
SAT Strikes Back: Parameter and Path Relations
in Quantum Toolchains

Lukas Schmidbauer
Technical University of

Applied Sciences Regensburg
Regensburg, Germany

lukas.schmidbauer@othr.de

Wolfgang Mauerer
Technical University of

Applied Sciences Regensburg
Siemens AG, Technology

Regensburg/Munich, Germany
wolfgang.mauerer@othr.de

Abstract—In the foreseeable future, toolchains for quantum
computing should offer automatic means of transforming a high
level problem formulation down to a hardware executable form.
Thereby, it is crucial to find (multiple) transformation paths that
are optimised for (hardware specific) metrics. We zoom into this
pictured tree of transformations by focussing on k-SAT instances
as input and their transformation to QUBO, while considering
structure and characteristic metrics of input, intermediate and
output representations. Our results can be used to rate valid paths
of transformation in advance—also in automated (quantum)
toolchains. We support the automation aspect by considering
stability and therefore predictability of free parameters and
transformation paths. Moreover, our findings can be used in the
manifesting era of error correction (since considering structure
in a high abstraction layer can benefit error correcting codes in
layers below). We also show that current research is closely linked
to quadratisation techniques and their mathematical foundation.

Index Terms—Quantum Software, SAT, Pseudo Boolean Func-
tion, QUBO, PUBO

I. INTRODUCTION

Although quantum computers promise mathematically
backed advantages [1], achieving practical quantum advantage
is a herculean task. On the one hand, hardware has to cope
with noise, imperfections, limited amount of inhomogeneous
qubits and restricted topology, which narrows down potential
applicability—also in the field of error correction. On the other
hand, preprocessing problem formulations has a significant
impact on solution quality, performance and deployability
onto current hardware [2]–[11]. However, preprocessing steps
(or transformations) occur (in-)between all abstraction lay-
ers, starting from an abstract problem formulation down to
transpilation onto hardware—leading to mountainous amounts
of combinations. Moreover, transformations also encode NP-
complete problems (e.g., mapping and routing problem [12],
[13]), which complicates finding optimal solutions.
k-Satisfiability (SAT) formulations have an enormous field

of applications. Scheduling problems [14], circuit equivalence
checking [15], string constraint handling [16] and quantum
circuit optimisation [17], [18] are some of many applications.
Furthermore, industrial problems induce specific structures
and properties into their SAT formulations [19]. It is widely
presumed that targeted classical solvers (e.g., Conflict-Driven
Clause Learning (CDCL)) are able to exploit these hidden

structures. Notably, self-similar [20], community [21], [22]
and scale-free structures [23], [24] are among relevant prop-
erties for industrial SAT instances. Take into consideration
that different solvers are more or less suited for specific
properties of SAT instances. For example, (satisfiable) random
k-SAT instances can be solved using Stochastic Local Search
or Look-Ahead solvers [19]. Transforming a SAT instance
to widely used Quadratic Unconstrained Binary Optimisation
(QUBO) form (e.g., [25], [26]) makes quantum annealing
available as a hardware solver [27]. Similar to classical
solvers, different properties result in varying performance. For
instance, [28] compares randomly generated 3-SAT instances
and their performance on DWave’s quantum annealer for two
different QUBO formulations.

The performance of SAT solvers depends on the size and
structure of the instance specific solution space. This has
been widely studied for random 3-SAT instances, where the
clause-to-variable ratio α = m

n leads to a phase transition at
α ≈ αC = 4.267 from satisfiable to non-satisfiable instances
[29]. For α ≈ αd = 3.921, hard instances, inducing metastable
states, can be found [29]. For quantum annealing, Gabor et
al. [30] show empirically that performance also depends on
clause-to-variable ratio α by firstly transforming the input 3-
SAT representation to a Maximum Independent Set (MIS)
problem and then to QUBO (see Sec. III).

From a software engineering perspective, it is therefore
essential to know effects of single and transitive transfor-
mations on important metrics to get most out of available
quantum hardware. We want to extend above work, by shed-
ding more light on the induced structure and properties,
when transforming from k-SAT to QUBO. Fig. 1 shows a
multitude of possible transformations and possible paths from
k-SAT to QUBO alongside their respective properties. Sec. II
introduces fundamental concepts. They are used in Sec. III,
which analyses in depth shown transformations from Fig. 1.
Sec. IV then analyses discussed transformation paths based
on their structure and scaling effects on the metrics shown in
Fig. 1. We also discuss implications on quantum software in
Sec. V and conclude in Sec. VI.

