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Computational advantages of quantum systems over classical computers have been established in
principle since decades. However, only a handful of algorithmic primitives with proven, expected or
suspected quantum advantage over the best possible (or known) classical techniques are available.
Despite substantial progress in limitations of de-quantisation and insights on quantum-classical
separation, it remains an open challenge to systematically construct algorithms that exhibit quantum
advantage. This can, at least partly, be attributed to a still incomplete understanding of the origins
of quantum computational power.

Intermediate non-stabiliserness, the traversal of states outside the Clifford orbit, indicates non-
classical behaviour of a quantum circuit. Therefore, non-stabiliserness is strictly necessary to reach
quantum advantage. On the other hand, “the more, the better” is not a good measure for non-
classical behaviour, as high non-stabiliserness is the norm for quantum states, demonstrated by the
expected non-stabiliserness of a random Haar sampled state, which is with overwhelming probability
close to its upper bound. To progress towards quantum advantage, it therefore seems pertinent to
understand the efficient use of the non-classical, yet abundantly available resource of non-stabiliser
states at the right rate and places in the quantum computation.

In this paper, we present an approach towards improving the required understanding by tracking
the behaviour of non-stabiliserness across various algorithms with known of suspected quantum
advantages. In particular, we pair results of resource theoretic work around non-stabiliser entropies
with geometric considerations about how direct a quantum state evolution approaches the solution
space. Using our techniques we are able to unveil different efficiencies in the use of non-stabiliserness
comparing structured and unstructured variational state evolution. This leaves us to hypothesise
that greater degrees of freedom to the classical optimisation step in such methods introduces the
risk of unnecessary non-stabiliser consumption, which becomes increasingly costly when transitioning
from the NISQ era into the early era of error correction.

I. INTRODUCTION

Contrary to the general discussion of quantum versus
classical computing, which often treats these as sepa-
rate computational models, quantum computing (QC)
extends the classical computational model instead of re-
placing it. Quantum computations can (and for many
suggested approaches also do, particularly for any vari-
ational ansatz) contain classical parts [1–3], which shifts
the question of separating the two models to a more nu-
anced approach of identifying inherently quantum parts
in computations. While possible speed-ups over purely
classical approaches must obviously originate from quan-
tum parts of a computation, not every quantum sub-
computation necessarily needs to positively contribute
to overall solution finding. Identifying reasons for and
structure of quantum speed-ups is a crucial question to
improve the understanding of chances and limitations of
quantum approaches. In this paper, we address this ques-

∗ tom.krueger@othr.de
† wolfgang.mauerer@othr.de

tion from a novel point of view by using geometrical dis-
tance arguments within a solution space.

Several measures for quantumness have been estab-
lished; entanglement is a prime candidate that not only
originates from the very beginnings of quantum mechan-
ics [4], but has also drawn substantial interest during the
last few decades [5–8]. Entanglement is a distinct, non-
classical feature of quantum mechanics, and is considered
one of the fundamental resources of QC [9]. However,
its effect on computational power is not easy to char-
acterise from a computer science point of view. It is
generally acknowledged and understood that entangle-
ment plays a fundamental role in many quantum algo-
rithms and protocols. Trying to pinpoint exactly where
and how such non-classical advantage is exploited neces-
sitates more fine-grained insights. In particular, it is well
known by now that not all forms of entanglement are
equal (or: equally useful) [10]. Even maximally entan-
gled states like the seminal GHZ state can be prepared by
Clifford circuits; it is known that these can be efficiently
simulated by a classical computer [11]. States within
the orbit of the Clifford group are called stabiliser states
(STAB). Conversely, states outside of STAB are referred
to as non-stabiliser state (Example of non-STAB entan-
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gled states include W-states with three or more qubits)
[12]. Circuits required for their preparation are believed
to be classically hard to simulate.

Stabiliser-Rényi-Entropies (SRE) have been recently
introduced to entropically measure non-stabiliserness,
also referred as magic, of quantum states [13]. In this
work, we adopt SRE as measures of intermediate states
to locate how and where non-classical effects appear dur-
ing the execution of contemporary quantum algorithms.

The structure of the paper is as follows: In Section II,
we review history and significance of non-stabiliser re-
source theory and measures, particular stabiliser Rényi
entropies. Followed by Section III where we provide
an introduction into the relevant definitions and charac-
teristics of stabiliser Rényi entropies. We then present
a geometric perspective in Section IV, and show how
to calculate geodesic distances to target spaces by the
means of taking the expectation value of a special prob-
lem Hamiltonian. We extend this approach to invariance
of the qubit order, and show how this enables us to reveal
previously easily overlooked non-stabiliser effects. After
that, we put our theoretic framework to use in Section V
to analyse the differences of intermediate non-stabiliser
consumption in structured and unstructured state evo-
lutions. By combining the quantum resource theoretic
SRE measures with a geometric perspective, we are able
to qualify the efficiency of non-stabiliser consumption.
We observed a significantly higher efficiency for the struc-
tured evolution than for the unstructured case. Rounding
things up, we conclude our results and discuss the poten-
tial of combining resource theoretic tools with geometric
perspectives in Sections VI and VII.

