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Abstract—Quantum computers are often treated as experimen-
tal add-ons that are loosely coupled to classical infrastructure
through high-level interpreted languages and cloud-like orches-
tration. However, future deployments in both, high-performance
computing (HPC) and embedded environments, will demand
tighter integration for lower latencies, stronger determinism, and
architectural consistency, as well as to implement error correction
and other tasks that require tight quantum-classical interaction
as generically as possible.

We propose a vertically integrated quantum systems architec-
ture that treats quantum accelerators and processing units as
peripheral system components. A central element is the Quantum
Abstraction Layer (QAL) at operating system kernel level. It
aims at real-time, low-latency, and high-throughput interaction
between quantum and classical resources, as well as robust
low-level quantum operations scheduling and generic resource
management. It can serve as blueprint for orchestration of low-
level computational components “around” a QPU (and inside a
quantum computer), and across different modalities.

We present first results towards such an integrated archi-
tecture, including a virtual QPU model based on QEMU. The
architecture is validated through functional emulation on three
base architectures (x86_64, ARM64, and RISC-V), and timing-
accurate FPGA-based simulations. This allows for a realistic
evaluation of hybrid system performance and quantum advantage
scenarios. Our work lays the ground for a system-level co-design
methodology tailored for the next generation of quantum-classical
computing.

I. INTRODUCTION

Contemporary quantum computers often remain close to
physical laboratory setups, and quantum processing units
(QPUs) are connected to classical host systems through loosely
coupled, high-level interfaces. This has enabled rapid experi-
mental progress, but imposes significant limitations for future
applications, particularly in scenarios that demand scalable,
low-latency, and reproducible quantum-classical interaction.

QPUs will never operate in isolation, but will act as
accelerators that are tightly embedded within heterogeneous
classical systems [1], [2]. This hybrid nature necessitates a
system architecture that reflects and supports the duality from
the ground up. Future quantum computing deployments will
span a wide range of performance classes: from embedded
devices based on compact solid-state technologies, such as
diamond NV centres, to quantum accelerators deployed as
extension cards in workstations, and further to large-scale
high-performance quantum computing (HPQC) clusters in data
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centres (see Fig. 1). These classes particularly differ in latency
constraints and control requirements. A system architecture
must abstract and support all of them without locking into
specific technologies.

Previous efforts, such as QDMI, advocate for more integrated
quantum-classical systems by standardised user-level interfaces.
While this is a promising direction, no such approach does, to
the best of our knowledge, take the role of the operating system
kernel into account. We argue that kernel-level integration is
not a mere optimisation, but a necessity.

There are several reasons for this. First, in analogy with
classical accelerators like GPUs, abstraction through kernel-
space drivers enables the decoupling of vendor-specific hard-
ware implementations from standardised user-space APIs. This
is essential for software portability and long-term ecosystem
evolution. Second, kernel-level interaction supports determin-
istic scheduling, real-time control, and system-wide resource
management. Such properties are required in embedded control
environments and HPC workloads alike. Third, it allows
for hardware abstraction layers that are both extensible and
technology-agnostic, facilitating support for diverse quantum
hardware types, including further emerging quantum technolo-
gies such as quantum sensing or quantum communication.

In contrast to, for example, network-based control interfaces,
our design promotes tight coupling of quantum control elec-
tronics to the host system via standard interconnects. This
aims at precise synchronisation, reduced latency, and unified
orchestration under operating system control.

We introduce an integrated QC device model implemented
as a virtual accelerator for early-stage validation. This model,
embedded within a full-stack software environment, dispatches
quantum programs from user space through a hardware
abstraction interface. It enables iterative hardware/software
co-design and early functional testing. The architecture is
realised using reconfigurable hardware (FPGA) to simulate
time-accurate behaviour and measure key metrics such as
communication latency and scheduling overheads. This allows
for empirical evaluation of quantum systems under near-realistic
integration conditions. Our main contributions are:

o A tightly coupled quantum-classical system architecture
that addresses key requirements for real-time control,
portability, and scalability.
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Fig. 1. Overview of integration scenarios. We particularly focus on Al and
A2, and consider integration of multiple instances of A2 into A3.

e A working quantum device model using virtualised
hardware for early architectural exploration and co-design.

