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While there is strong evidence for advantages of quantum over classical computation, the reper-
toire of computational primitives with proven or conjectured quantum advantage remains limited.
Despite considerable progress in delineating the quantum-—classical divide, the systematic construc-
tion of algorithms with quantum advantage remains challenging, which can be attributed to a still
incomplete understanding of the sources of quantum computational power. Non-classical behaviour
of quantum systems can be characterised, for instance, by intermediate non-stabiliserness (i.e., the
traversal of states outside the so-called Clifford orbit that are not reachable by operations that
map Pauli unitaries to Pauli unitaries), and might be seen as required condition for quantum ad-
vantage. Yet, naively equating non-stabiliserness, non-classicality and quantum advantage would
be misleading: Even random Haar sampled states that are of doubtful computational use at all
exhibit near-maximal non-stabiliserness. Advancing towards systematic quantum advantage calls
for a better understanding of the efficient use of non-classical resources like non-stabiliser states.

We present an approach to track the behaviour of non-stabiliserness across various algorithms by
pairing resource theory of non-stabiliser entropies with the geometry of quantum state evolution,
and introduce permutation agnostic distance measures that reveal and quantify non-stabiliser effects
previously hidden by a subset of Clifford operations. We find different efficiency in the use of
non-stabiliserness for structured and unstructured variational approaches, and show that greater
freedom for classical optimisation in quantum-classical methods increases unnecessary non-stabiliser
consumption. Our results open new means of analysing the efficient utilisation of quantum resources,

and contribute towards the targeted construction of algorithmic quantum advantage.

I. INTRODUCTION

Contrary to the general discussion of quantum ver-
sus classical computing that often treats these as sep-
arate computational models, quantum computing (QC)
can also be seen as an extension to the classical compu-
tational model that adds new primitives and resources.
Quantum computations can (and for many suggested ap-
proaches also do, particularly for any variational ansatz)
contain classical parts [1-3], which shifts the question of
separating the two models to a more nuanced approach
of identifying inherently quantum parts in computations.
While possible speed-ups over purely classical approaches
must obviously originate from quantum parts of a compu-
tation, not every quantum sub-computation in proposed
algorithms necessarily needs to positively contribute to
overall solution finding. Identifying reasons for and struc-
ture of quantum speed-ups is a crucial question to im-
prove the understanding of chances and limitations of
quantum computation. In this paper, we address this
question from a novel point of view by using geometrical
distance arguments within a solution space.
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Several measures for quantumness have been estab-
lished; the amount of entanglement that manifests in
computations is a prime candidate that not only origi-
nates from the very beginnings of quantum mechanics [4],
but has also drawn substantial interest during the last
few decades [5-8]. Entanglement is a distinct, perhaps
the most non-classical aspect of quantum mechanics, and
is considered one of the fundamental resources of QC [9].
However, its effect on computational power is not easy
to characterise from a computer science point of view.
It is generally acknowledged and understood that entan-
glement plays a fundamental role in many quantum al-
gorithms and protocols, at least when using the appro-
priate amount [10-14]. Trying to pinpoint exactly where
and how such non-classical advantage is exploited neces-
sitates more fine-grained insights. In particular, it is well
known by now that not all forms of entanglement are
equal (or: equally useful) [15]. Even maximally entan-
gled states like the seminal GHZ state can be prepared by
Clifford circuits; it is known that these can be efficiently
simulated by a classical computer [16]. States within
the orbit of the Clifford group are called stabiliser states
(STAB). Conversely, states outside of STAB are referred
to as non-stabiliser state (examples of non-STAB entan-
gled states include W-states with three or more qubits)
[17]. Circuits required for their preparation are believed
to be classically hard to simulate [187 , 19].
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Stabiliser-Rényi-Entropies (SRE) have been recently
introduced to entropically measure non-stabiliserness,
also referred as magic, of quantum states [20]. We adopt
SRE as measure of intermediate states to locate how and
where non-classical effects appear during the execution
of contemporary quantum algorithms.

The structure of the paper is as follows: In Section II,
we review history and significance of non-stabiliser re-
source theory and measures, particular stabiliser Rényi
entropies. Followed by Section III where we provide an
introduction into the relevant definitions and character-
istics of stabiliser Rényi entropies. We then present a
geometric perspective in Section [V, and show how to cal-
culate geodesic distances to target spaces by the means of
taking the expectation value of a special problem Hamil-
tonian. We extend this approach to invariance of the
qubit order, and show how this enables us to reveal previ-
ously overlooked non-stabiliser effects. After that, we put
our theoretic framework to use in Section V to analyse
the differences of intermediate non-stabiliser consump-
tion in structured and unstructured state evolutions. By
combining the quantum resource theoretic SRE measures
with a geometric perspective, we are able to qualify the
efficiency of non-stabiliser consumption. We observed a
significantly higher efficiency for the structured evolution
than for the unstructured case. We conclude and discuss
the potential of combining resource theoretic tools with
geometric perspectives in Sections VI and VII.