Notice that a reproduction package [14] that contains
all code that is required to run the experiments in this
paper is available at www.TODO.de (link in PDF).

II. RELATED WORK

Given the significance of non-stabiliser effects in quan-
tum computing, it is no surprise that understanding
their properties and effects has been considered in nu-
merous contexts. In 1997, Gottesman presented the sta-
biliser formalism in his PhD thesis, laying the founda-
tions of quantum error correction protocols. This formal-
ism already covers many quantum specific phenomena
like GHZ entanglement. The seminal Gottesman-Knill
theorem [11], presented shortly after, showed a quantum-
classical separation by stating that every stabiliser cir-
cuit can be efficiently simulated by a classical computer.
A stabiliser circuit is restricted to using gates from the
Clifford group. An interesting conflict arises as stabiliser
circuits are able to harness some quantum effects, yet
an efficient simulate requires that the separation of clas-
sical and quantum complexity lies somewhere behind
the obvious first line drawn between classical and non-
classical physics. Colloquially speaking: There seams to
be a threshold of non-classical effects needed to achieve

non-classical speedups. For Clifford circuits, universality
can be recovered by a magic state injection process [16]:
Magic states are provided on an ancilla register, letting
them interfere with the Clifford part of the circuit. These
magic states are non-STAB states. This turns STAB
states into resources that are consumed by the magic in-
jection procedure. Consequently, in the key to reaching
a quantum advantage must be affected by magic state
consumption. This motivated the the recent develop-
ment of a resource theory for non-stabiliserness [17], pro-
ducing a diverse set of non-stabiliserness measures in-
cluding stabiliser rank [18], stabiliser fidelity [19], or sta-
biliser nullity [20]. Following up on these results, more
abstract characterisations of measures like non-stabiliser
monotones have been defined [21]. The most relevant
for our work are stabiliser Rényi entropies (SRE) [13] as
introduced by Leone, Oliviero, and Hamma. Stabiliser
Rényi entropies are also known to be monotones for non-
stabiliserness resource theory [22]. Most measures of non-
stabiliserness are hard to compute. The SRE on the other
hand is known to be efficiently computable for matrix
product state [23]. Further, SREs can also be determined
imperially through measurements [24].

III. NON-STABILISERNES

Before defining a measure for non-stabeliserness, it
seems partinent to take a brief moment for discussing
the term non-stabeliserness. We already mentioned that
STAB is given by the orbit if the Clifford group (recall
that the orbit of an element x in a group G is given
by G(x) := {gx ∈ G : g ∈ G}). The Clifford group
Cn =

{
V ∈ U2n : V Pn V

† = Pn

}
is the normaliser of the

Pauli group Pn = ⟨X,Y, Z⟩n, where X,Y, Z are the Pauli
operators and n denotes the number of qubits. In the fol-
lowing, we drop suffix n if the number of qubits can be
deduced from the context, or to describe systems of ar-
bitrary (but finite) size.

An entropy function can be defined as follows:

Definition 1 (see Ref. [13]).

SREα(|ψ⟩) =
1

1− α
log

∑

P∈Pn /⟨±i 1n⟩

ΞαP (|ψ⟩)− log 2n

(1)

ΞP (|ψ⟩) =
1

2n
⟨ψ|P |ψ⟩2 (2)

Definition 1 may require some explanation to establish
an intuitive understanding. Let us start from Eq. (2).
Note that ΞP (|ψ⟩) ≤ 1 and

∑
P∈Pn /⟨±i 1n⟩ ΞP (|ψ⟩) = 1.

Thus, {ΞP }P∈Pn /⟨±i 1n⟩ induces a probability distribu-

tion on a state |ψ⟩. Here we also immediately see why
we used the factor group of Pn, ignoring the scalar unit
factors ±1 and ±i. Due to the applied square in Eq. (2),
they would only double up in the sum, not contributing
any valuable information to the distribution. This also
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explains the normalisation factor of 2−n corresponding to
|Pn /⟨±i1n⟩| = 2n in contrast to the perhaps expected
4n = |Pn|. We also see, with {ΞP } being a probabil-
ity distribution, Eq. (1) simply defines a family of Rényi
entropies offset by log 2n.
To demonstrate and provide intuition about how

Stabiliser-Rényi-Entropies work, it is worth looking into
their main characteristics, to understand how SREs char-
acterise stabiliser states. For this, we will revisit the
property which is most important for our work, namely
that non-STAB states are characterised by a non-zero
SRE. For didactic reasons and the sake of completeness
we also provide a proof. The interested reader may be re-
ferred to the original paper for a more in depth discussion
[13].

Theorem 1 (see [13]). A state |ψ⟩ is in STAB if and
only if SREα(|ψ⟩) = 0.