The paper is augmented by a comprehensive reproduction
package [31] and a supplementary website (links in PDF) that
allow for extending our work.

mailto:lukas.schmidbauer@othr.de
mailto:wolfgang.mauerer@othr.de
https://doi.org/10.5281/zenodo.15464391
https://doi.org/10.5281/zenodo.15464391
https://github.com/lfd/QSW25-SAT-Strikes-Back

MIS

PUBO QUBO

k-SAT 3-SAT

Properties
monomials
variables

density
distribution

Properties
clauses
literals

variables
interconnection

Textbook

Choi* Choi

Choi

De Morgan

Dattani
LSR

Dobrynin

transitive
link

Figure 1: Possible paths from k-SAT to QUBO via known
transformations with special focus on properties induced into
resulting QUBO. Choi* marks a generalised version of the
3-SAT to MIS transformation. Perceived abstraction layer of
NP-complete problems coloured in blue and Optimisation
problems coloured in grey.

II. FUNDAMENTALS

A. SAT

SAT is an NP-complete problem that determines if a
Boolean formula is satisfiable. Although there is a multitude of
possible representations of such formulas, Conjunctive Normal
Form (CNF) is a prominently used representation, since every
Boolean circuit can be transformed into an equi-satisfiable
CNF formula in linear time [32]. CNFs are also a standard
representation for annual SAT competition [33].

A SAT formula ψ(x⃗) in n variables x⃗ = (x1, x2, . . . , xn)
in CNF is a conjunction of m clauses Ci, i ∈ {1, . . . ,m}:

ψ(x⃗) =

m∧
i=1

Ci, x⃗ ∈ {0, 1}n (1)

A clause Ci consists of a disjunction of positive or nega-
tive literals, where a positive literal is a variable xi and a
negative literal is the negation of a variable xi. We denote
a positive literal (or variable) by l and negative literal (or
negated variable) by l. When the number of literals in clauses
Ci, i ∈ {1, . . . ,m} is fixed to k ∈ N, ψ(x⃗) is an exact-k-SAT
instance. For example,

ψ(x⃗) = (x1 ∨ x2 ∨ x4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4 ∨ x5) (2)

is an exact 4-SAT formula in variables x⃗ =
(x1, x2, x3, x4, x5) ∈ {0, 1}5. Hence, there are 25 possible
assignments for x⃗. If ∃x⃗ ∈ {0, 1}n : ψ(x⃗) = 1, we call ψ(x⃗)
satisfiable. |C| denotes the size of a clause C. The objective
of the MAX-k-SAT problem is to find x⃗ ∈ {0, 1}n such that
the number of satisfied clauses is maximised.

B. Maximum Independent Set

The independent set problem asks for a subset of nodes,
such that no node pair in the subset is connected via an edge.
MIS then asks for the biggest independent set. MIS is an NP-
hard problem with an NP-complete decision variant (see SAT).

More formally, let G(V,E) denote an undirected graph.
Then, an independent set is a subset of nodes I ⊆ V such
that there exists no edge e = {i, j} ∈ E : i ∈ I ∧ j ∈ I .
The maximum independent set is (a) not contained in any
other independent set (also called maximal condition) and (b)
largest with respect to the cardinality of I [34], [35]. Fig. 2
shows an example graph and a MIS.

v1

v2 v3

v4 v5

v6

Figure 2: Example of a MIS I = {v2, v5} coloured in blue.
Note that {v1, v2, v3} and {v4, v5, v6} form a 3-clique (i.e., a
fully connected subgraph).

C. PBF, PUBO, QUBO

A Pseudo-Boolean Function (PBF) is a function

f : {0, 1}n → R (3)

that can be uniquely represented by a multi-linear polyno-
mial [36]:

f(x1, . . . , xn) =
∑

S⊆{1,...,n}

αS

∏
j∈S

xj , (4)

where αS

∏
j∈S xj is called a monomial of f and αS ∈ R.

The degree (or order) of a monomial is given by |S|.
Polynomial Unconstrained Binary Optimisation (PUBO)

refers to the problem of finding x⃗ ∈ {0, 1}n, such that PBF
f(x⃗) is maximised or minimised. QUBO refers to the same
problem, while restricting f to be quadratic or in other words
only allowing for monomials of degree at most two. For
instance, 3x1x2x3 is a degree-3 monomial, while πx1x2 is
a degree-2 monomial and thus allowed in QUBO problems.

We sometimes refer to the quadratisation of a higher-
order (i.e., degree greater than two) function f(x⃗) as the
reduction of PUBO to QUBO. Technically, a PBF f ′(x⃗, y⃗)
is a quadratisation of f(x⃗), if f ′(x⃗, y⃗) is a quadratic PBF
(deg(f ′) = 2) in x⃗ = x1, . . . , xn and y⃗ = y1, . . . , ym, and
satisfies [36]:

f(x⃗) = min
y⃗∈{0,1}m

f ′(x⃗, y⃗) ∀x⃗ ∈ {0, 1}n. (5)

Linked to that is a standard penalty term for iterative quadrati-
sation that constrains new variables [36]:

p(xi, xj , yh) = 3yh + xixj − 2xiyh − 2xjyh. (6)

D. Graph Representations for SAT and PBF

To analyse structural properties, we define the following
variable incidence graph G(V,E) for SAT formulas: Let
ψ(x⃗) =

∧
i Ci be a SAT formula in CNF. Then, V =

{x1, . . . , xn} is the set of variables. Edges are introduced,
whenever two variables (negated or not) occur in the same
clause Ci, that is, edge e = (xa, xb) ∈ E ⇔ ∃i : xa ∈
Ci ∧ xb ∈ Ci. Variable x ∈ C denotes whether variable x
occurs in clause C regardless of negation.