II. RELATED WORK

Given the significance of non-stabiliser effects in quan-
tum computing, it is no surprise that understanding
their properties and effects has been considered in nu-
merous contexts. In 1997, Gottesman presented the sta-
biliser formalism in his PhD thesis, laying the founda-
tions of quantum error correction protocols. This for-
malism already covers many quantum specific phenom-
ena like GHZ entanglement. The seminal Gottesman-
Knill theorem [16], presented shortly after, showed a
quantum-classical separation by stating that every sta-
biliser circuit can be efficiently simulated by a classi-
cal computer. A stabiliser circuit is restricted to us-
ing gates from the Clifford group. An interesting con-
flict arises as stabiliser circuits are able to harness some
quantum effects, yet an efficient simulate requires that
the separation of classical and quantum complexity lies
somewhere behind the obvious first line drawn between
classical and non-classical physics. Colloquially speak-
ing: There seems to be a threshold of non-classical ef-
fects needed to achieve non- classical speed-ups. For
Clifford circuits, universality can be recovered by anin-
jection process [18] where magic states—mon-stabiliser
ancillas—serve as consumable resources restoring univer-
sality by interfering with the Clifford part of the circuit.
the magic injection procedure. Consequently, reaching
a quantum advantage must be affected by magic state

consumption. This motivated the the recent develop-
ment of a resource theory for non-stabiliserness [22], pro-
ducing a diverse set of non-stabiliserness measures in-
cluding stabiliser rank [23], stabiliser fidelity [24], or sta-
biliser nullity [25]. Following up on these results, more
abstract characterisations of measures like non-stabiliser
monotones have been defined [26]. The most relevant
for our work are stabiliser Rényi entropies (SRE) [20] as
introduced by Leone, Oliviero, and Hamma. Stabiliser
Rényi entropies are also known to be monotones for non-
stabiliserness resource theory [27]. While most measures
of non-stabiliserness are hard to compute, SRE can be
efficiently determined for low entanglement systes can
be represented as matrix product states [28]. Further,
SREs can also be determined empirically through mea-
surements [29].

III. NON-STABILISERNESS

Before defining a measure for non-stabiliserness, it
seems pertinent to take a brief moment for discussing
the term non-stabiliserness. We already mentioned that
STAB is given by the orbit of the Clifford group (recall
that the orbit of an element z in a group G is given
by G(z) = {9z € G : g € G}). The Clifford group
C, = {V EUsm : VP, V= Pn} is the normaliser of the
Pauli group P, = (X,Y, Z)", where X,Y, Z are the Pauli
operators and n denotes the number of qubits. In the fol-
lowing, we drop suffix n if the number of qubits can be
deduced from the context, or to describe systems of ar-
bitrary (but finite) size.

An entropy function can be defined as follows:

Definition 1 (see Ref. [20]).

SREW(9) = ——log > Zp(¥)) ~log?"
PeP, /(£ily)
)
Zp (1)) = o (WIPH) 2)

Definition 1 may require some explanation to establish
an intuitive understanding. Let us start from Eq. (2).
Note that Ep([¢)) < 1 and Y pep, /411, Zr(¥) = 1.
Thus, {Ep}pep, /(+i1,) induces a probability distribu-
tion on a state |¢)). Here we also immediately see why
we used the factor group of Py, ignoring the scalar unit
factors =1 and +i. Due to the applied square in Eq. (2),
they would only double up in the sum, not contributing
any valuable information to the distribution. This also
explains the normalisation factor of 27 corresponding to
[Py /(£ily)| = 2™ in contrast to the perhaps expected
4" = |P,|. We also see, with {Ep} being a probabil-
ity distribution, Eq. (1) simply defines a family of Rényi
entropies offset by log 2™.

To demonstrate and provide intuition about how
Stabiliser-Rényi-Entropies work, it is worth looking into



their main characteristics, to understand how SREs char-
acterise stabiliser states. For this, we will revisit the
property which is most important for our work, namely
that non-STAB states are characterised by a non-zero
SRE. For didactic reasons and the sake of completeness
we also provide a proof. We refer readers to the original
paper for a more in-depth discussion [20].