Proof. Let |ψ⟩ ∈ STAB be some not further specified
stabiliser state. Then |ψ⟩ is in the Clifford orbit of |0⟩,
meaning that there exist a U ∈ C such that U |0⟩ = |ψ⟩.
Due to the Clifford group stabilising the Pauli group, we
have U†PjU = Pj for Pi, Pj ∈ Pn /⟨±i1n⟩. In fact, C
is isomorphic to the group of permutations in a sense
that U† · U : Pj 7→ Pπ(j). Therefore,

{
ΞPj

(|ψ⟩)
}

={
ΞPπ(j)

(|0⟩)
}

and consequently
∑
P∈P /⟨±i 1⟩ Ξ

α
P (|ψ⟩) =∑

P∈P /⟨±i 1⟩ Ξ
α
P (|0⟩). Note that, ⟨a|Z|a⟩|a=0,1 = ±1,

⟨a|1|a⟩|a=0,1 = 1 and ⟨a|X,Y|a⟩|a=0,1 = 0, which leads
to the conclusion that

⟨0|P |0⟩ =
{
0 if ∃i : σi ∈ {X,Y}
1 otherwise

(3)

for all P = σi ⊗ · · · ⊗ σn ∈ Pn /⟨±i1n⟩. There are
2n many P ∈ Pn /⟨±i1n⟩ such that ⟨0|P |0⟩ = 1. As
a result

∑
P∈Pn /⟨±i 1n⟩ Ξ

α
P (|ψ⟩) = 2n2−nα = 2n(1−α).

Here is where the offset of log(2n) in Eq. (1) comes into
play, as SREα(|ψ⟩) = (1 − α)−1 log 2n(1−α) − log 2n =
log 2n − log 2n. We conclude that SREα(|ψ⟩) = 0 for all
|ψ⟩ ∈ STAB.

To prove the other direction, we will use an alternative
characterisation of stabiliser states, which is that |ψ⟩ is in
STAB if and only if there exists a subset S ⊂ Pn such that
|S| = 2n and A |ψ⟩ = |ψ⟩ for all A ∈ S. Now let’s assume
SREα(|ψ⟩) = 0 for some arbitrary state |ψ⟩. Written out,
that gives us (1−α)−1 log

∑
P∈P /⟨±i 1⟩ Ξ

α
P (|ψ⟩)−log 2n =

0 or rewritten log
∑
P∈P /⟨±i 1⟩ Ξ

α
P (|ψ⟩) = log 2n(1−α).

Thus, log
∑
P∈P /⟨±i 1⟩ 2

−nα⟨ψ|P |ψ⟩2α = 2n−nα. From

this we can derive a condition on |ψ⟩ for SREα(|ψ⟩) to
equal to 0:

f(α) = 2n (4)

where f(α) = a1(α) + · · ·+ a2n(α) with ai = ⟨ψ|Pi|ψ⟩2α
and Pi ∈ Pn /⟨±i1n⟩. Due to f being a constant
function, we have d

dαf = 0. Additionally, we know

that all ai ≥ 0 and therefore d
dα ⟨ψ|P |ψ⟩

2α
= 0

for all P ∈ Pn /⟨±i1n⟩. From, d
dα ⟨ψ|P |ψ⟩

2α
=

2⟨ψ|P |ψ⟩2α log⟨ψ|P |ψ⟩ = 0 we conclude, that ⟨ψ|P |ψ⟩ ∈
{0, 1} for all P ∈ Pn /⟨±i1n⟩. Note that ⟨ψ|P |ψ⟩ = 1
only if P |ψ⟩ = |ψ⟩ and f(α) = 2n. Thus, there ex-
ists a subset S ⊂ Pn /⟨±i1n⟩ such that |S| = 2n and
A |ψ⟩ = |ψ⟩ for all A ∈ S; showing that |ψ⟩ ∈ STAB.

Corollary 1. Stabiliser-Rényi-Entropies are invariant
under Clifford operations.

Proof. This follows directly from the isomorphism be-
tween the Clifford group and permutations. Let |ψ⟩
be an arbitrary state and U ∈ C, then we get that{
ΞPj

(U |ψ⟩)
}
=

{
ΞPπ(j)

(|ψ⟩)
}
and thus SREα(U |ψ⟩) =

SREα(|ψ⟩).

IV. GEOMETRIC PERSPECTIVE

If we take a random Haar sampled state |ψ⟩ ∼ Haar.
Then it’s expected SRE is E|ψ⟩∼Haar(SREα(|ψ⟩)) ∈ O(n)
for all α ≥ 2, with overwhelming probability [25]. Addi-
tionally, SREs are linear upper bounded by SREα(|ψ⟩) ≤
log(2n) ∈ O(n) [13] . This means, although intermediate
states with SRE ≥ 0 are linked with and even necessary
for quantum advantages, their occurrence is nothing spe-
cial and has to be expected. Consequently, this raises
the question whether the observed non-stabiliserness has
a contributing factor to the computation or if it is merely
a byproduct of a suboptimal choice of unitary propa-
gators. So, what does contributing to the computation
mean? Every computation can be interpreted as a state
evolution starting at a specific initial state |ψ0⟩ to a tar-
get state |ψT ⟩ encoding a problem solution or a super-
position of thereof. Geometrically speaking, such a state
evolution resembles a rotation of the state vector. The
whole circuit represents one singular unitary, which in
turn corresponds to a direct rotation from the initial to
the final state around the rotational axis defined by said
unitary. This only applies from the most top-level view
and discard the actual realisation of the circuit’s unitary
given by a concrete partitioning into quantum gates and
their correct sequencing. The circuits gate level reali-
sation induces a path of the resulting state evolution,
which is most likely diverging from the shortest path at
some point. In geometric terms, the shortest, most di-
rect path of this state evolution would be characterised
by the geodesic from the initial state to the target. In [26]
Anandan and Aharonov presented exactly this geometric
perspective in conjunction with the concept of geodesic
efficiency µgd = s0/s of a state evolution where s0 is the
geodesic distance and s the actual distance travelled. If
we want to specify the distance to a specific state |ϕ⟩, we
write s0(|ϕ⟩) and s(|phi⟩) and if the initial state is not
clear from the context we write s(|ψ⟩, |ϕ⟩) and s0(|ψ⟩, |ϕ⟩)
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A. Problem Hamiltonian