« We outline a methodology to transition from emulation
to time-accurate FPGA-based simulation to analyse real-
world integration constraints.

II. STATE OF THE ART

Integration of quantum hardware into classical systems
spans multiple abstraction layers—from high-level algorithm
design [3], [4] to low-level qubit control via AWGs, RF
generators, and FPGAs [5]. Standardised interfaces and layered
architectures are essential to bridge this gap. Prior work has
encoded low-level quantum instructions as binary streams [6],
[71, [8], [9], while efforts like QDMI [10] offer hardware-
agnostic abstractions. Full-stack frameworks have been pro-
posed for hybrid systems [11], [12], yet complete end-to-end
implementations with integrated hardware simulation remain
limited.

The RISC-V architecture allows us to make systemic
modifications [13], and study connection of external hardware
components via FPGA instantiations. While the latter are
established techniques for controlling QPUs for control and
readout [14], [15], [16], quantum-classical architectures have
only recently received consideration via quantum instruction
sets [8], [17], [18] or micro-architectures [9], [19], [20], [21],
[22]. Integrating QPUs into HPC environments has been
discussed more intensively [23], [24], [25], [26], [27], as
summarised in Ref. [28].

III. SYSTEMS ARCHITECTURE
A. Overview and Design Rationale

a) General Assumptions: In designing a future-proof
architecture for quantum-classical systems, we start from a set
of fundamental assumptions shaped by practical deployment
constraints and technology readiness levels. A significant body
of research has explored quantum extensions to classical
instruction set architectures (ISAs), introducing new instruction

formats or opcodes to incorporate quantum-specific seman-
tics directly into classical compute pipelines. While these
approaches are conceptually appealing and valuable for long-
term hardware/software co-design, we argue that such models
are premature for the initial stages of quantum computing
adoption.

In contrast, our architectural perspective is driven by inte-
gration pragmatism. We believe that early quantum computing
systems can only be accepted at scale if they seamlessly
integrate into the classical computing environments that are
already in use. In other words, quantum computing components
must first become plug-in extensions to existing compute
systems—rather than requiring invasive or fundamental changes
to their core processor architectures. Crucially, these devices
are typically not accessed directly by user-level applications or
libraries. Instead, it is the operating system’s task to abstract and
communicate with a QPU controller, a dedicated intermediary
that resides either on the same hardware card or in a tightly
coupled component, that provides means to offload quantum-
specific execution, transpilation, translation, and optimisation
tasks. By (optionally) consolidating them in a programmable
controller, the system achieves a high degree of flexibility and
autonomy. This architectural choice reflects the layered nature
of the hybrid stack:

General-purpose computation (e.g., application logic, or-
chestration, scheduling logic, classical pre-/post-processing) is
executed on the host CPU. Special-purpose operations, such as
pulse generation, qubit manipulation, and physical measurement
handling, reside in the quantum control hardware. Intermediate
control logic may be offloaded to the QPU controller, potentially
based on flexible and extensible compute architectures such as
RISC-V.

This insight leads to a peripheralisation approach: we
assume that first-generation quantum computing accelerators
will be implemented as classical peripherals—either embedded
directly via memory-mapped I/O (MMIO) interfaces (e.g., in
compact setups like diamond-based systems) or as more general-
purpose PCle-based accelerator cards for workstations and
HPC nodes (see Fig. 1). Depending on the actual quantum
technology, the actual quantum core may be physically located
on the card (as is conceivable with diamond technologies)
or housed externally (e.g., cryogenic platforms). In the latter
case, the interface card acts as a high-speed low-latency bridge,
interfacing with control electronics such as arbitrary wave-
form generators (AWGs), microwave electronics, or photonics
modules.