Theorem 1 (see [20]). A state |¢) is in STAB if and
only if SRE,(|v)) = 0.

Proof. Let |¢) € STAB be some not further specified
stabiliser state. Then |¢) is in the Clifford orbit of |0),
meaning that there exist a U € C such that U |0) = [¢).
Due to the Clifford group stabilising the Pauli group, we
have UTP;U = P for P;,P; € P, /(%il,). In fact, C
is isomorphic to the group of permutations in a sense
that UT - U : P; — Prjy. Therefore, {EPJ(W))} =
{Ep.,(10))} and consequently Y pep /(yiqy EB(1¥)) =
> pep jxiny =p(/0)).  Note that, (alZ|a)|,_,, = +1,
(a|lla)],—p, = 1 and (a|X,Yla)|,_, = 0, which leads
to the conclusion that

0 if Fi:0,€{X,Y}
1 otherwise

(0[P[0) = { 3)
forall P = 0, ® - @ 0, € Py /(xil,). There are
2" many P € P, /(£il,) such that (0|P|0) = 1. As
a result Y pep siiip,) EB(9)) = 2m27m = 2n(ime),
Here is where the offset of log(2") in Eq. (1) comes into
play, as SRE,([¢)) = (1 — a)"'log2"1~®) — log2" =
log 2™ — log 2™. We conclude that SRE,(|1))) = 0 for all
|Y) € STAB.

To prove the other direction, we will use an alternative
characterisation of stabiliser states, which is that |¢) is in
STAB if and only if there exists a subset S C P, such that
|S] = 2" and A|y) = |¢) for all A € S. Now let’s assume
SRE.(|¢))) = 0 for some arbitrary state |¢)). Written out,
that gives us (1—a)~! log > pep j(xiny =p([¥))—log2" =
0 or rewritten log ZPGP/(:HI) Z%(|y)) = log2n—),
Thus, 108 Y pep /aiy 27" (@|P|9)** = 277" From
this we can derive a condition on |¢) for SRE,(])) to
equal to 0:

fla) =2" (4)

where f(a) = ay(@) + -+ + az« () with a; = (| P;[1))**
and P, € P,/(xil,). Due to f being a constant
function, we have i f = 0. Additionally, we know
that all a; > 0 and therefore L(|Pl)** = 0
for all P € P,/(ily). From, L(|Pl)** =
2(p| P|yp)>* log (| P|yp) = 0 we conclude, that (1| P|) €
{0,1} for all P € P, /(xil,). Note that (¢|Ply) =1
only if Ply) = |[¢) and f(a) = 2™. Thus, there ex-
ists a subset S C P, /(£ily,) such that |S| = 2™ and
Alp) = |¢) for all A € S; showing that [¢p) € STAB. O

Corollary 1. Stabiliser-Rényi-Entropies are invariant
under Clifford operations.

Proof. This follows directly from the isomorphism be-
tween the Clifford group and permutations. Let |¢)
be an arbitrary state and U € C, then we get that
{Zp,(U¥)} = {Ep,, (1)} and thus SRE,(U |¢)) =
SRE. (). O

IV. GEOMETRIC PERSPECTIVE

If we take a random Haar sampled state |1)) ~ Haar.
Then the expected SRE is ) ~Haar (SREa(|¢0))) € O(n)
for all @ > 2, with overwhelming probability [30]. Addi-
tionally, SREs are linear upper bounded by SRE, (|¢)) <
log(2™) € O(n) [20] (technically more precise, stabiliser
entropy scales linearly with concentration bounds). This
means, although intermediate states with SRE > 0 are
linked with and even necessary for quantum advantage,
their occurrence is nothing special and has to be ex-
pected. Consequently, this raises the question if observed
non-stabiliserness contributes to the computation, or if it
is merely a by-product of a suboptimal choice of unitary
propagators. To make this notion more precise, we need
to clarify the meaning of contributing to the computation
mean: Every computational process can be interpreted
as a state evolution that drives a specific initial state |¢g)
to a target state |¢)r) that encodes a problem solution (or
a superposition thereof). Geometrically speaking, such a
state evolution resembles a rotation of the state vector.
The whole circuit represents one singular unitary, which
in turn corresponds to a direct rotation from the initial to
the final state around the rotational axis defined by said
unitary. This only applies from the most top-level view
and discard the actual realisation of the circuit’s unitary
given by a concrete partitioning into quantum gates and
their correct sequencing. The circuits gate level reali-
sation induces a path of the resulting state evolution,
which is most likely diverging from the shortest path at
some point. In geometric terms, the shortest, most di-
rect path of this state evolution would be characterised
by the geodesic from the initial state to the target. In [31]
Anandan and Aharonov presented exactly this geometric
perspective in conjunction with the concept of geodesic
efficiency pga = So/s of a state evolution where sq is the
geodesic distance and s the actual distance travelled. If
we want to specify the distance to a specific state |¢), we
write so(]¢)) and s(|¢)) and if the initial state is not clear
from the context we write s(|¢),|#)) and so(|¢)), |¢))