Usually there is more than one unique solution to a
computation problem, e.g. all binary variable assign-
ments satisfying a propositional satisfiability problem.
This adds variability to the geometric perspective dis-
cussed above. Instead of rotating our initial state to a
specific target state |ψT⟩, a quantum algorithm has the
freedom to reach any state within the target space, which
is the subspace of H⊗n that contains all superpositions of
quantum states encoding problem solutions. Thus, the
geodesic distance s0 from above needs to be reinterpreted
to be the shortest geodesic distance to one of the states
in the target space. In the following, we will address this
by first defining the target space based on an indicator
function of problem solutions and a two-level problem
Hamiltonian projecting on said target space. We then
show, that the expected value of this problem Hamilto-
nian corresponds to the scaled inverse geodesic distance
from the initial state to the target space.

Definition 2. Let be c : Fn
2 → F2 the solution veri-

fier of a problem with a finite set of classical solutions
T = {t ∈ Fn

2 : c(t) = 1}. We then linear extent c(·) to
quantum states |ψ⟩ = ∑

b∈Fn
2
αb |b⟩:

c(|ψ⟩) =
∑

b∈Fn
2

|αb|2c(b) (5)

Further, we define a quantum target space

T = {|t⟩ : c(|t⟩) = 1} ⊂ H⊗n (6)

Remark 1. Note that T is indeed a complete subspace
of H⊗n, spanned by {|b⟩ : b ∈ Fn

2 , c(b) = 1}. Thus, T has
a dimension of |T |.

Definition 3. Based on c(|ψ⟩), we define a 2-level prob-
lem Hamiltonian Hc by the condition that

⟨Hc⟩ = c(|ψ⟩) (7)

We quickly see that Hc is a projector onto T and can
explicitly defined by Hc =

∑
t∈T |t⟩⟨t|.

Theorem 2. Given a target space T and the correspond-
ing problem Hamiltonian Hc according to Definitions 2
and 3, we have

s0(T ) := min
|t⟩∈T

s0(|t⟩) = 2 arccos⟨Hc⟩ (8)

Proof. Let BT = {|t⟩ : t ∈ T} the basis of T . We then ex-
pand BT with BT = {|b⟩ : b ∈ Fn

2 \T} such that BT ∪BT
forms a basis of H⊗n. Given that expanded basis, we

can write every state |ψ⟩ ∈ H⊗n as |ψ⟩ = ∑|T |
i=1 τi|ti⟩ +∑n−|T |

i=1 βi|bi⟩, with
∑|T |
i=1|τi|

2
+

∑n−|T |
i=1 |βi|2 = 1 and for

all |t⟩ ∈ T we have
∑|T |
i=1|τi|

2
= 1. Now, let Hc be

a problem Hamiltonian as defined in Definition 3, then
Hc =

∑
|t⟩∈BT

|t⟩⟨t| and

0 ≤ ⟨Hc⟩ =
|T |∑

i=1

|τi|2 ≤ 1

Now, let’s take an arbitrary state |ψ⟩, then ⟨Hc⟩ =
⟨ψ|Hc|ψ⟩ is exactly the overlap between |ψ⟩ and its pro-
jection onto the target space Hc |ψ⟩, which satisfies

⟨Hc⟩ = max
|t⟩∈T

|⟨ψ|t⟩|

Now we use that s0(|t⟩) = 2 arccos|⟨ψ|t⟩| [27]. Now due
to the monotonicity of arccos in [0, 1] we can pull out the
max from 2 arccos⟨Hc⟩ to end up at Eq. (8).

B. Permutations

0 10 20 30 40 50

0
5

(a) QAOA (7 qubits, 7 layers)

0 10 20 30 40 50 60

0
5

(b) QFT (10 qubits)

FIG. 1. Evolution of the colour representation of the state in
quantum circuits. Every vertical slice at x = i represents the
colour spectrum of the state after the ith gate. The reduced
one qubit density matrices are mapped to a hue-saturation-
value colour with hsv(⟨P0⟩, ⟨P+⟩, ⟨P+i⟩). Within a vertical
slice, they are sorted according to the hsv tupel.

