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Abstract—Whether QML can offer a transformative advantage
remains an open question. The severe constraints of NISQ
hardware, particularly in circuit depth and connectivity, hinder
both the validation of quantum advantage and the empirical
investigation of major obstacles like barren plateaus. Circuit
cutting techniques have emerged as a strategy to execute larger
quantum circuits on smaller, less connected hardware by dividing
them into subcircuits. However, this partitioning increases the
number of samples needed to estimate the expectation value
accurately through classical post-processing compared to esti-
mating it directly from the full circuit. This work introduces a
novel regularization term into the QML optimization process,
directly penalizing the overhead associated with sampling. We
demonstrate that this approach enables the optimizer to balance
the advantages of gate cutting against the optimization of the
typical ML cost function. Specifically, it navigates the trade-off
between minimizing the cutting overhead and maintaining the
overall accuracy of the QML model, paving the way to study
larger complex problems in pursuit of quantum advantage.

I. INTRODUCTION

QMachine Learning (QML) seeks to leverage the princi-
ples of quantum mechanics to enhance machine learning

algorithms, potentially offering speedups or improved model
performance for specific tasks. However, the capabilities of
current Noisy Intermediate-Scale Quantum (NISQ) devices are
constrained by limited qubit counts, coherence times, and gate
fidelities. These limitations hinder the direct implementation
of complex quantum circuits often required for QML models.
To address these hardware constraints, “gate cutting” (also
known as circuit knitting or circuit partitioning) techniques
have gained significant attention [1], [2], [3]. Gate cutting
is a method to partition a circuit into smaller subcircuits by
replacing the multi-qubit rotation gates between two qubits
with different single-qubit gates. The measurement results
executing subcircuits are then classically combined, but this
process introduces a significant sampling overhead [2]. This
overhead is highly sensitive to the parameters of the cut gates,
often called cutting angles. Angles that minimize the overhead
often correspond to reduced entanglement. This creates a
potential trade-off between the expressivity of the ansatz and
the computational cost. We propose a novel regularization
term within the QML model’s loss function to penalize the
estimated sampling overhead. This encourages the optimizer
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to find solutions that balance the primary learning task with a
manageable sampling budget, automating the navigation of the
complex interplay between circuit partitioning and classical
post-processing costs.

II. LITERATURE REVIEW

The concept of gate cutting, or circuit knitting, originates
from the broader field of quantum circuit simulation and
compilation. Foundational work by Hofmann [1] established
a formal framework for partitioning circuits. Their work was
crucial in highlighting the primary challenge: an exponential
scaling of the classical post-processing cost and sampling over-
head with the number of cuts. Subsequent research focused
on understanding and mitigating this overhead. Building on
this, Peng et al. [2] provided a rigorous and detailed analysis
of the sampling overhead, formally quantifying the overhead
factor and introducing improved circuit-cutting methods by
minimizing associated classical computing costs. Mitarai et
al., [3] explored techniques for gate cutting, and importantly,
formulated the sampling cost required for gate cutting. In
the context of QML, the application of these techniques is
relatively nascent but highly relevant. Many leading QML al-
gorithms, such as Variational Quantum Algorithms (VQAs)[4],
rely on parameterized quantum circuits, making the interplay
between trainable circuit parameters and gate-cutting param-
eters a crucial area of study. However, existing approaches
typically treat gate cutting as a static pre-processing step,
where cuts are determined heuristically based on hardware
topology before training begins [5]. Regularization is a stan-
dard and powerful technique in classical machine learning
used to prevent overfitting and incorporate prior knowledge
or constraints into an optimization problem. Gentinetta et al.
[6] developed a method to constrain the sampling overhead
for simulating a dynamic quantum system for chemical sim-
ulations. However, to the best of our knowledge, the direct
application of a regularizer to penalize the sampling overhead
induced by gate cutting during the generic QML optimization
process has not been previously investigated. We leverage
the detailed understanding of overhead mechanics from [2]
and the insights into parameter-dependent costs from [3] to
create a novel, adaptive component within the QML training
pipeline. This shifts gate cutting from a static step to a
dynamic, trainable process that allows the optimizer to find a
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practical balance between model performance and the quantum
resources required for its execution.

