in MSR areas such as defect and bug detection [40], [41], their
availability is limited in the context of developer networks [2].

B. Validity Studies

Pitfalls in MSR that can distort results have been addressed
by several influential studies. Bird et al. [42] addressed pos-
sible traceability issues. Kalliamvakou er al. [43] extend this
study to include peculiar properties of GitHub. Flin et al. [44]
studied pitfalls when working with time-based Git data and
provide guidance to overcome them. Saarimiki et al. [45]
investigate the perils of disregarding time dependencies in
MSR studies. They propose methods from time series analysis
and present preliminary results of their impact. Nia et al. [46]]
explore the impact of pitfalls in e-mail network construction,
resulting in missing edges or edges out of temporal order.
Their results show that metrics such as node centrality are
stable despite the changes in topology. Meneely et al. [47]
study developer perception of collaboration and team structure
expressed by developer network edges and metrics. From a
higher level perspective, Siegmund et al. [48] studied experts’
views on the correct application of empirical methods in
software engineering, finding that there is no consensus on
the prioritisation of internal or external validity in the field.

C. Method and Tool Comparisons

In technical debt detection, Lefever et al. compared the
results found by various commercial and open-source tools,
finding that they disagree even for very common, basic
measures such as LoC [49]. To the best of our knowledge,
there are no similar tool comparisons for developer net-
works. However, differentiating aspects are highlighted by
comparisons of specific methods implemented as part of MSR
pipelines. Goeminne et al. [50] compare heuristics for devel-
oper identity matching, finding that exact substring matching
performs best. Amreen et al. [S1] propose a novel machine
learning technique for identity matching and demonstrate its
superiority to state-of-the-art methods. Bertoncello et al. [S2]
investigate the influence of using commits or pull-requests to
distinguish core and casual contributors in a software project,
concluding that pull-requests are more accurate for measuring
contributions. Joblin er al. [1l], [7] investigate differences
in co-change collaboration network construction, community
detection and core developer classification metrics, along with
an evaluation of correspondence with the real perception of
developers. Several authors study the agreement of developer
networks [26], [53] and communities [6] resulting from data
extracted from different communication and collaboration
sources. Tymchuk ef al. [26] find that the combination of
channels is essential to obtain a comprehensive view of a
project. While related studies focus on specific analysis stages
in isolation, we aim to explore the impact and propagation of,
possibly unknown, differences in two distinct tool implemen-
tations along the entire analysis pipeline.

III. REPLICATION STUDY DESIGN

Our replication is based on an iterative process visualised
in Fig. [I] We began with tool configurations of Codeface and
Kaiaulu used in previous studies, and ran the tools on ten
large software repositories to analyse the results and evaluate



their agreement. Based on the identified differences and once
knowing their causes, we adapted the pipeline for Kaiaulu
and began the next iteration to achieve a closer replication to
Codeface. For the sake of clarity, the individual iterations are
not distinguished in the following sections.

(1) Extract data (2) Analyse data

(3) Adjust pipeline
N

Fig. 1. Overview about our approach: We mined repositories using a basis
(Codeface) and replication (Kaiaulu) tool, and compared derived data. De-
pending on similarities and differences, we adjusted configuration parameters
and post-processing methods in the replication tool. We iterated until the
closest replication was achieved.
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Fig. 2. Informal overview of structural components of the mining tools
Codeface and Kaiaulu. Although both tools perform the same analysis steps,
their interaction and data structure differ.

A. Research Questions

RQ1: To what extent can we observe discrepancies in the
data obtained from independent MSR tools? Each tool makes
assumptions on how to extract and process data, which can be
influenced by configuration parameters. Implicit assumptions
and implementation decisions often remain hidden from tool
users. We are interested in quantifying the impact of these
uncertainties on the results.

RQ2: Which factors are responsible for the discrepancies?
Assuming we find discrepancies in RQ1, we are interested in
technical causes and inherently different tool assumptions.

RQ3: To what extent and with what effort can a tool be
adapted to yield results comparable to those produced by
another tool? Based on RQ2, we evaluate how adjusting con-
figuration and implementation achieves the closest replication
of baseline data extracted by the original tool.

Fig. [2| provides an overview of the analysis pipeline.

B. Subject Selection

Our data set consists of ten relevant and active OSS projects.
For our selection, we take into account previous studies relying
on Codeface or Kaiaulu and drawing conclusions based on
these repositories [, [3], [4]], [S], [6], 18], [O], [12], [20], [22],
[54]. We consider different application domains, programming
languages, ages of the project and project and team sizes.
Tab. [[] provides an overview of the subject characteristics.
To avoid a tool bias, commits and developers are extracted
directly via git, without processing such as identity matching.
The primary language and LoC are determined via CLOC [S5]].