A. Problem Hamiltonian

Usually there is more than one unique solution to a
computational problem, for instance all binary variable
assignments satisfying a propositional satisfiability prob-
lem. This adds variability to the geometric perspective
discussed above. Instead of rotating our initial state to a
specific target state |¢T), a quantum algorithm has the
freedom to reach any state within the target space, which



is the subspace of H®™ that contains all superpositions of
quantum states encoding problem solutions. Thus, the
geodesic distance sy from above needs to be reinterpreted
to be the shortest geodesic distance to one of the states
in the target space. In the following, we will address this
by first defining the target space based on an indicator
function of problem solutions and a two-level problem
Hamiltonian projecting on said target space. We then
show, that the expected value of this problem Hamilto-
nian corresponds to the scaled inverse geodesic distance
from the initial state to the target space.

Definition 2. Let be ¢ : F5 — Fy the solution veri-
fier of a problem with a finite set of classical solutions
T = {teFy:c(t)=1}. We then linear extent c(-) to
quantum states |¢) = Zbng ay |b):

c(l9)) = Y law[*e(b) ()

beFy
Further, we define a quantum target space

T ={lt) s e(jt)) =1} C H®" (6)
Remark 1. Note that T is indeed a complete subspace
of H®™, spanned by {|b) : b € F5,c(b) = 1}. Thus, T has
a dimension of |T)|.

Definition 3. Based on c(|¢))), we define a 2-level prob-
lem Hamiltonian H. by the condition that

(He) = c()) (7)

H_ is a projector onto 7 that can explicitly defined by
He = ZteT|t><t|'

Theorem 2. Given a target space T and the correspond-

ing problem Hamiltonian H. according to Definitions 2
and 3, we have

so(T) = \{I}lg%’ so(|t)) = 2arccos(H.) (8)

Proof. Let By = {|t) : t € T} the basis of T. We then ex-
pand By with B = {|b) : b € 5 \T'} such that By U B+
forms a basis of H®". Given that expanded basis, we
can write every state |¢0) € H®™ as [¢)) = Zgll Tilti) +
i Balba), with 355 [l + 37758 = 1 and for
all [ty € T we have ZLZ|1|T1|2 = 1. Now, let H. be
a problem Hamiltonian as defined in Definition 3, then
HC == Z|t>66T|t> <t| and

|T|

0<(Ho)=)Y |nf*<1

i=1
Now, let’s take an arbitrary state |¢), then (H.) =
(Y|He|y) is exactly the overlap between |¢)) and its pro-
jection onto the target space H. |¢), which satisfies

H.) = t
(He) = max|(y[t)]
Now we use that so(|t)) = 2arccos|{¥|t)| [32]. Now due
to the monotonicity of arccos in [0, 1] we can pull out the
max from 2arccos(H,) to end up at Eq. (8). O
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FIG. 1. Evolution of the colour representation of the state in
quantum circuits. Every vertical slice at * = 7 represents the
colour spectrum of the state after the ith gate. The reduced
one qubit density matrices are mapped to a hue-saturation-
value colour with hsv((FPo), (P4), (Pyi)). Within a vertical
slice, they are sorted according to the hsv tupel.

In a typical quantum circuit, qubits are sequentially
numbered. This numbering implies an unsubstantiated
sense of locality or neighbourhood. Indeed, it is actually
completely arbitrary and nothing more of a naming con-
vention. Qubit ¢; and g; could also be remapped ¢, (;y and
4o (j) for some permutation o € S,,. The actual relevance
of locally comes from the concrete problem instance !,
which imposes relations between variables, which in turn
are mapped to qubits. Those connections could better be
represented as a graph, which in turn is isomorphic under
vertex permutations. On this graph, we assign to each
vertex a colour based on properties of its linked qubit. By
keeping track of the necessary permutations, we can, at
each intermediate time, determine the permutation order
of qubits based on their assigned colour.