b) Hardware Aspects: Despite significant physical dif-
ferences across quantum hardware technologies, such as
superconducting qubits, trapped ions, spin qubits, or NV centers
in diamond, there exist structural commonalities in how these
systems are controlled, measured, and calibrated. These tasks
typically involve the generation of shaped control pulses,
precise timing coordination, and synchronous acquisition of
analogue or digital readout signals. Although the specific
waveform characteristics, timing constraints, and physical
wiring vary between modalities, the logical structure of control



is strikingly similar across platforms. This observation enables a
generalised control architecture, which can be tailored through
parametrisation rather than restructured from scratch for each
technology.

At a systems level, most quantum control stacks follow
a layered pattern comprising digital signal generation (via
CPUs or FPGAs), waveform synthesis (often via AWGs or
DAC:s), and classical feedback control. By focusing our design
on configurable interfaces and exchange formats, rather than
hardwiring to a specific technology, we enable a hardware
abstraction layer that is general-purpose yet extensible, forming
the basis for a reusable and adaptable stack.

These quantum accelerator cards inherently require special-
purpose embedded control compute to manage configuration,
calibration, and runtime orchestration of quantum operations.
The design of such control processors must address stringent
requirements on latency, determinism, and low-level signal
fidelity. To meet these constraints, custom architectural modi-
fications for the special-purpose control processors are often
necessary-for example, to ensure precise timing alignment or
direct hardware-level waveform control. RISC-V presents a
particularly suitable architecture in this context, due to its
openness, modularity, and extensibility. Its structure enables
the implementation of domain-specific extensions tailored to
the needs of quantum-classical interfacing, such as tightly
coupled scheduling logic or application-specific peripheral
interfaces. This makes RISC-V an ideal foundation for the
special-purpose embedded control compute required in tightly
integrated quantum systems.

Despite variations in physical deployment, the host interface
abstraction (e.g.., MMIO vs. PCle) remains conceptually
uniform. This stable abstraction layer enables portability,
system-level validation, and standardisation across performance
classes and quantum technologies.

To rapidly prototype and validate our architectural ideas, we
emulate the accelerator interface using virtualised hardware in
QEMU. This model supports detailed interaction studies, early
software stack development, and architectural experimentation.
Communication between host and accelerator follows state-
of-the-art systems techniques, such as MSI-X based interrupt
delivery to ensure scalable, low-latency event signalling from
device to host, DMA-based memory access to enable efficient
bidirectional data transfers with minimal CPU intervention.

Looking forward, our architecture envisions support for multi-
QPU configurations enabling peer-to-peer quantum communi-
cation and entanglement distribution, which are essential for
scalable quantum networks and distributed quantum computing
paradigms. To facilitate flexible resource sharing and isolation,
we consider incorporating virtualisation interfaces, such as,
for example Single Root I/O Virtualization (SR-IOV), to
provide multiple virtual quantum accelerator instances on
shared physical hardware.

This enables a single physical quantum accelerator device
to present multiple virtual functions, allowing concurrent
and isolated access by different host system components
or virtual machines. In high-performance computing (HPC)

environments, this capability facilitates efficient resource
sharing and improved utilisation of costly quantum hardware
by multiple users (tenants / virtual guests) or applications
without compromising performance. SR-IOV reduces overhead
by enabling direct device access from user space, bypassing
the hypervisor or kernel layers for critical I/O operations,
thereby minimising latency and maximising throughput. This
low-overhead virtualisation is essential for HPC workloads
that require strict timing guarantees and high data transfer
rates, making SR-IOV an attractive approach for integrating
quantum accelerators into large-scale classical-quantum hybrid
HPC systems.