C. Data Extraction

We chose Codeface as the basis tool because it has been
used in numerous studies between 2015 and 2023 [1]], [3], [4],
151, (61, (71, (81, (90, (101, (110, [12], [13], (14, [15], (16], [L7],
(181, [L9]], [201], [21]], [22], [23]]. We decided to use Kaiaulu as
replication tool because it is relatively new with fewer studies
available [27], [54], [S6], [S7], [S8]. Kaiaulu is partly inspired
by Codeface [27] and, to the best of our knowledge, the only
tool implementing all required stages of the MSR pipeline to
analyse developer collaboration in the same way as Codeface.
We set up both by cloning the public, actively maintained
repositories for Codeface [28]] and Kaiaulu [29]] and following
the installation instructions.

To conduct the analyses, both tools require configuration
files for the tool itself and for each project analysis run.
Codeface enables its users to configure a time window size in
months or specific release ranges for temporal analyses. We
chose a window size of three months as proposed in Refs. [7]]
and [6]. In addition, Codeface offers three modes for commit
analysis and network construction, which measure contribu-
tions and collaboration strengths based on files, features or
code structures. For our study, we choose the structure-based
proximity mode, which is also available in a similar form with
Kaiaulu’s entity mode, parsing functions and classes.

Kaiaulu’s API offers a high degree of freedom for the
analysis pipeline. We built on the API to define scripts for the
analysis. During our study, we identified a number of decisions
that influence results. Therefore, we use two distinct configu-
rations, prior and replication. Prior refers to the configuration
we set up based on prior studies conducted with Kaiaulu before
the first exploration of the baseline data for RQ1. Replication
is adjusted and complemented with additional post-processing
derived from RQ2 after iteratively inspecting the mined data
to most closely replicate Codeface’s outputs and answer RQ3.

To ensure a fair comparison, both MSR tools use identical
time windows. Codeface’s time slicing starts and ends by
commit timestamps instead of actual time windows, implying
that a commit break of six months would not result in two
empty time windows, but a larger time window ending with
the commit after the break. To replicate this behaviour in
Kaiaulu, we implement a new time slicing, enabling us to
specify the exact window limits used by Codeface. We also
add new configuration options to split time intervals by either
author timestamp (prior) or committer timestamp (replication).



TABLE I
DESCRIPTIVE STATISTICS OF OUR SUBJECT PROJECTS

Project Domain Primary Language = Commits  Developers LoC Start End
CAMEL Middleware Java 68,222 1352 2,252,114  2007-03-19  2024-01-11
DJANGO Web Framework Python 32,348 2897 637,711  2005-07-13  2024-01-23
GTK GUI C 78,899 1587 1,383,746  1997-11-24  2024-01-16
JAILHOUSE Hypervisor C 3006 75 50,593 2013-10-20  2023-01-10
OPENSSL Secure Communication Library C 34,691 1069 861,736  1998-12-21  2024-01-21
POSTGRESQL DBMS C 57,500 55 1,708,628 1996-07-09  2024-01-11
QEMU Emulator, Virtualiser C 109,894 2376 1,972,799  2003-02-18  2024-01-10
RSTUDIO IDE Java, C++ 41,745 194 1,004,561 2010-12-07  2024-01-25
SPARK Data Analytics Engine Scala 39,503 2815 1,377,476 2010-03-29  2024-01-11
WINE Compatibility Layer C 168,818 1762 5,251,550 1993-06-29  2024-01-10

In Fig. [2] the lighter coloured areas represent configurable
parts of the tool pipelines. In Codeface, commit analysis,
subsequent code structure extraction and network construction
depend on the choice of analysis mode and are executed
in parallel, triggered by a single interface. Depending on
the configuration, the results stored in Codeface’s database
tables will differ. In Kaiaulu, each step during and subse-
quent to commit analysis is optional and uses independent
configuration parameters to be specified by the user, such as
file endings to filter and code structure tags to search for.
Codeface decides internally on which parser, file filters and
tags to use. In Kaiaulu’s prior configuration, we filtered the
same file endings and language tags as proposed in existing
configurations from prior Kaiaulu studies [27], [54], while in
the replication configuration, we filtered the same file endings
and language structure tags as proposed for Codeface.

Kaiaulu’s identity matching is optionally performed at mul-
tiple occasions, always requiring a specification of the table
and identity columns. Codeface performs identity matching as
proposed by Bird et al. [S9] when parsing commits across all
identity columns (author and committer) and stores the unified
results. We implemented similar cross-column and cross-table
identity matching in Kaiaulu’s replication configuration.

D. Developer Network Construction

In function-based developer networks, the collaboration
strength of each pair of developers is calculated from the
number of changed source lines of code |sloc| reported in
the git blame data of a revision. For each commit from
developer b, Codeface iterates over any modified functions or
code structures. For each function, it considers all commits
from the collaborating developer a, who previously modified
this function. For each of those previous commits, Codeface
adds the sum of newly contributed |slocy ;| from b and the
remaining [slocq,, | of the previous commit from a to the edge
weight. Kaiaulu provides several edge weight schemes for
the function-based analysis mode. The scheme implemented
and used for prior Kaiaulu studies also sums up |sloc|, but,
instead of adding the newly contributed |slocy ., | to each of the
previous commits of a, only adds them once. Therefore, we
introduced a new edge weight scheme to replicate the nested
sum from Codeface in Kaiaulu’s replication configuration.