One could thus visualise a quantum state evolution as
the change of a colour spectrum through time. Solv-
ing a classical problem, we are basically interested in the
measurement probabilities of all qubits and the resulting
bit-string, hopefully encoding a possible solution to the
problem. We therefore exemplary map (Pp), (P;) and
(P4;) to the hue, saturation and value component of an
HSV colour. Here (Py), (Py) and (Py;) are the probabili-
ties of the reduced mixed system of said qubit being in the
state |0), |+) and |+i). Now the, qubits can be ordered
according to their hue. Figure 1 demonstrates how this
representation, which is qubit permutation invariant, still
reveals highly specific structures of quantum state evolu-
tions. As we will show below, the ordering does not alter

1 An additional establishment of locality and neighbourhood
comes from restrictions imposed by the coupling graph of the
concrete quantum processor executing the circuit. This consid-
eration is beyond the more abstract arguments presented in this

paper.



non-stabiliserness, as it can be performed by an efficient
Clifford circuit. Therefore, it can be ignored regarding
our analysis of non-stabiliserness resource consumption.
Additionally, introducing, at the worst case, one order-
ing and reordering before and after each computational
step does also not change the complexity theoretic char-
acterisation of the circuit, as it, given the presumption
of a polynomial sized initial circuit, only adds a poly-
nomial amount of permutation circuits which themselves
also only have a polynomial complexity. Therefore, ques-
tions regarding the link between non-stabiliser consump-
tion and quantum advantages can be investigated with
frameworks factoring out permutational degrees of free-
dom.

We now will bring the intuition of a shift on the colour
spectrum to a concrete mathematical representation. Af-
ter that we have to formulate a permutation robust ver-
sion of our geometric measure. As a first step, we define
a permutation operator capturing the notions discussed
above.

Definition 4. Given a permutation o € S,, and |b) € B"
where |b) = |b1) ® -+ @ |by) with |b;) € {]0),|1)}, then

G1b) = [by1)) @+ @ |bo(n)) (9)

and

o Z ap [b) = Z apd |b) . (10)

beB™ beB™

Note that in Definition 4 the inverse operator 6 €
HE™ corresponds to the inverse permutation o~! € S,,.
Next, we have to show that the SRE measure is invariant
under such permutation operators.

Theorem 3. Let 6 be a permutation operator as defined
in Definition /, then

SRE, (6 [¥)) = SRE,(|)))

Proof. Every permutation ¢ € S, can be decomposed
into a sequence of 2-cycles, which can be realised by a
single swap gate. Thus, & € H®" can be realised by
a sequence of swap gates, which are Clifford operations.
Since, SRE,, is invariant under Clifford operations, it also
is for all permutation operators constructed as defined in
Definition 4. O

Now, after we have formalised the idea of invariance
under permutation on the operational side, we will do the
same for the objects of interest. We do this by subsum-
ing all states equal under permutation into equivalence
classes and then extend this to the target space itself.

Definition 5. We define an equivalence relation |¢;) ~
[thr) which is satisfied if and only if there exist a permu-
tation operator 6 as defined in Definition 4, such that

|wr> = 5—le> Then
[[V)] = {&]¥) : v} (11)

is the corresponding equivalence class of |1) under ~ and
further SRE([|)]) = SRE(|¢)). Let T be a subspace of
HE™ we then extend this notion by defining

=" [t} (12)

|[tyeT

From Theorem 3 it also immediately follows that
SRE.(|¢)) = SRE.([|®)]). For the geodesic distance,
we need to extend the definition to equivalence classes.

Definition 6. Let [|¢)] be a equivalence class of states
then

so([[#)]) = min

i so(l¢")) (13)

For [T] we extend sg in a similar fashion to

sol(T) = min so([1)) (149)

Determining the distance [T] requires tracing all per-
mutations of all possible solution states, which can be a
bit tricky. Lucky, we can show that the distance from |¢)
to 7 is equal to the distance from [|¢)] to T.

Theorem 4. Given a target space permutation equiva-
lence class [T] as defined in Definition 5, it holds that

so([T1) = so(|), [T1) = so([l¥)], T) (15)

Proof. By definition, we have that so([|¥)],7T) =
min|yye(jy)) so(|?'), T) which equals mins so(6 [¢), T) =

ming 2 arccos( ¢ 6T H, [7‘1/1>. As we are minimising over

the whole group of all permutation operators we can also
minimise over all complex conjugate operators instead

ming 2arccos<w‘6 H. 6T‘1/)>. By the canonical defini-

tion of He we have 6 H. 67 = 3, 6[t)(t|67. Recall
that {|t) : t € T} is the basis of the corresponding quan-
tum target space 7. This means, by applying & H. &1
we are performing a basis transformation on the tar-
get space, measuring the expected probability of |¢) be-
ing in he permuted target space. By minimising over
all permutations we get so(|¢), [T]), thus in conclusion