Additionally, achieving ultra-low latency and high-
throughput interaction between the classical control units and
quantum hardware is critical for real-time pulse generation and
dynamic error correction protocols. Our design anticipates
such tightly coupled co-processing capabilities to enable
effective implementation of these time-sensitive quantum-
classical feedback loops.

c) Software Aspects: To enable broad applicability and
system-level flexibility, our architecture supports multiple data
exchange formats, with a focus on QIR (Quantum Intermediate
Representation) and pulse-level instructions. The rationale
for this dual support lies in the complementary roles of the
two representations. Pulse-level interfaces represent the lowest
level of control, offering maximal flexibility for fine-grained
manipulation of quantum operations. This level is particularly
important for experimental setups, calibration procedures, or
future extensions toward quantum-classical co-design at the
physical layer.

On the other hand, QIR provides a hardware-agnostic, circuit-
level representation of quantum programs that abstracts from
physical details. In our model, we support direct ingestion of
QIR on the accelerator, based on the assumption that the card
itself is best suited to perform transpilation and optimisation,
as it has full knowledge of its internal topology, constraints,
and calibration data. This implies the need for on-card control
compute, which we explicitly respect in our design. The QIR
pathway is optional: cards may accept other formats or perform
compilation on the host side if desired.

Future research will explore intelligent caching strategies to
minimise repeated transpilation times and accelerate execution
in long-running or multi-user workloads. The format interface
is designed to be extensible, allowing additional quantum IRs
or device-specific formats to be integrated without architectural
changes.

d) Systems Software Aspects: To maintain compatibility
with emerging and broadly accepted standards, the software
architecture includes a QDMI-style interface embedded into the
kernel driver, allowing integration with higher-level frameworks
and runtime systems.

The OS driver-level abstraction must ensure that quantum
accelerators can be managed like conventional hardware
resources, enabling multi-process access, secure context isola-
tion, and system-level orchestration independent of the scale
of the system, from embedded environments to HPC-like



environments. Linux as basis for implementing our kernel-
level driver infrastructure allows for integration with existing
HPC and embedded system software.

The quantum accelerator is exposed as character device
(e.g., /dev/qal0), offering an abstraction that aligns with
the standard device models It is responsible for receiving
quantum execution sequences from user-space applications,
queuing and scheduling them according to defined policies,
and tracking execution state. Interaction between user space
and driver is based on ioct1l calls, providing a flexible mech-
anism for command invocation and control. Future revisions
will add support for mmap-based interfaces to enable direct
hardware-level access to DMA buffers, allowing low-latency
and OS-bypassed communication paths for applications with
determinism requirements. We detail Two instantiation s below:
a QEMU-based virtual model for rapid iteration and HW/SW
co-design, and a time-accurate FPGA-based hardware-in-the-
loop system for empirical latency and integration analysis.

B. Virtual Quantum Accelerator Model

To enable rapid prototyping, functional validation, and
iterative development, we have implemented a virtual quantum
accelerator using QEMU, a widely adopted system emulator.
This allows us to evaluate architectural concepts and software
interfaces prior to hardware availability, while maintaining tight
alignment with real-world system constraints.

root@gal:~# uname -a
Linux buildroot 6.16.0-rc4 #1 SMP PREEMPT_RT riscv64 GNU/Linux

of qubits: 100
per job: 100000
10

ing MSI(-X) Interrupt 21
und QPX version 0.1 /e

xinum number of qubits: 100 71 [ 1
gal_apx_pci 0000: ximum shots per job: 109000
gal_apx_pci 0000:00:0e.0: Registered /dev/qall

rooteqal:~# qal_execute /dev/qald /share/circuits/Hadamard.qal 10000
/dev/qal0: Job O finished: The operation was successful
Dumping Job 0 (10000 shots)
Histogran:
0x0000001F 4964

0x00000000 5036
Closing /dev/qalo

{QPX_CMD_RY, 0xbff921fb54442d17, 0, 0},
{QPX CMD RZ, 0x3ff921fb54442d18, 0, 0},

=1
{QPX_CMD_RXX, 0x3ff921fb54442d18, 0, 1},

Fig. 2. Tllustration of QPX in a virtualised RISC-V environment. Left:
Userspace shell within QEMU guest executing a sample quantum circuit via
/dev/qal0. Right: Corresponding high-level source (Hadamard.c) generated
using Qiskit and compiled into QAL binary format. This demonstrates end-to-
end execution through the system stack.