For two developers d; and ds, the edge weight wg, 4, 1S
given by the sum of their contributions measured in source
lines of code sloc at time of commit 74, as described in
Eq. for Codeface (c¢) and Egq. for Kaiaulu (k) with
prior configuration. § filters commits of d; contributing to f.

n
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Our comparison uses count-based metrics for number of
identified commits, changed files, changed entities and de-
veloper identities over time. Time series similarity is cal-
culated by normalised compression distance [60], measuring
the distance of the compression of two vectors individually
and concatenated. Also, dynamic time warping identifies the
optimal warping path aligning elements of the sequences
with minimal distance [61]. We include Spearman’s rank
correlation coefficient as intuitive measure, knowing that it can
be misleading for time series due to dependent values [62]]. To
measure the similarity of the developer networks constructed
by both tools, we calculated their density, mean non-zero edge
weight and graph edit distance as a notion of required edit
operations to transform one graph into the other.

IV. RESULTS

To present results and address research questions, space
constraints require limiting visualisations to representative
samples; full data is available in the reproduction package,

A. Comparison of Baseline and Derived Data

To address RQ1, we visualise the number of commits,
active developers, entities and files found by each tool con-
figuration in the defined time intervals in Fig. [3] In Tab.
we quantitatively evaluate the visual trends, comparing the
time series’ normalised compression distance (NCD), dynamic
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time warping (DTW) distance and Spearman’s rank correlation
coefficient (Cor.). We show the tools’ agreement on jointly
identified files, entities and developer identities in Fig.

Commits: Fig. [3| shows that the results from both tools
describe similar trends in the time series of commits. The
DTW distance and Spearman’s rank correlation coefficient
presented in Tab. |II] confirm this quantitatively, although NCD
appears more sensitive. Codeface usually reports significantly
higher numbers of commits than Kaiaulu with prior config-
uration. The extent of discrepancies depends on the project
and is particularly evident for Camel and Spark. In one
of Spark’s analysis time intervals, Codeface extracted 1593
commits, while Kaiaulu only identified 331. The difference
in commits is crucial, because each subsequent step in the
analysis pipelines, shown in Fig. 2] relies on them.

Files: Aligned with the commit time series, the file time se-
ries in Fig. [3]indicates similar trends for Codeface and Kaiaulu.
However, despite Codeface usually identifying more commits,
Kaiaulu appears to find more files in certain project contexts
such as GTK and Wine. The percentage of jointly identified
files compared by their names is shown in Fig. [] over all
time intervals. Again, we observe a strong project-dependent
intersection, with values below 20% for Spark and up to 90%
for RStudio when considering the prior configuration.

Entities: The time series of changed entities shown in Fig. 3]
do not allow any clear conclusions to be drawn. While we
see very similar curves for the GTK and Wine projects, the
similarity is not as pronounced for Spark and almost non-
existent for RStudio. We can also recognise this trend from
the metrics presented in Tab. [lIl Although correlation is high,
the DTW distances of 0.34 for Jailhouse and 0.33 for RStudio
are the worst in the table. The jointly identified entity names
show a similar picture as the time series: in Fig. ] we can see
a high intersection of 60-80% in the GTK and Wine projects,
while the intersection in Camel, RStudio and Spark is low.

Developers: Developer time series in Fig. [3| differ to a
similar extent as the commit time series. Surprisingly, the
direction of discrepancies is reverse for some projects (e.g.,
Camel, RStudio and Wine). This indicates that Kaiaulu with
prior configuration detects more developers than Codeface,
although it identifies less commits. The time series similarity
measures presented in Tab. [[I|do not capture this phenomenon.
The agreement on developer identities shown in Fig. ] gives
a better intersection than for files and entities. However,
agreement on developer identities can again drop below 60%.

Discrepancies in the four dimensions are not always related,
but may have different causes. For instance, for Camel, we
observe a high intersection of 60-80% in developers, while
the agreement on identified entities is below 20%.

Developer Networks: To determine similarities between
constructed networks, we compute graph edit distance, net-
work density and mean (non-zero) edge weight for each time
interval (see Tab. [[II). Intuitively, graph edit distance is large
for projects with several thousand developers (e.g., QEMU and
Django), and small for projects with several dozen to hundred
developers (e.g., Jailhouse, Postgres and RStudio). As for time

series, Spark represents an outlier with a graph edit distance
twice as high as the second-largest observation. This indicates
that discrepancies from the baseline data do propagate to
derived data. Tab. also shows that networks derived by
Kaiaulu are in general denser than by Codeface, while edge
weights from the latter considerably exceed the former in its
prior configuration. For QEMU, the maximum edge weight
found by Kaiaulu is 11,960, while Codeface reports a value
of 261,362—almost 22 times larger. Manual inspection reveals
that several developers were missed by Kaiaulu; especially
two of the most active developers according to Codeface in
one time interval of Spark (see Fig. [5). Anomalies such as
duplicate developer identities persist throughout the networks.
Answering RQI: We observe similar evolutionary trends
for count statistics of commits, developers, modified files
and entities. The extent of (dis-)agreement however depends
on measure, project context and tool configuration. In case
of the Spark project, for instance, we observe an absolute
percentage difference of up to 500% in the number of commits.
Substantial discrepancies in nodes and edge weights of derived
developer networks confirm that baseline data differences
propagate to high-level analyses, and merit close scrutiny.