In a typical quantum circuit, qubits are sequentially
numbered. This numbering implies an unsubstantiated
sense of locality or neighbourhood. Indeed, it is actually
completely arbitrary and nothing more of a naming con-
vention. Qubit qi and qj could also be remapped qσ(i) and
qσ(j) for some permutation σ ∈ Sn. The actual relevance
of locally comes from the concrete problem instance [28],
which imposes relations between variables, which in turn
are mapped to qubits. Those connections could better be
represented as a graph, which in turn is isomorphic under
vertex permutations. On this graph, we assign to each
vertex a colour based on properties of its linked qubit. By
keeping track of the necessary permutations, we can, at
each intermediate time, determine the permutation order
of qubits based on their assigned colour.
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One could thus visualise a quantum state evolution as
the change of a colour spectrum through time. Solv-
ing a classical problem, we are basically interested in the
measurement probabilities of all qubits and the resulting
bit-string, hopefully encoding a possible solution to the
problem. We therefore exemplary map ⟨P0⟩, ⟨P+⟩ and
⟨P+i⟩ to the hue, saturation and value component of an
HSV colour. Here ⟨P0⟩, ⟨P+⟩ and ⟨P+i⟩ are the probabili-
ties of the reduced mixed system of said qubit being in the
state |0⟩, |+⟩ and |+i⟩. Now the, qubits can be ordered
according to their hue. Figure 1 demonstrates how this
representation, which is qubit permutation invariant, still
reveals highly specific structures of quantum state evolu-
tions. As we will show below, the ordering does not alter
non-stabiliserness, as it can be performed by an efficient
Clifford circuit. Therefore, it can be ignored regarding
our analysis of non-stabiliserness resource consumption.
Additionally, introducing, at the worst case, one order-
ing and reordering before and after each computational
step does also not change the complexity theoretic char-
acterisation of the circuit, as it, given the presumption
of a polynomial sized initial circuit, only adds a poly-
nomial amount of permutation circuits which themselves
also only have a polynomial complexity. Therefore, ques-
tions regarding the link between non-stabiliser consump-
tion and quantum advantages can be investigated with
frameworks factoring out permutational degrees of free-
dom.

We now will bring the intuition of a shift on the colour
spectrum to a concrete mathematical representation. Af-
ter that we have to formulate a permutation robust ver-
sion of our geometric measure. As a first step, we define
a permutation operator capturing the notions discussed
above.

Definition 4. Given a permutation σ ∈ Sn and |b⟩ ∈ Bn
where |b⟩ = |b1⟩ ⊗ · · · ⊗ |bn⟩ with |bi⟩ ∈ {|0⟩, |1⟩}, then

σ̂ |b⟩ =
∣∣bσ(1)

〉
⊗ · · · ⊗

∣∣bσ(n)
〉

(9)

and

σ̂
∑

b∈Bn

αb |b⟩ =
∑

b∈Bn

αbσ̂ |b⟩ . (10)

Note that in Definition 4 the inverse operator σ̂† ∈
H⊗n corresponds to the inverse permutation σ−1 ∈ Sn.
Next, we have to show that the SRE measure is invariant
under such permutation operators.

Theorem 3. Let σ̂ be a permutation operator as defined
in Definition 4, then

SREα(σ̂ |ψ⟩) = SREα(|ψ⟩)
Proof. Every permutation σ ∈ Sn can be decomposed
into a sequence of 2-cycles, which can be realised by a
single swap gate. Thus, σ̂ ∈ H⊗n can be realised by
a sequence of swap gates, which are Clifford operations.
Since, SREα is invariant under Clifford operations, it also
is for all permutation operators constructed as defined in
Definition 4.

Now, after we have formalised the idea of invariance
under permutation on the operational side, we will do the
same for the objects of interest. We do this by subsum-
ing all states equal under permutation into equivalence
classes and then extend this to the target space itself.

Definition 5. We define an equivalence relation |ψl⟩ ∼
|ψr⟩ which is satisfied iff there exist a permutation oper-
ator σ̂ as defined in Definition 4, such that |ψr⟩ = σ̂|ψl⟩.
Then

[|ψ⟩] = {σ̂|ψ⟩ : ∀σ̂} (11)

is the corresponding equivalence class of |ψ⟩ under ∼ and
further SRE([|ψ⟩]) = SRE(|ψ⟩). Let T be a subspace of
H⊗n, we then extend this notion by defining

[T ] =
⋃

|t⟩∈T

[|t⟩] (12)

From Theorem 3 it also immediately follows that
SREα(|ψ⟩) = SREα([|ψ⟩]). For the geodesic distance,
we need to extend the definition to equivalence classes.

Definition 6. Let [|ϕ⟩] be a equivalence class of states
then

s0([|ϕ⟩]) = min
|ϕ′⟩∈[|ϕ⟩]

s0(|ϕ′⟩) (13)

For [T ] we extend s0 in a similar fashion to

s0([T ]) = min
|t⟩∈T

s0([|t⟩]) (14)

Determining the distance [T ] requires tracing all per-
mutations of all possible solution states, which can be a
bit tricky. Lucky, we can show that the distance from |ψ⟩
to T is equal to the distance from [|ψ⟩] to T .