Our Quantum Peripheral Extension (QPX) acts as drop-in
device model for quantum accelerator modalities. QPX supports
MMIO-based embedded integration and PCle-based peripheral
accelerator configurations, covering a wide spectrum of possible
quantum-classical co-design deployments—from embedded
edge systems to high-performance compute environments. We
validate and test our device model on three different classical
host architectures: x86_64, riscv64 and arm64.

The device model provides an interface stack, including:

o« DMA-based memory access for high-throughput, low-
latency data exchange,

o Support for interrupt signalling via IRQ and MSI(-X),

¢ A command protocol supporting for the internal QAL,

o Ongoing integration of QIR (Quantum Intermediate Repre-
sentation) to facilitate compiler-side integration and future-
proofing against emerging quantum software toolchains.

The backend uses libquantum as simulation engine for design
validation and ensuring functional correctness from APIs via
kernel drivers to device logic. This has several benefits:

o Hardware/Software Co-Design: Short development cycles
allow architectural feedback from quantum algorithm
developers to be directly integrated into interface design.

o Early integration testing: Enables system-level validation
of driver functionality, kernel interaction, and execution
model semantics before hardware availability.

« Technology abstraction: Since the model is decoupled from
specific quantum hardware implementations, it supports
experimentation with technology-agnostic system designs.

o Reproducibility [29] and CI integration using automated
test pipelines.

However, QPX cannot be timing accurate, as simulating
QPUs efficiently is impossible. It is not suitable for latency
and runtime analysis.

C. Time-Accurate FPGA Simulation

To complement the functional validation provided by the
QEMU-based virtual model, we implement a timing-accurate
quantum accelerator prototype on a digital twin FPGA platform.
This approach enables cycle-accurate and time-aware simula-
tion of the quantum-classical interface, which is critical for
evaluating latency, throughput, and real-time behaviour. These
key factors are essential for determining potential quantum
advantage in hybrid systems.

The FPGA model mirrors the architectural concepts validated
in QEMU, supporting the same PCle and MMIO interfaces,
DMA-based data transfer, and interrupt handling mechanisms
(legacy IRQ, MSI, MSI-X). This ensures a seamless transition
from software simulation to hardware prototyping, facilitating
direct comparison and cross-validation between both platforms.

The ability to operate in two modes is crucial:

1) Fidelity Mode. The FPGA emulates the quantum hard-
ware (at obvious exponential cost), running quantum
circuits as per the virtual device model, verifying cor-
rectness of the implementation.

2) Latency Mode. The FPGA mimics timing behaviour of
real future quantum hardware components or external
devices, providing real-time control and data exchange,
enabling in-depth latency profiling and operational testing
under realistic conditions.

Reconfigurability of FPGAs enables a flexible, yet precise
platform that balances rapid development cycles with high-
fidelity performance metrics. This allows for exploring

¢ quantum-classicalcommunication latencies,

o impact of the system / user-level software stack while
interacting with real hardware,

o real-time constraints for quantum pulse-level control,

« overall system behaviour under realistic load conditions.



The model bridges between virtual prototypes and physical
hardware, serving as tool for iterative co-design of hardware and
software components, and to fine-tune architectural parameters
for early identification of performance limitations.

Ultimately, the combination of QEMU virtualisation and
FPGA-based hardware-accurate simulation provides a compre-
hensive framework for the design, validation, and optimisa-
tion of tightly integrated quantum-classical systems, driving
progress towards practical and scalable quantum accelerators.
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Fig. 3. Overview of the prototypical architecture for classical-quantum inte-
gration. User space applications interface with standard quantum programming
frameworks (e.g., Qiskit, QLM, Qrisp, ...), or directly via libqal, a thin user
space library providing access to kernel-level quantum device functionality.
The Linux kernel hosts a generic QAL subsystem responsible for managing
and scheduling quantum sequences, offering abstractions prioritisation and
state tracking. This layer connects to device-specific drivers, exemplified by
our QPX model, which defines a concrete quantum hardware interface.