B. Investigation of Discrepancies

To address RQ2, we analyse differences between baseline
and derived data, and summarise findings. First, we filter
instances detected by one but missed by the other tool. We
then manually review a random subset of instances using
VCS history, Codeface’s database, Kaiaulu’s git and entity log
tables, and adjacency matrices of the developer networks.

Commits: The majority of commits missed by Kaiaulu
concerned files that use programming languages not specified
in the prior configuration. Unlike Codeface, commit extraction
in Kaiaulu is not generic, but requires to explicitly spec-
ify file suffixes to be analysed. In prior studies, Kaiaulu’s
configurations considered suffixes .c, .cc, .ccp, .java, .js, .py,
and .r. Commits to language files such as .scala, primary
language in Spark, and commits to non-code files such as
.html, .md and .xml were missed by Kaiaulu, but captured by
Codeface. Other commits missed by Kaiaulu indicate in their
commit message that they were cherry-picked, refactorings
or tests. This discrepancy can be partially attributed to the
exclusion of directories that supposedly contain tests and code
examples in the prior configuration. Another reason could be
that Codeface’s parsing of the git blame output from step (2) in
Fig. [2] iteratively updates commits in its database if a line has
been changed by a commit not yet captured. Such updates of
the commit table are not performed by Kaiaulu. After parsing
the git log with Perceval in step (1), Fig. [2] captured commits
may only be reduced, but no more data is added to the table.

The difference data set also includes commits missed by
Codeface and captured by Kaiaulu. These commits were
usually merge commits of pull requests or feature branches.
However, not all merge commits were missed by Codeface. We
also note that, occasionally, commits appear in different time
intervals in Codeface and Kaiaulu. Kaiaulu’s prior configura-
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Fig. 3. Time series of count-based metrics calculated based on the git log extracted by Codeface and Kaiaulu with prior (P) configuration and Kaiaulu with
replication (R) configuration. Lines are plotted with a small horizontal offset to visualise overlapping lines. We see similar trends for both tools, but notice
that the extent of discrepancies is project- and configuration-specific. The most prominent differences can be observed for project Spark.

tion excludes the end time stamp from a time interval, while
Codeface includes it. Further discrepancies arise as Codeface
splits time intervals based on the committer timestamps, while
Kaiaulu uses author timestamps, meaning that time series
peaks could be shifted at the transition between two intervals.
Files: Inspecting file difference data reveals discrepancies
caused by schema differences. Kaiaulu stores commits multi-
ple times in a table, once for each modified file. This gives a
direct relation between commit and file. Codeface, however,
stores each commit only once in its commit database table.
In proximity analysis mode, file names are recorded in the
additional commit dependency table filled after file and code
structure filtering during git blame analysis. Consequently, a
file is only recorded if a code structure (e.g., function) in
the file was edited. Thus, Codeface occasionally misses files
found by Kaiaulu. All files could be determined by a second
Codeface analysis using file mode. However, this workaround
would lead to issues such as multiple internal identifiers
for identical objects, requiring a substantial merging effort.
Alternatively, we could adjust Codeface’s database schema to
store files and code structures separately. This would require
restructuring the entire analysis process depicted in Fig. 2]
Entities: Discrepancies in identified entities can result from
parsing. Codeface applies, based on file extensions, Doxygen,
C-Tags or an internal SQL parser to extract structural ele-

ments. Kaiaulu uses C-Tags uniformly. However, similar to file
filtering, Kaiaulu requires to configure tags. In prior studies,
Kaiaulu only parsed function and class tags for C, C++, Java,
Python and R. Codeface, when opting for the C-Tags parser
internally, parses a default set of tags to detect structures such
as functions, enumerations, namespaces, typedefs, macros, and
more for any language. More tags for special entities (e.g.,
constructors) are defined for individual languages such as Go.

Developers: Developers missed by Kaiaulu emphasise the
relevance of file filtering, because many of these developers
contributed to files with neglected extensions in the prior
configuration. Comparing developer names shows that higher
developer counts by Kaiaulu are caused by different means
of identity matching. In Codeface, developers using multiple
identities are merged across columns and tables considering
both author and committer columns. In Kaiaulu’s prior studies,
identities were matched only within the author column. This
results in duplicate identities consisting of different sets of
names and e-mail addresses of the same person.