so([9), [T]) = so([l¥)], T)- o

The quantum Fourier transform (QFT) is a good ex-
ample to demonstrate this effect, and additionally shows
how to calculate the distance of the closest target space
permutation. As of today, the QFT is regarded as the
seminal primitive contributing to quantum advantage,
finding application in a wide range of quantum algo-
rithms reaching proven quantum speed-ups such as the
famous integer factorisation by Shor [33] . The interest-
ing parts of the QFT circuit take part before the qubits
are reordered in a final step (marked section in Fig. 3).
This is problematic when looking at distance measures
based on state to space overlaps like the geodesic dis-
tance. The block of swap gates implementing the re-
ordering is entirely Clifford, yet looking at the geodesic
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depths. Non-Clifford computational progress can be observed
prior to the final qubit order reversal when all target space
permutations so([7]) (ochre) are considered. As such effects
are not visible in the direct distance to the target space so(7T)
(black) that neglects permutations, this demonstrates how po-
tential non-stabiliser effects can be masked by non-Clifford-
agnostic measures (lines are used to guide the eye and have
no significance).

The permutation invariant distance so([7]) is also much more
inline with the structural chances observed in the color spec-
trum representation of the state evolution under the QFT
circuit. See Fig. 1 for a detailed description of the color spec-
trum representation.

|1b0) * R} @ 3— 777777 :
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FIG. 3. QFT circuit with four qubits. The dashed box marks
the qubit order inversion block of swap gates. Non-stabiliser
computations take place before this block, but their compu-
tational influence on the geodesic distance is masked by the
final qubit reordering.

instance so(7) one could be under the impression that
all the computational progress takes place in this section
of the circuit. This cannot be the case, a the QFT algo-
rithm enables exponential speed-ups. Therefore valuable
computational progress has to be made before, taking
possible target space permutations into account to reveal
such effects (see Fig. 2).

V. NUMERICAL SIMULATIONS

General state evolution algorithms usually are quite
high level from an algorithmic standpoint. The logi-
cal structure of problem instances usually is encoded in
a Hamiltonian either driving the sate evolution like in
quantum annealing and its gate based counterparts (e.g.,
QAOA) or serving as a cost function representation ex-
pressing the solution quality, which then can be used to
optimise free parameters of a quantum circuit. In both
cases, the problem structure is quite removed from the
description of the algorithmic dynamics. This divide be-
tween descriptive dynamics and problem structures in-
troduces a high level of abstraction masking the actual
dynamics.

State evolution can be broadly grouped into structured
and unstructured techniques. The former introduce little
restrictions on the circuit logic, and leave more freedom
to the optimisation step. The latter directly impose the
problem structure onto the circuit, which significantly
reduces the number of free parameters.

A. Problem Description

We now want to showcase our methods introduced
above to reveal actual differences in the evolution of
structured and unstructured state evolution techniques.
As an exemplary problem, we chose the seminal NP com-
plete problem of boolean satisfiability (SAT), more pre-
cisely the problem of finding a satisfying variable assign-
ment of a 3-CNF boolean formula F' : Iy — Fa. Let’s
define a problem Hamiltonian satisfying Definition 3. We
start by defining the classical solution space T where
t = tytg---t, € T iff ¢(t) := F(t) = 1. Then target
space shall be defined as T = {@Q._,|t;) : tita---t, €
T}. Note that F is a 3-CNF boolean formula, there-
fore F = [[i~, f; with f; : F3 — T, are disjunctions.
This means, every f; has one unique unsatisfying as-
signment ¢;. Now it is easy to see that the Hamiltonian
He := 1 —[[2, |t;)(t;] satisfies Eq. (7). See Ref. [34] for
more details.

B. Unstructured State Evolution

In an unstructured state evolution ansatz a a generic
circuit template leaving maximal flexibility to be ad-
justed later in an optimisation step minimising a cost
function, which is minimal if the final state is in the tar-
get space 7. The initial circuit ansatz is the same for
all problems and problem instances. Concrete instance
or problem specific structure only gets introduced during
the cost function optimisation process. As an exemplary
ansatz we investigated a hardware efficient variational
quantum eigensolver. We chose a layered architecture
where one layer exists of a stack of R, (6Y) gates applied
to each qubit i followed by a similar stack of R,(67) gates
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unstructured ansatz for different instances (y-axis). Top: The
state approaches the target space with notable erraticity, as
evidenced by irregular fluctuations in the geodesic distance from
[T]. While non-stabiliserness (middle) appears to evolve
comparatively smooth, the variation in resource consumption, as
quantified by |[ASRE| (bottom), continues to display a markedly
irregular behaviour.
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(b) Properties of intermediate states (z-axis) evolving under a
structured QAOA ansatz for different instances (y-axis). Top:
The state approaches the target space [7] smoothly. The
accumulation of non-stabiliserness (middle) follows a structured
trajectory and reaches its apex at about 75% relative circuit depth,
after which it gradually diminishes. This behaviour is mirrored in
the patterns of non-stabiliser resource consumption (bottom).