III. PROPOSED METHOD

We introduce a novel strategy to mitigate the substantial
sampling overhead associated with gate cutting in QML
applications. Our approach integrates a regularization term
directly into the QML model’s optimization objective, thereby
enforcing the learning algorithm to find a balance between
achieving the primary learning task and minimizing the sam-
pling overhead arising from circuit cutting. The core princi-
ple of gate cutting involves decomposing a target quantum
gate U , typically a two-qubit gate that exceeds hardware
connectivity or depth constraints, into a set of classically
correlated, simpler operations. Consider a generic two-qubit
unitary gate U that we want to decompose. Techniques such
as gate decompositions effectively replace U with a sum of
operations that can be executed on smaller subcircuits [2],
[7], [8]. Gate cutting is the task of finding a decomposition
for the unitary channel U such that U =

∑
k ckFk. Here,

Fk are local channels operating on a single or sub-group of
qubits, and ck are the coefficients. Some of the coefficients,
ck necessarily have to be negative to allow the simulation
of non-local gates by local operations and give rise to a
quasi-probability distribution pk = |ck|/

∑
j |cj |. The circuit

execution then involves random execution of the subcircuits
containing the local operator Fk with probability pk and
weighting the outcome by sgn(ck). Classical post-processing
of the results from the sub-circuits then obtains the expectation
value of an observable on the whole circuit. Quasiprobability
simiulation increases the variance of the expectation value
measurement of the observable, necessitating a larger random
execution of the subcircuits and the averaging of the results,
and the post-processing function induces an additive error.
This error necessitates a larger number of shots to achieve a
level of accuracy comparable to that obtained from executing
the whole uncut circuit. This requirement of a larger number
of shots due to the cutting procedure is referred to as sampling
overhead s and is quantified by O(κ2) where κ = Σk|ck|.

Here, if we consider a two-qubit non-local gate U(α)
parameterized by an angle α, for example, Rzz(α), the
cutting procedure transforms it into an angle-dependent quasi-
probabilistic mixture U =

∑
k ck(α)Fk and sampling over-

head s(α). The pk(α) dependent on ck(α) is the angle-
dependent quasi-probabilities. For cutting the Rzz(α) gate, the
angle-dependent sampling overhead is known and given by the
eq. (1) below [9]. The s(α) shows minimal overhead when α
is near 0 or π, but substantial overhead around α = π

2 , which
corresponds to maximal entanglement generation capability by
the original gate. When the circuit involves L number of Rzz
gates to be cut, the total sampling overhead is given by eq. (2)
below where α̂ = (α1, . . . , αL) is the vector of cutting angles.

s(α) = (1 + 2|sin(α)|)2 (1)

s(α̂) =

L∏
l=1

(1 + 2|sin(αl)|)2 (2)

In a standard VQA or QML framework, a parameterized
quantum circuit UC(θ̂) is optimized to minimize a loss func-
tion LQML(θ̂), which typically depends on the expectation
value of an observable O: θ̂∗ = argminθ̂ LQML(⟨O⟩θ̂). If
gate cutting is applied, some parameters within θ̂ may corre-
spond to the cutting angles αl for L distinct cuts within UC(θ̂).
Each cut l introduces an overhead sl(αl). Our main proposal
is to adjust this loss function to incorporate a penalty for
the cumulative sampling overhead. The modified regularized
objective function Lreg(θ̂) is:

Lreg(θ̂) = LQML(⟨O⟩θ̂) + λ ·Roverhead(α̂) (3)

Here, the cutting angles α̂ is part of θ̂, λ ≥ 0 is a hyperparam-
eter controlling the regularization strength, and Roverhead(α̂)
is the regularization term, which is a function of the total
sampling cost. The term Roverhead(α̂) should be a non-negative,
differentiable function that increases monotonically with the
sampling overhead from each cut. For instance, considering L
independent cuts, a practical regularizer can be formulated as
the logarithm of the product of the individual overheads given
by eq. (4).