Developer Networks: Identifying causes of developer net-
work discrepancies is complex. For instance, filtering few se-
lected programming languages in Kaiaulu’s configuration risks
that developers focusing on other languages may be under-
represented. Reconstructing the edge weight formulas [I] and [2]
defined (implicitly) by the tool authors was especially time-



TABLE II
TIME SERIES SIMILARITY FOR CODEFACE AND KAIAULU WITH PRIOR (P) AND REPLICATION (R) CONFIGURATION MEASURED BY NORMALISED
COMPRESSION DISTANCE (NCD), DYNAMIC TIME WARPING (DTW) AND SPEARMAN’S RANK CORRELATION COEFFICIENT (COR). FOR NCD AND DTW,
VALUES CLOSE TO ZERO (GRAY BAR) ARE DESIRED; FOR CORRELATION, VALUES CLOSE TO ONE (ORANGE BAR) INDICATE HIGHER SIMILARITY.

Commits Files Entities Developers
Tools Project NCD DTW Cor NCD DTW Cor NCD DTW Cor NCD DTW Cor
Camel 0.86 0.21 0.92 0.87 0.19 0.92 0.89 0.24 0.91 0.69 0.08 0.91
o Django 0.83 0.17 0.96 0.86 0.23 0.91 0.87 0.24 0.69 0.73 0.08 0.69
: GTK 0.88 0.18 0.93 0.87 0.22 0.91 0.88 0.18 0.89 0.68 0.26 0.89
E Jailhouse 0.67 0.23 0.95 0.68 0.27 0.85 0.68 0.34 0.88 0.56 0.27 0.88
= OpenSSL 0.86 0.12 0.98 0.86 0.11 0.96 0.87 0.18 0.88 0.78 0.07 0.88
% Postgres 0.89 0.31 0.75 0.89 0.22 0.82 0.89 0.22 0.91 0.48 0.08 0.91
éﬁ QEMU 0.90 0.11 0.97 0.87 0.14 0.98 0.88 0.22 0.88 0.75 0.06 0.88
3 RStudio 0.82 0.23 0.94 0.81 0.20 0.66 0.80 0.33 0.71 0.66 0.17 0.71
35 Spark 0.81 0.21 0.88 0.80 0.32 0.78 0.80 0.26 0.83 0.78 0.11 0.83
Wine 0.89 0.09 0.99 0.90 0.18 0.90 0.92 0.20 0.84 0.68 0.07 0.84
Mean p 0.84 0.18 0.93 0.84 0.21 0.87 0.85 0.24 0.84 0.68 0.12 0.84
Std. Dev. o 0.06 0.06 0.07 0.06 0.06 0.09 0.07 0.05 0.07 0.09 0.08 0.07
Camel 0.82 0.02 1.00 0.85 0.12 0.98 0.86 0.20 0.92 0.49 0.02 0.92
~ Django 0.53 0.05 1.00 0.83 0.16 0.98 0.86 0.14 0.91 0.43 0.01 0.91
: GTK 0.63 0.10 0.98 0.86 0.12 0.98 0.89 0.06 0.94 0.58 0.03 0.94
Tg Jailhouse 0.11 0.00 1.00 0.61 0.14 0.98 0.68 0.21 0.92 0.18 0.03 0.92
E OpenSSL 0.12 0.00 1.00 0.85 0.07 0.98 0.87 0.04 0.98 0.29 0.01 0.98
?d Postgres 0.07 0.00 1.00 0.89 0.12 0.93 0.88 0.17 0.94 0.10 0.00 0.94
& QEMU 0.75 0.03 1.00 0.89 0.10 0.98 0.87 0.13 0.97 0.25 0.00 0.97
-°§ RStudio 0.78 0.12 0.97 0.77 0.21 0.67 0.80 0.34 0.64 0.58 0.08 0.64
O Spark 0.56 0.10 0.96 0.80 0.16 0.93 0.76 0.25 0.88 0.65 0.01 0.88
Wine 0.07 0.00 1.00 0.90 0.07 0.98 0.92 0.06 0.97 0.39 0.01 0.97
Mean u 0.44 0.04 0.99 0.83 0.13 0.94 0.84 0.16 0.91 0.39 0.02 0.91
Std. Dev. o 0.30 0.05 0.01 0.08 0.04 0.09 0.07 0.09 0.09 0.17 0.02 0.09
TABLE III
GRAPH SIMILARITIES DETERMINED BY CODEFACE (C) AND KATAULU (K) WITH PRIOR (P) AND REPLICATION (R) CONFIGURATION.
Graph Edit Distance Density Edge Weight
C/K(P) C/K(R) C K(@P) K(R) C K(@P) K(R)
Project Mean Max Mean Max Mean Mean Mean Mean Max Mean Max Mean Max
Camel 119 399 140 474 0.17 0.17 0.21 1009 474,484 298 167,093 1633 3,036,609
Django 162 533 236 744 0.13 0.20 0.24 510 188,873 47 9431 230 356,944
GTK 141 534 164 682 0.02 0.07 0.11 642 185,640 120 31,874 706 339,516
Jailhouse 5 15 4 11 0.25 0.34 0.30 539 9608 26 664 124 4943
OpenSSL 63 351 86 442 0.29 0.33 0.44 759 170,390 130 38,087 1471 1,192,273
Postgres 47 231 48 229 0.37 0.36 0.43 960 63,799 247 19,578 1677 1,316,173
QEMU 374 849 544 1436 0.20 0.18 0.20 4469 261,362 73 11,960 951 10,429,560
RStudio 33 175 46 246 0.39 0.59 0.97 7019 157,248 969 31,959 92,754 4,765,887
Spark 848 1951 873 2068 0.13 0.07 0.10 336 63,907 92 27,929 347 159,043
Wine 251 877 647 2083 0.03 0.02 0.12 4200 512,257 61 108,895 158 352,091