Theorem 4. Given a target space permutation equiva-
lence class [T ] as defined in Definition 5, it holds that

s0([T ]) = s0(|ψ⟩, [T ]) = s0([|ψ⟩], T ) (15)

Proof. By definition, we have that s0([|ψ⟩], T ) =
min|ψ′⟩∈[|ψ⟩] s0(|ψ′⟩, T ) which equals minσ̂ s0(σ̂ |ψ⟩, T ) =

minσ̂ 2 arccos
〈
ψ
∣∣∣σ̂† Hc σ̂

∣∣∣ψ
〉
. As we are minimising over

the whole group of all permutation operators we can also
minimise over all complex conjugate operators instead

minσ̂† 2 arccos
〈
ψ
∣∣∣σ̂Hc σ̂

†
∣∣∣ψ

〉
. By the canonical defini-

tion of Hc we have σ̂Hc σ̂
† =

∑
t∈T σ̂|t⟩⟨t| σ̂†. Recall

that {|t⟩ : t ∈ T} is the basis of the corresponding quan-

tum target space T . This means, by applying σ̂Hc σ̂
†

we are performing a basis transformation on the tar-
get space, measuring the expected probability of |ψ⟩ be-
ing in he permuted target space. By minimising over
all permutations we get s0(|ψ⟩, [T ]), thus in conclusion
s0(|ψ⟩, [T ]) = s0([|ψ⟩], T ).
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FIG. 2. Minimal geodesic distance for increasing circuit
depths. Non-Clifford computational progress can be observed
prior to the final qubit order reversal when all target space
permutations s0([T ]) (ochre) are considered. As such effects
are not visible in the direct distance to the target space s0(T )
(black) that neglects permutations, this demonstrates how po-
tential non-stabiliser effects can be masked by non-Clifford-
agnostic measures (lines are used to guide the eye and have
no significance).

|ψ0〉

|ψ1〉

|ψ2〉
|ψ3〉

H R2
1 R3

1 R4
1

H R3
2 R4

2

H R4
3

H

FIG. 3. QFT circuit with four qubits. The dashed box marks
the qubit order inversion block of swap gates. Non-stabiliser
computations take place before this block, but their compu-
tational influence on the geodesic distance is masked by the
final qubit reordering.

The quantum Fourier transform (QFT) is a good ex-
ample to demonstrate this effect, and additionally shows
how to calculate the distance of the closest target space
permutation. As of today, the QFT is regarded as the
seminal primitive contributing to quantum advantage,
finding application in a wide range of quantum algo-
rithms reaching proven quantum speedups such as the fa-
mous integer factorisation by Shor [29] . The interesting
parts of the QFT circuit take part before the qubits are
reordered in a final step (marked section in Fig. 3). This
is problematic when looking at distance measures based
on state to space overlaps like the geodesic distance. The
block of swap gates implementing the reordering is en-
tirely Clifford, yet looking at the geodesic instance s0(T )
one could be under the impression that all the computa-
tional progress takes place in this section of the circuit.

This, can not be the case, as we know that the QFT
algorithm provides an exponential speedup. Therefore
valuable computational progress has to be made before,
taking possible target space permutations into account
reveals such effects (see Fig. 2).

V. EXPERIMENTS

General state evolution algorithms usually are quite
high level from an algorithmic standpoint. The logi-
cal structure of problem instances usually is encoded in
a Hamiltonian either driving the sate evolution like in
quantum annealing and its gate based counterparts (e.g.,
QAOA) or serving as a cost function representation ex-
pressing the solution quality, which then can be used to
optimise free parameters of a quantum circuit. In both
cases, the problem structure is quite removed from the
description of the algorithmic dynamics. This divide be-
tween descriptive dynamics and problem structures in-
troduces a high level of abstraction masking the actual
dynamics.
State evolution can be broadly grouped into structured

and unstructured techniques. The former introduce little
restrictions on the circuit logic, and leave more freedom
to the optimisation step. The latter directly impose the
problem structure onto the circuit, which significantly
reduces the number of free parameters.

A. Problem Description

We now want to showcase our methods introduced
above to reveal actual differences in the evolution of
structured and unstructured state evolution techniques.
As an exemplary problem, we chose the seminal NP com-
plete problem of boolean satisfiability (SAT), more pre-
cisely the problem of finding a satisfying variable assign-
ment of a 3-CNF boolean formula F : Fn

2 → F2. Let’s
define a problem Hamiltonian satisfying Definition 3. We
start by defining the classical solution space T where
t = t1t2 · · · tn ∈ T iff c(t) := F (t) = 1. Then target
space shall be defined as T = {⊗n

i=1|ti⟩ : t1t2 · · · tn ∈
T}. Note that F is a 3-CNF boolean formula, there-
fore F =

∏m
i=1 fi with fi : F3

2 → F2 are disjunctions.
This means, every fi has one unique unsatisfying as-
signment ti. Now it is easy to see that the Hamiltonian
Hc := 1−∏m

i=1|ti⟩⟨ti| satisfies Eq. (7). See Ref. [30] for
more details.