Roverhead(α̂) = log

(
L∏

l=1

(1 + 2|sin(αl)|)2
)

(4)

This form provides a direct penalty for increased sampling
overhead. Other forms, such as those based on the sum of
s(αl) values (e.g., Roverhead(α̂) =

∑L
l=1(s(αl) − 1), where

s(αl) = 1 implies no overhead penalty from cut l), could also
be considered. In this paper, we adopt the formulation shown
in eq. (4) due to its simplicity and scaling behavior for larger
sampling overheads.

The optimization of Lreg(θ̂) aims to find the circuit param-
eters θ̂∗, which contain α̂∗, that not only perform well on the
QML task (minimizing LQML) but also maintain low values
for the total sampling overhead. The hyperparameter λ con-
trols this balance: a smaller λ prioritizes QML performance,
potentially tolerating higher sampling costs, while a larger λ
imposes a strong penalty on overhead, possibly guiding cutting
angles towards 0 or π even if it slightly compromises the
QML objective by reducing entanglement. This method allows
the VQA to autonomously adapt the cutting strategy (via the
parameters αl) during the training process, making the choice
of cutting parameters an integral part of the learning problem.

IV. EXPERIMENTATION AND RESULTS

To evaluate the efficacy of the proposed regularization
method for managing sampling overhead in gate-cut QML
circuits, we conducted a series of numerical experiments
focusing on a regression task. We investigated the interplay
between model accuracy, sampling overhead, and entangling
capability across varying qubit numbers.

A. Experimental Setup

1) QML Regression Task and Dataset: The QML model
was trained to learn a synthetic regression function generated



using the make regression function from scikit-learn. A
training dataset consisting of Ntrain = 100 samples, a separate
validation set of Nval = 50 samples, and a test set of
Ntest = 50 samples was created for training and evaluation.
The dataset was designed so that the number of features is
twice the number of qubits in the QML model. A new dataset
was generated for each QML model with a different number
of qubits in the VQCs.

2) Quantum Circuit Ansatz and Gate Cutting: We em-
ployed a hardware-efficient ansatz composed of layers of
single-qubit rotations (Ry(θ), Rz(ϕ)) and entangling blocks
of CZ gates arranged in a nearest neighbour topology. Each
feature of input x was encoded into the VQC using Rx

rotations and incremental data-uploading [4]. The total number
of layers was scaled as required based on number of qubits in
the VQC and the number of input features. All the VQCs
evaluated in this work were divided into three sub-circuits
using gate cutting technique as shown in fig. 1. To aid the
regularization and reduction in sampling overhead as explained
in the section III, the CZ gates that were cut are replaced
by trainable Rzz gates as shown in the fig. 2. The cutting
parameters (angles αl used in the decomposition of the cut
gates, as described in Section III) were treated as trainable
variables, initialized to π

2 to represent an initially unbiased
cut.
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Fig. 1: The 6-qubit VQC ansatz used as the function approx-
imator of the QML model. The qubits are color-coded based
on the partitions, and the CZ gates to be cut are marked in
red.
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Fig. 2: Decomposition of CX gate into equivalent CZ and
Rzz representation

3) Simulation and Optimization: All experiments were
conducted using the Qiskit quantum simulator and Qiskit
add-on: circuit cutting [10]. The parameters of the QML
model, denoted by θ̂, which include both the single qubit gate
parameters and the cutting angles α̂, were optimized using
gradients estimated via the guided-SPSA technique introduced
in Ref. [11] and the Amsgrad optimizer [12]. This optimization
was performed with a learning rate of η = 0.01 over a
total of Nepochs = 100 epochs and batch size of 32. The
loss function employed for the regression task was the Mean
Squared Error (MSE), augmented with the proposed sampling
overhead regularizer expressed as:

Lreg = MSE(θ̂, α̂) + log

(
L∏

l=1

(1 + 2|sin(αl)|)2
)

(5)

The initial value of λ was set to 0.01 and stepped down to
0.0001 after 10 epochs to ensure that the regularizer’s penalty
does not overpower the actual training loss. This approach
allows the trained model to end up with larger sampling
overhead if needed for optimal solution.