consuming. As shown in Fig. [2] an analysis run in Codeface
passes all steps from commit analysis to network construction
and large projects require run-times of multiple days. Using
Kaiaulu’s mock data generator (650 LoC), which creates
small test repositories, and running Codeface on these while
adding targeted debugging statements to the code, revealed
that Kaiaulu’s prior edge weight scheme did not account for
repeated past contributions, but only considered them once.
Answering RQ?2: Discrepancies arise due to interaction
and aggregation of several factors: File filtering and design
decisions such as the order of data extraction steps and data

schema influence identified commits and, consequently, files,
entities and developers. The choice (and configuration) of
code structure parsers may further limit obtained entities.
Limitations in identity matching cause major discrepancies in
identified developers and derived collaboration networks. Dif-
ferent definitions of collaboration strength affect edge weights
in the developer network.

C. Adjustments for Improving Similarity

Based on RQ2 findings, we summarise adjustments in
parametrisation, code and post-processing extensions, and give
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Fig. 4. Jointly identified files, entities and developers, considering prior (P) and replication (R) configurations over the entire VCS history. Again, we observe
that the magnitude of discrepancies depends on the project, the considered metric and the tool configuration.
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Fig. 5. Developer networks constructed by Codeface (orange) and Kaiaulu
with prior configuration (blue) for Spark from March—June *13. Two very
active developers missed by Kaiaulu are marked red. The discrepancies in
networks are due to Kaiaulu not supporting the Scala language.

effort estimates to assess practical feasibility of the measures.
Commits: To overcome the substantial difference in ex-
tracted commits, we define identical file filters (as proposed

by Codeface) in Kaiaulu’s replication configuration, and de-
activate file path filters not implemented in Codeface. While
this does not require tool changes, we face a trade-off between
detected commits, files and developers in Kaiaulu: Either de-
activate file filtering and keep all commits with all developers,
but include many non-code files such as documentation in
the file count. Alternatively, activate file filtering and miss
commits to these files, including developers. In both scenarios,
discrepancies remain. Addressing this issue requires either
changing Codeface’s data schema or Kaiaulu’s, requiring ma-
jor changes. A workaround is a second Kaiaulu run without
file filtering, and use this second table to calculate commit
and developer metrics, but rely on the tables obtained with
file filtering for file and entity metrics. Despite the use in this
study, possible inconsistencies make this method unattractive.

To address commit shifts caused by time interval splitting,
we introduce new configuration options to Kaiaulu that (a)
allow us to include or exclude boundaries in time windows,
and (b) switch between author and committer timestamps.
This leads to closely matching commit time series, as seen in
Fig.[3] particularly for Camel, Spark and Wine, and confirmed
quantitatively by the decrease in NCD and DTW distance and
the increase in correlation in Tab.

Files: Having two versions of Kaiaulu’s git log table, as
previously motivated, provides closely matching file counts
(see Fig. [3). Time series similarity increases particularly for
Spark. Tab. [l confirms that especially for DTW distance. With
the adjustments, the percentage of jointly identified files in
Fig. f] increased to a median of over 90% in all projects.

Entities: We adapted C-Tags code structure tags in Ka-
iaulu’s replication configuration. However, using identical
language-specific and generic C-Tags as Codeface could not
increase similarity, also for previously neglected languages
such as Scala, despite slight improvements seen in Figures [3] £
and Tab. [[I} Adding targeted debugging statements to the code
reveals that the C-Tags output provides unused information
(e.g., Scala functions) when using the replication configura-



tionF_-] Overcoming this limitation would require to adjust the
C-Tags parsing in Kaiaulu. Still, discrepancies could remain,
given that Codeface incorporates a Doxygen and custom SQL
parser for code structure identification, and both would need
to be implemented in Kaiaulu for an exact replication. As
we estimate an implementation time of weeks to months, we
consider such adjustments impracticable.

Developers: We introduced configuration options to include
several columns in Kaiaulu’s identity matching. As iden-
tity matching in Kaiaulu is still performed within individual
columns and tables, we implemented post-processing (400
LoC) to unify identities across columns and tablesE] As shown
in Figs. [3| @ and Tab. [[I] for Kaiaulu’s replication configuration,
this results in a significantly improved similarity, with a
median percentage of jointly identified developers of over 90%
for all projects.