FIG. 4. Comparison of intermediate geodesic distances so([7]), non-stabiliserness SRE and non-stabiliser consumption |A SRE|
between unstructured (Fig. 4a) and structured (Fig. 4b) state evolution.

and a ladder of cnot gates to provide entanglement. For
a full circuit for the layer structure see Fig. 5.
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FIG. 5. The i-th layer of the hardware efficient ansatz used
for unstructured state evolution.

C. Structured State Evolution

In contrast to unstructured state evolution techniques,
in the structured case the ansatz already gets infused
with instance structures. One can show that problem
structures extrapolated from common instance structures
are sufficient to successfully approximate the state evolu-
tion of such methods [34]. This shows, that the structural
infusion significantly impacts the ansatz even before in-
stance specific cost function optimisation techniques are
applied. As a representative for structured state evolu-
tion, we chose a standard QAOA ansatz where the driv-
ing problem Hamiltonian is the problem Hamiltonian H,
defined above. This equals the construction by Krueger
and Mauerer [34].



D. Setup of Simulations

For each ansatz we solved 20 SAT instances with the
circuits spanning n = 7 qubits and p = 7 layers. Every
instance was randomly sampled with a clause to variable
ratio of |C|/|V| = 3, which generates SAT instances that
are constrained enough to be at the start of the easy to
hard phase transition. At the same time those instances
are still not too hard to solve such that we can expect the
state evolutions to get fairly close to the target space, as-
suring that we witness a state space traversal travelling
a significant part of the distance necessary to success-
fully solve the problem. For our simulations we used the
QuTiP library [35].

E. Results and Comparison

Comparing the state evolution of structured and un-
structured circuits we notice that the former approaches
the target space [T] in a direct path, smoothly reducing
the geodedic distance with each step. In contrast, the
unstructured evolution seems to erratically jump through
the state space, witnessed by jumps in the geodesic dis-
tance so([7]) while passing through the circuit. The dif-
ferences become apparent when comparing the top plots
of Figs. 4a and 4b. We now further analyse how both
state evolutions apprached the target space on a step by
step basis. For this, we calculate the delta of sg before
and after each step. Fig. 6 shows that the distribution
of Asg([T]) is symmetrically centred around zero, ignor-
ing a few outliers of big jumps of negative Asgy. For
the structured evolution, on the other hand, we observe
that the distribution of Asg values is skewed towards the
regime below zero, and the majority of values is less than
zero (Table I shows more detailed numbers). This indi-
cates that speaking on a per-step basis the structured
ansatz more efficiently approaches the target. For the
unstructured ansatz the majority of steps seem to move
towards or away from the target with equal probability,
de-facto cancelling each other out on the macroscopic
level. That being said, negative Asy outliers of bigger
value seem to suggest that the unstructured approach is
able to reach further in larger individual steps, reaching
the target faster if utilised efficiently.

Ansatz Q1 Q2 Q3 Asp <0 Asp >0
Structured  -0.0792 -0.0377 0.0000 76.7% 16.6%
Unstructured -0.0021 0.0000 0.0010 32.3% 33.7%

TABLE L. 25% (Q1), 50% (Q2), and 75% (Q3) quartiles of the
Aso([T]) distributions for structured and unstructured state
evolution. The last two columns depict fractions of steps that
decrease (Asp < 0) or increasing (Asg > 0) target distance.
On the whole, the distribution of structured Aso exhibits a
pronounced skewness towards negative values, in marked con-
trast to the unstructured scenario, where it is mostly symmet-
rically centred about zero.

Another important aspect of efficiency is the consump-
tion of non-stabiliserness. As already mentioned above
SRE is invariant under Clifford gates. In conclusion, a
change in the SRE of the intermediate state being evolved
indicates the use of a non-Clifford operation. Therefore,
we will use the absolute step SRE difference |A SRE]
as an indicator of non-stabiliserness consumption, which
is inherently linked to costly operations. Comparing
Figs. 4a and 4b (bottom), one sees that, similar to the
geodesic distance so([7T]) (top) the unstructured ansatz is
also more erratic than its structured counterpart, when
it comes to non-stabiliserness consumption. This begs
the question whether there is a connection between both
observations. In fact, there is a positive correlation be-
tween step-wise geodesic distance reductions to the target
space and non-stabiliserness consumption for the struc-
tured state evolution. In contrast to that observation,
there is no such correlation for the unstructured case.
This further substantiates the hypothesis that the struc-
tured ansatz utilises non-stabiliser resources more effi-
ciently.