B. Unstructured State Evolution

In an unstructured state evolution ansatz a a generic
circuit template leaving maximal flexibility to be ad-
justed later in an optimisation step minimising a cost
function, which is minimal if the final state is in the tar-
get space T . The initial circuit ansatz is the same for
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(a) Properties of intermediate states (x-axis) evolving under an
unstructured ansatz for different instances (y-axis). Top: The
state approaches the target space with notable erraticity, as

evidenced by irregular fluctuations in the geodesic distance from
[T ]. While non-stabiliserness (middle) appears to evolve

comparatively smooth, the variation in resource consumption, as
quantified by |∆SRE| (bottom), continues to display a markedly

irregular behaviour.
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(b) Properties of intermediate states (x-axis) evolving under a
structured QAOA ansatz for different instances (y-axis). Top:

The state approaches the target space [T ] smoothly. The
accumulation of non-stabiliserness (middle) follows a structured

trajectory and reaches its apex at about 75% relative circuit depth,
after which it gradually diminishes. This behaviour is mirrored in

the patterns of non-stabiliser resource consumption (bottom).

FIG. 4. Comparison of intermediate geodesic distances s0([T ]), non-stabiliserness SRE and non-stabiliser consumption |∆SRE|
between unstructured (Fig. 4a) and structured (Fig. 4b) state evolution.

all problems and problem instances. Concrete instance
or problem specific structure only gets introduced during
the cost function optimisation process. As an exemplary
ansatz we investigated a hardware efficient variational
quantum eigensolver. We chose a layered architecture
where one layer exists of a stack of Ry(θ

y
i ) gates applied

to each qubit i followed by a similar stack of Rz(θ
z
i ) gates

and a ladder of cnot gates to provide entanglement. For
a full circuit for the layer structure see Fig. 5.

C. Structured State Evolution

In contrast to unstructured state evolution techniques,
in the structured case the ansatz already gets infused
with instance structures. One can show that problem
structures extrapolated from common instance structures
are sufficient to successfully approximate the state evolu-

|ψ0〉

|ψ1〉

|ψ2〉

|ψ3〉

|ψ4〉

Ry
(
θy0,i

)

Ry
(
θy1,i

)

Ry
(
θy2,i

)

Ry
(
θy3,i

)

Ry
(
θy4,i

)

Rz
(
θz0,i

)

Rz
(
θz1,i

)

Rz
(
θz2,i

)

Rz
(
θz3,i

)

Rz
(
θz4,i

)

FIG. 5. The i-th layer of the hardware efficient ansatz used
for unstructured state evolution.

tion of such methods [30]. This shows, that the structural
infusion significantly impacts the ansatz even before in-
stance specific cost function optimisation techniques are
applied. As a representative for structured state evolu-
tion, we chose a standard QAOA ansatz where the driv-
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ing problem Hamiltonian is the problem Hamiltonian Hc

defined above. This equals the construction presented in
[30].

D. Experimental Setup

For each ansatz we solved 20 SAT instances with the
circuits spanning n = 7 qubits and p = 7 layers. Every
instance was randomly sampled with a clause to variable
ratio of |C|/|V | = 3, which generates SAT instances that
are constrained enough to be at the start of the easy to
hard phase transition. At the same time those instances
are still not too hard to solve such that we can expect
the state evolutions to get fairly close to the target space,
assuring that we witness a state space traversal travelling
a significant part of the distance necessary to successfully
solve the problem.

E. Results and Comparison

Comparing the state evolution of structured and un-
structured circuits we notice that the former approaches
the target space [T ] in a direct path, smoothly reducing
the geodedic distance with each step. In contrast, the
unstructured evolution seems to erratically jump through
the state space, witnessed by jumps in the geodesic dis-
tance s0([T ]) while passing through the circuit. The dif-
ferences become apparent when comparing the top plots
of Figs. 4a and 4b. We now further analyse how both
state evolutions apprached the target space on a step by
step basis. For this, we calculate the delta of s0 before
and after each step. Fig. 6 shows that the distribution
of ∆s0([T ]) is symmetrically centred around zero, ignor-
ing a few outliers of big jumps of negative ∆s0. For
the structured evolution, on the other hand, we observe
that the distribution of ∆s0 values is skewed towards the
regime below zero, and the majority of values is less than
zero (Table I shows more detailed numbers). This indi-
cates that speaking on a per-step basis the structured
ansatz more efficiently approaches the target. For the
unstructured ansatz the majority of steps seem to move
towards or away from the target with equal probability,
de-facto cancelling each other out on the macroscopic
level. That being said, negative ∆s0 outliers of bigger
value seem to suggest that the unstructured approach is
able to reach further in larger individual steps, reaching
the target faster if utilised efficiently.