Developer Networks: To address different interpretations of
developer collaboration strength, we implemented the edge-
weight scheme identified in RQ2 in Kaiaulu (100 LoC).
Tab. [I1I} shows higher mean edge weights compared to the prior
configuration for all subject projects. In most cases, replication
weights are similar to Codeface. However, Kaiaulu can lead
to outliers in edge weights, such as 10,429,560 for QEMU,
compared to 261,362 with Codeface. Manually inspecting the
developer networks and entities found by Kaiaulu’s replica-
tion configuration identifies a high self-collaboration on test
files as cause. For the same reasons, Kaiaulu finds a mean
edge weight of 92,754 compared to 7019 by Codeface for
RStudio. Thus, the new weight scheme introduced in Kaiaulu
cannot universally increase similarity to Codeface, as likewise
observed for graph edit distance.

Discrepancies also remain as not all language C-Tags are
supported by Kaiaulu. Even though Fig. [3] shows that the
number of developers matches closely for the replication
configuration, a developer must appear in the entity tables to
be considered in network construction. Entity tables, however,
only capture developers who contributed to entities with
supported C-Tags; developers who only contributed in unsup-
ported languages thus can still be missing. This also applies to
the Scala developers in Spark (Fig. [5). After the adjustments,
duplicate identities were merged and the extended structure
tags resulted in more edges, leading to smaller networks with
higher mean density (Tab. [IT). Yet, we could not reach the
desired similarity to Codeface’s developer networks.

Adjustments were made iteratively, as visualised in Fig. [T}
as small details such as obtaining edge weight formulae
required several days of effort. The required analysis re-runs

Codeface uses a library parser, Kaiaulu relies on internal string matching.
Since the line format reported by C-Tags for languages such as Scala differs
from the format in the prior configuration, Kaiaulu cannot process them.

2Identity matching inserts identities from Kaiaulu’s git log table and all git
entity tables in the respective temporal order into a new single source of truth
table. If a first match by name and e-mail address fails, we try to match based
on each of their e-mail addresses. If this fails, developers are matched based
on full name. Only if neither an e-mail address nor their full name matches,
a new identity is created. Then, all previous identities in the git and entity
tables are replaced by the respective unique identities from the identity table.

took about a week. More than ten such runs were needed to
achieve the presented replication configuration.

Answering RQ3: For commit, developer and file metrics,
we achieve very close results by adjusting tool parametrisation,
implementing tool extensions and post-processing, and apply-
ing workarounds. The identified entities as basis for network
construction could not be aligned more closely; this would
require a major rework of one of the tools.

V. LESSONS LEARNED

Commit Analysis: Even in extracting commits from VCS
histories (step (1) in Fig. [2), tools may differ in terms of
filtering, aggregation and information storage. Evolutionary
analyses divide the history into time intervals by multiple ap-
proaches: Kaiaulu relies on author timestamps, while Codeface
uses committer timestamps. Also time interval limits can be
handled differently. More severely, different commits and files
may be captured: While Codeface stores all commits and later
filters file endings implicitly, Kaiaulu defines file filters in the
configuration file in advance. Differing file path filters (e.g.,
for test files) may lead to more discrepancies. This is caused
since MSR tools are developed with initial intentions: Code-
face’s commit analysis is motivated by constructing developer
networks. When code structures such as functions are used as
source, higher-level entities such as files are not relevant, and
only file dependencies in which a code structure of interest has
been found and edited are stored. However, an external user
could assume that all files can be found in the corresponding
database table, which can lead to false conclusions.

To avoid such misinterpretation, Kaiaulu encourages data
verification prior to each analysis step. This is essential to
find anomalies such as partially matched developer identities:
Kaiaulu failed to merge authors and committers correctly due
to different e-mail addresses and names in both columns. Since
Kaiaulu used author timestamps in all analysis steps, merging
identities across columns was not required, and duplicate or
inconsistent identities in both columns were not an issue.
However, when expecting the behaviour of Codeface, which
merges identities across tables and columns, discrepancies
that strongly influence count-based developer metrics arose.
Creating a unified identity table as a single source of truth for
all person-related information is advisable.

Data updates may also be handled differently by the tools.
While Kaiaulu parses commits using Perceval and fixes its
output as a baseline for commits, Codeface performs updates
of its commit table in the further course of the pipeline. For
instance, during the git blame analysis, it may add previously
overlooked commits from the git blame output for analysis.

Git Blame Analysis: Code structures such as functions in
step (2) in Fig. [2| are determined by third-party tools (C-Tags,
Doxygen, ...) from git blame data. Our results show that
choice of parser and detail configuration can strongly influence
statistics. For instance, Kaiaulu relies on C-Tags, whereas
Codeface uses it when Doxygen and the built-in SQL parser
are not applicable. C-Tags configurations differ depending on
programming languages and structure tags. Even though both



tools have the same amount of tags available, they don’t handle
them the same way. First, Codeface applies a default set of tags
to any language file not filtered out in step (1) in Fig. [2] while
Kaiaulu requires an explicit specification of tags. Secondly,
third-party tool outputs are parsed differently.