200
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FIG. 6. Distribution of increments and decrements in dis-
tance to the target space (x ~ £Aso([T])). Top: Heavy skew
toward decrements is observed for the structured ansatz, and
most distance changes are negative. Bottom: The distribution
of distance changes is approximately centred around zero for
the unstructured ansatz, discounting a small number of out-
liers on the negative side.

VI. CONCLUSION

We have extended the concept of geodesic distance
measures in state evolutions targeting a specific state
to evolutions targeting a more complex target space T .
We showed how the geodesic distance to 7 can be de-
rived from the expected value of a Hamiltonian satisfying



0.0

PPRYEE P
Sl

e S et s
TR ;-.;--—--‘..uv'é
. Ol « . ° sere

0.0 0.1 0.2 0.3
|ASRE]|

FIG. 7. Structured state evolution (top) shows clear corre-
lation between non-stabiliser consumption |A SRE| and steps
reducing the geodesic distance to the target space —Asq([T]).
In contrast, we cannot observe a similar correlation for the un-
structured ansatz (bottom). Data are restricted to |A SRE| <
0.3 to filter outliers (this retains approximately 98% of the
original data points).

Eq. (7). This Hamiltonian based definition fits well into
widely used frameworks of Hamiltonian cost function en-
codings. It also further allows for establishing empirical
measurement based setups that integrating nicely with
existing toolkits of quantum computing practitioners.

We further provided a qubit order agnostic version
of the geodesic framework by introducing equivalence
classes of states that are equal under permutation. Con-
sidering the quantum Fourier transform as a use-case, we
demonstrated how our approach can cut through Clifford
layers, and thus unveil previously hidden computational
progress in the circuit. We then applied the developed
methods to comparatively analyse of structured and un-
structured state evolutions. The different distributions
of geodesic distance changes suggest a higher geodesic
efficiency for the structured evolution.

By combining resource theoretic Stabiliser-Rényi-
Entropy and geometric geodesic distance measures, we
were able to show that the structured ansatz is signifi-
cantly more efficient in the consumption of non-stabiliser
resources than the unstructured ansatz. On a methodical
level, this demonstrated the potential of our combination
of methodologies.

VII. DISCUSSION & PERSPECTIVE

We believe our methodology opens new means of
analysing non-stabiliser effects and the efficient utilisa-
tion of non-stabiliser resources in quantum circuits. A
nuanced understanding of such effects seems crucial for
advancing the systematic development of quantum al-
gorithms, particularly with regard to realising quantum
speed-ups in a well-principled manner. Furthermore,
we anticipate that our results will become increasingly
pertinent as the field transitions into the era of early
fault-tolerant quantum computing: In such regimes, non-
stabiliser operations pose significantly greater challenges
for error correction compared to stabiliser operations.
Consequently, the use of this resource must be optimised,
and we believe that our analytical framework offers a
valuable instrument in progressing towards this objec-
tive.

We showed how permutation agnostic distance mea-
sures can reveal internal non-stabiliser effects previously
hidden by a subset of Clifford operations. Our construc-
tion based on permutation operators & could be extended
to accept general Clifford operators in the sense that two
states |¢1) ~ |ihg) iff there exists a U € C such that
Ulyr) = |w2). Although Clifford circuits are classically
simulable, finding minimal Clifford decompositions is not
always efficient. Thus, such an extension would need to
impose some complexity theoretic bounds on U to avoid
grouping states that can only be reached by overly pow-
erful oracles.

We showed that the combination of resource theo-
retic and geometric tools offers a mean to qualify re-
source consumptions by efficiency. We see a poten-
tial to embed quantum resource theoretic measures like
Stabiliser-Rényi-Entropies into a proper differential geo-
metric framework. This is a second promising avenue for
improvement that would allow us to analyse resources
consumed by state evolutions following different paths
over the projective state manifold.

Appendix A: Reproducibility

A reproduction package [36] that contains all code re-
quired to run the simulations in this paper is available at
github.com /Ifd /quantum_dark magic?. All simulations
are done on premise with seeded random number gen-
erators. No cloud services were used. Thus, given the
availability of the used software packages, our simula-
tions are fully reproducible.

2 A DOI save version will be made public with a camera ready
version of the manuscript
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