IV. PROTOTYPE IMPLEMENTATION AND ROADMAP

The current system is a functionally complete, yet deliber-
ately lean and modular prototype. All essential components of
the classical/quantum integration stack are realised virtually.

A full cut-through system is demonstrated based on QEMU
(see Fig. 2), including userspace interaction via the 1ibgal
library, kernel-level job scheduling through a dedicated device

node, and a virtual quantum accelerator model (QPX). The
kernel interface presently uses ioctl-based command handling
for task management and device control. Upcoming versions
will include direct memory-mapped access to DMA regions
for low-latency, trap-free [30] interaction.

We validated our stack on three major processor architectures:
x86_64, ARM64, and RISC-V 64, ensuring portability and
architectural agnosticism across mainstream and emerging com-
pute platforms. These evaluations included both MMIO-based
and PCle-based configurations, highlighting the versatility of
the QPX model and confirming correct behaviour of the stack
across different execution environments.

While the QEMU-based simulation back-end does not yet
support timing-accurate analysis, it provides an environment for
functional testing, rapid iteration, and architectural prototyping.
Insights guide the refinement of an FPGA-based hardware im-
plementation for cycle-accurate evaluation of control latencies
and communication paths (at the expense of result correctness).

In summary, the current system validates the feasibility of our
integration model and forms an baseline for subsequent research.
It enables experimentation with interface semantics, abstraction
strategies, and system-level integration patterns in a controlled
and especially reproducible environment. It represents a step
towards a broader vision of a technology-agnostic, tightly
integrated classical-quantum computing architecture.

An important open question that can be empirically addressed
concerns division of responsibilities between kernel and user
space. While present interfaces largely follow a basic pat-
tern (e.g., ODMI_device_job_{submit, check/wait,
get_results}) it remains an open issue which abstractions
and operations should be delegated to kernel-level logic, and
which are more suitably handled in user space.

This becomes increasingly relevant as systems scale. Espe-
cially quantum error correction requires intricate interaction
between CPUs, accelerators and QPUs. Until such mechanisms
are fully refined and can be abstracted away, we expect
contradicting requirements between low latency, involved
compute, and flexibility to require system-global architectural
decisions. Our architecture provides the necessary foundation
to explore these trade-offs empirically and systematically.

V. CONCLUSION & FUTURE WORK

We have introduced a system-level architecture that integrates
quantum accelerators with classical computing environments.
Our approach is grounded in the assumption that hybrid
classical-quantum systems use quantum devices operating as
tightly coupled peripherals rather than stand-alone units, and
that the inner working of such stand-alone units features
similarities across modalities that can benefit from a standard
base platform. We have shown that seamless integration is
possible at the kernel level without invasive modifications.

Our prototypical architecture has been validated across
multiple host architectures (x86_64, arm64, and riscv64), and
has demonstrated a vertical system cut-through from user space
to simulated hardware. It establishes a basis for architectural
experimentation and refinement, particularly for challenges



like error correction that require the coordinated interaction
between multiple computing entities.

Future work will focus on refining an FPGA-based im-
plementation to enable time-accurate (and necessarily result-
incorrect) evaluation and analysis of latencies, which is
essential for understanding practical quantum advantage under
realistic conditions. We will explore questions related to the
placement of abstractions across user and kernel space, refine
the interaction with emerging interface standards such as QDMI,
and investigate advanced offloading strategies for transpilation
and scheduling. Furthermore, virtualisation capabilities and
support for distributed QPU systems will be explored to enable
scalable and shareable quantum-classical infrastructures. The
open and modular nature of our design also supports the release
of technology-agnostic components as open source, thereby
contributing to the broader ecosystem and encouraging future
standardisation efforts.
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