4) Metrics: The primary performance metric for the regres-
sion task was the mean squared error (MSE) on the test set.
The total sampling overhead Stotal =

∏
l s(αl) was calculated

at the start of every epoch during the training. To quantify
entanglement, we computed the Meyer-Wallach multipartite
entanglement measure Q [13] for the state prepared by the
quantum circuit before measurement. The Q measure is de-
fined as Q = 2(1 − 1

Nq

∑Nq

k=1(1 − Tr(ρ2k)), where ρk is the
reduced density matrix of qubit k. The value of Q ranges
from 0 (fully separable state) to 1 (certain maximally entangled
states). The entanglement measure was also tracked during the
course of training.

B. Results and Analysis

We conducted experiments for quantum circuits with Nq =
18, 24, 30 and 50 qubits.

1) Regression Performance: The introduction of the regu-
larizer generally allowed the QML model to maintain good
regression performance while actively managing the cutting
angles. The fig. 3a presents the average test results obtained
from ten training runs of the 18-qubit VQC, where the
angles of the Rzz gates designated for cutting are initialized
to π

2 , corresponding to maximum entanglement generation,
and to 0.1, corresponding to partial entanglement generation
capability of each individual gate. The fig. 3b illustrates the
corresponding changes in sampling overhead for both models
throughout the training process. The maximally entangled
model began with a sampling overhead of 6561 to cut the
four Rzz gates, while the partially entangled model had a
sampling overhead of 4.29 for the same number of cut gates.
Nevertheless, by the end of the training, both models resulted
in a similar sampling overhead of about 10, as shown in fig. 3b,
and achieved comparable results, as demonstrated in fig. 3a.
By starting with gates with reduced entangling capability for
the cutting procedure, we can gain a computational advantage
that allows us to simulate results with higher accuracy due
to the small sampling overhead. The fig. 3c depicts the test
performance of the 24 qubits VQC model. The convergence
here is slow compared to the 18 qubit circuits and longer
training time is needed. The cutting procedure made training
30 and 50-qubit VQC models possible on a single CPU
with 50GB RAM. However, the training procedure resulted
in gradients in the order of 10−7, indicating that the models
have hit the barren plateau regime.

2) Meyer-Wallach Entanglement Measure: The
section IV-B1 illustrates that for an 18-qubit VQC,
both maximally and partially entangled models initially
exhibit a decrease in overall entanglement during the early
stages of training. However, as training progresses, the
entanglement surpasses its initial value. This suggests that
the VQC’s parameters are being optimized to enhance the
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Fig. 4: Overall entanglement created by the VQC over training
epochs

total entanglement despite the presence of gates that generate
partial entanglement between different partitions of the
system.

V. CONCLUSION

In this work, we addressed the significant challenge of sam-
pling overhead in circuit cutting by introducing a new regular-
ization term into the quantum machine learning loss function.
This method encourages the optimizer to achieve a careful
balance between model accuracy and the traditional post-
processing budget. Our numerical experiments on a regression
task, conducted with Variational Quantum Circuits of up to 50
qubits, validate the efficacy of our approach, demonstrating for
an 18-qubit regression task that models initialized with gates
that generate maximal and partial entanglement converged to
a similar state of accuracy and sampling overhead. This key
finding indicates that maximal entanglement at the circuit
cuts is not necessary for the optimal performance of the
gate cutting-based QML model and that our method can
automatically achieve this balance. While our method enabled
the training of larger 30 and 50-qubit models, the emergence
of barren plateaus highlights that other scalability challenges
persist. The proposed technique significantly enhances the
practicality of QML on near-term hardware by automating the
trade-off between circuit size and sampling cost. Specifically,
the improved computational efficiency allows for the effective
study of large-scale phenomena, such as barren plateaus,
without excessive computational demands. Integrating gate
cutting into the training pipeline enhances scalability for QML
applications and future research that combines this overhead-
aware training with barren plateau mitigation techniques.
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