If not explicitly communicated, such details can easily be
lost: Developers contributing code in a particular language
were overlooked by Kaiaulu, which could only be inferred
from a qualitative comparison of the baseline data. This is
problematic for large-scale mining without qualitative inspec-
tion. Therefore, users and tool developers should check which
project properties and third-party tool settings are actually sup-
ported, and verify their data qualitatively to reduce uncertainty.

Network Construction: Herbold et al. [2] report a lack of
guidelines for developer social network research. For instance,
a question of interpretation arises from edge weighting. Orig-
inal and replication tool consider collaboration strength as a
measure of contributed LoC to an entity, but in the absence
of a precise definition, the influence of past contributions re-
mains unclear, and edge weights can vary substantially. Thus,
subsequent analyses such as core developer and community
detection for team structuring could lead to different results.

VI. THREATS TO VALIDITY

Construct Validity: The comparisons in our study can be
based on a wide range of data sources and metrics. Therefore,
there is a risk that we draw conclusions based on the wrong
choices. We reduced this risk by using established parameter
choices from previous studies and by evaluating multiple
metrics simultaneously. However, due to the large number
of customisable parameters, we did not test all of them in
detail. For example, we fixed analysis time intervals to non-
overlapping three-month windows. A larger window size could
lead to other results, although studies reported a minor effect
[20]. Also, we did not include communication data from e-
mails and issue trackers, as this exceeds the scope of the study.

We did not evaluate if our results correctly reflect reality or
whether both tools produce wrong results. Earlier studies using
Codeface addressed this issue through interviews with a large
group of OSS developers, finding that network construction at
function level [1] is perceived as an accurate representation of
collaboration. Thus, we consider this threat as minor.

Internal Validity: We identified discrepancies between tools
in an automated way, but additional manual investigations
were needed to explore the root causes. Since divergences
were high in absolute numbers, we could not look at each
of them individually. Instead, we selected a random subset for
inspection. Although we are confident that major causes of
differences are identified, as including more instances did not
reveal new causes, it is possible that minor edge cases remain.

External Validity: Our study is based on only two MSR
tools. Both were developed by different research groups,
but the groups worked together at numerous prior studies
and thus are assumed to have a common understanding of
assumptions. While this facilitates a fair comparison, it also
introduces a bias. Tools from other research groups could make

fundamentally different assumptions and lead to even more
divergent results. Given the limited scope of the study, the
inclusion of further tools would have not allowed us to address
the diverse set of MSR pipeline stages, which we prioritised
to evaluate the impact and interplay of discrepancies.
Another threat is that we only analysed a set of ten subject
projects. To limit the impact on generality, we considered
a wide range of application areas, programming languages,
project and team sizes. Further projects written in other
programming languages could have led to much more varying
results. For example, for project WordPress mainly written in
PHP, Kaiaulu did not find any entities as PHP is not supported.
We will look at more diverse repositories in future studies.

VII. DISCUSSION AND CONCLUSION

Our study shows that uncertainties in MSR pipelines can
lead to substantial discrepancies for the extracted baseline
data. Minor implementation details can have considerable
consequences: Two tools sharing similar goals, methods and
processing steps can output substantially different results.

Some of the discrepancies are caused by technical limi-
tations, such as missing language support. Other differences
arise from subjective choices, for instance how strongly past
collaborations should influence edge weights in developer
networks. Many of these factors cannot be easily adjusted
by changing tool parametrisation or implementing minor ex-
tensions and post-processing, but require a substantial rework
of tool capabilities to ascertain result agreement. Therefore,
differences remain in our replication. It is likely that discrep-
ancies would be even more pronounced for other combinations
of MSR tools not developed by collaborating groups.

Our work underscores the need for MSR replication studies
to promote a common understanding and higher standardisa-
tion of mining processes. To revisit the methodology, a closer
investigation of the implications of identified discrepancies
on the generality of conclusions drawn in empirical software
engineering is needed. Therefore, we plan a follow-up study
with a systematic literature review following the guidelines
proposed by Kitchenham et al. [63], [64] to replicate the most
influential findings in recent decades with diverse tools.

Finally, we argue that assumptions made by each tool
or study should be described as fully as possible and sup-
plemented by code. Considering these technical details in
replication studies and in the design and evaluation of novel
tools and pipelines can improve fairness and reliability. We
hope that the process and findings from this replication will
be helpful as a reference for these efforts in the future.

VIII. REPRODUCTION PACKAGE

For understandability and to facilitate future comparisons,
we provide containerised study tools and scripts in our |GitHub
repository. A self-contained reproduction package and Docker
image including OS, libraries, input and results data [34] is
available at Zenodo.
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