Another important aspect of efficiency is the consump-
tion of non-stabiliserness. As already mentioned above
SRE is invariant under Clifford gates. In conclusion, a
change in the SRE of the intermediate state being evolved
indicates the use of a non-Clifford operation. Therefore,
we will use the absolute step SRE difference |∆SRE|
as an indicator of non-stabiliserness consumption, which
is inherently linked to costly operations. Comparing
Figs. 4a and 4b (bottom), one sees that, similar to the

Ansatz Q1 Q2 Q3 ∆s0 < 0 ∆s0 > 0

Structured -0.0792 -0.0377 0.0000 76.7% 16.6%
Unstructured -0.0021 0.0000 0.0010 32.3% 33.7%

TABLE I. 25% (Q1), 50% (Q2), and 75% (Q3) quartiles of the
∆s0([T ]) distributions for structured and unstructured state
evolution. The last two columns depict fractions of steps that
decrease (∆s0 < 0) or increasing (∆s0 > 0) target distance.
On the whole, the distribution of structured ∆s0 exhibits a
pronounced skewness towards negative values, in marked con-
trast to the unstructured scenario, where it is mostly symmet-
rically centred about zero.

geodesic distance s0([T ]) (top) the unstructured ansatz is
also more erratic than its structured counterpart, when
it comes to non-stabiliserness consumption. This begs
the question whether there is a connection between both
observations. In fact, there is a positive correlation be-
tween step-wise geodesic distance reductions to the target
space and non-stabiliserness consumption for the struc-
tured state evolution. In contrast to that observation,
there is no such correlation for the unstructured case.
This further substantiates the hypothesis that the struc-
tured ansatz utilises non-stabiliser resources more effi-
ciently.

Unstructured

Structured

-2 -1 0 1

-0.6 -0.3 0.0
0

100

200

0
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1500
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∆s0 ([T ])

C
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FIG. 6. Distribution of increments and decrements in dis-
tance to the target space (x ∼ ±∆s0([T ])). Top: Heavy skew
toward decrements is observed for the structured ansatz, and
most distance changes are negative. Bottom: The distribution
of distance changes is approximately centred around zero for
the unstructured ansatz, discounting a small number of out-
liers on the negative side.
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FIG. 7. Structured state evolution (top) shows clear corre-
lation between non-stabiliser consumption |∆SRE| and steps
reducing the geodesic distance to the target space −∆s0([T ]).
In contrast, we cannot observe a similar correlation for the un-
structured ansatz (bottom). Data are restricted to |∆SRE| <
0.3 to filter outliers (this retains approximately 98% of the
original data points).

VI. CONCLUSION

We have extended the concept of geodesic distance
measures in state evolutions targeting a specific state
to evolutions targeting a more complex target space T .
We showed how the geodesic distance to T can be de-
rived from the expected value of a Hamiltonian satisfying
Eq. (7). This Hamiltonian based definition fits well into
widely used frameworks of Hamiltonian cost function en-
codings. It also further allows for establishing empirical
measurement based setups that integrating nicely with
existing toolkits of quantum computing practitioners.

We further provided a qubit order agnostic version
of the geodesic framework by introducing equivalence
classes of states that are equal under permutation. Con-
sidering the quantum Fourier transform as a use-case, we
demonstrated how our approach can cut through Clifford
layers, and thus unveil previously hidden computational
progress in the circuit. We then applied the developed
methods to comparatively analyse of structured and un-
structured state evolutions. The different distributions
of geodesic distance changes suggest a higher geodesic
efficiency for the structured evolution.

By combining resource theoretic Stabiliser-Rényi-
Entropy and geometric geodesic distance measures, we

where able to show that the structured ansatz is signifi-
cantly more efficient in the consumption of non-stabiliser
resources than the unstructured ansatz. On a methodical
level, this demonstrated the potential of our combination
of methodologies.

VII. DISCUSSION & PERSPECTIVE

We believe our methodology opens new means of
analysing non-stabiliser effects and the efficient utilisa-
tion of non-stabiliser resources in quantum circuits. A
nuanced understanding of such effects seems crucial for
advancing the systematic development of quantum al-
gorithms, particularly with regard to realising quantum
speed-ups in a well-principled manner. Furthermore,
we anticipate that our results will become increasingly
pertinent as the field transitions into the era of early
fault-tolerant quantum computing: In such regimes, non-
stabiliser operations pose significantly greater challenges
for error correction compared to stabiliser operations.
Consequently, the use of this resource must be optimised,
and we believe that our analytical framework offers a
valuable instrument in progressing towards this objec-
tive.

We showed how permutation agnostic distance mea-
sures can reveal internal non-stabiliser effects previously
hidden by a subset of Clifford operations. Our construc-
tion based on permutation operators σ̂ could be extended
to accept general Clifford operators in the sense that two
states |ψ1⟩ ∼ |ψ2⟩ iff there exists a U ∈ C such that
U |ψ1⟩ = |ψ2⟩. Even though Clifford circuits can be effi-
ciently simulated by classical systems, is is not necessarily
possible to construct them efficiently. Thus, such an ex-
tension would need to impose some complexity theoretic
bounds on U to avoid grouping states that can only be
reached by overly powerful oracles.

We showed that the combination of resource theo-
retic and geometric tools offers a mean to qualify re-
source consumptions by efficiency. We see a poten-
tial to embed quantum resource theoretic measures like
Stabiliser-Rényi-Entropies into a proper differential geo-
metric framework. This is a second promising avenue for
improvement that would allow us to analyse resources
consumed by state evolutions following different paths
over the projective state manifold.
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