Analogously we define a graph representation for a given
PBF f(x⃗) =

∑
i αiMi, where αiMi enumerates all possible

monomials based on x⃗. As before nodes V = {x1, . . . , xn}.
Similarly, edges are introduced, whenever two variables occur
in the same monomial Mi: e = (xa, xb) ∈ E ⇔ ∃i : xa ∈
Mi ∧ xb ∈Mi ∧ αi ̸= 0.

For both graph representations, we disregard self-edges,
since in the case of SAT they would either mean that a variable
is redundant in a clause or the clause is trivially satisfiable and
in the case of PBFs, xn = x, n ∈ N. Take into consideration
that the same variable pair can occur in multiple clauses or
monomials. To keep this information, a multi graph (multiset
E) could be used. However, for sake of simplicity, we do not
formally introduce a multigraph, but rather denote the number
of edges between two nodes by an edge label.

III. RELATED WORK

A. Textbook k-SAT to 3-SAT

The textbook reduction from k-SAT to 3-SAT [35] provides
a simple method to reduce the size of clauses. Let t = 3 be
the target size. In essence, we iteratively replace the last t− 1
variables by a new variable in each clause Ci larger than t.
Hence, the size of Ci reduces by t−2 and we introduce a new
t-SAT clause that contains the negation of the new variable and
the formerly replaced ones. For example, let ψ(x⃗) = (x1∨x2∨
x3 ∨ x4 ∨ x5) be a 5-SAT instance. Then,

(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5)
x6−→

(x1 ∨ x2 ∨ x3 ∨ x6) ∧ (x6 ∨ x4 ∨ x5)
x7−→

(x1 ∨ x2 ∨ x7) ∧ (x7 ∨ x3 ∨ x6) ∧ (x6 ∨ x4 ∨ x5) = ψ′(x⃗′)

ψ′(x⃗′) is a t-SAT formula that is satisfiable if and only if ψ(x⃗)
is satisfiable. Note that this method can easily be extended to
reduce to t-SAT with t > 3 formulas.

B. MAX-k-SAT to QUBO

Chancellor et al. [37] provide a QUBO mapping of MAX-3-
SAT and mentions the easily expandability of his construction
to MAX-k-SAT1. By counting the number of literals that
satisfy a clause for a given assignment via one-hot encoded
ancillas, he is able to use penalty terms per clause that match
a given MAX-3-SAT problem. Chancellor et al. also mention
that more efficient (in terms of ancilla bits) constructions are
possible. For instance, a 3-SAT clause can be implemented

1Technically, Ising Spin Glasses are used, which can easily be mapped to
QUBO by variable substitution.

into QUBO by using a single (and not 3, as before) ancilla
bit. We demonstrate this mapping, when considering the
general mapping of a k-SAT clause to PUBO, which is then
transformed to QUBO via quadratisation.

Nüßlein et al. [38] expand the idea of counting the number
of literals that satisfy a clause by using binary encoding—
lowering the number of ancillas per clause to grow logarith-
mically in k for k ≥ 4 in a MAX-k-SAT problem. To be more
precise, the number of variables in the resulting QUBO N is
given by:

N = n+m · r(k), (7)

where n is the number of variables, m is the number of clauses
and

r(k) =

0 if k = 2,

1 if k = 3,

⌈log2(k + 1)⌉+ r(⌈log2(k + 1)⌉) if k ≥ 4.

Note that both methods scale linearly in the number of clauses.

C. 3-SAT to QUBO

Recall the definition of SAT and MIS from Sec. II. We now
shortly review a known reduction from 3-SAT to MIS (Choi)
[39]. Then, we can use a known QUBO formulation for the
MIS instance.

Let ψ(x⃗) = C1 ∧ C2 ∧ . . . ∧ Cm be a 3-SAT instance in
CNF, that is, each clause Ci, i ∈ {1, . . . ,m} consists of at
maximum 3 literals (i.e., (negated) variables x1, . . . , xn): Ci =
(li1 ∨ li2 ∨ li3). For each literal in a clause Ci, we create
a group of fully connected nodes in graph GSAT(V,E) (see
Fig. 2) [39]. Additionally, every conflicting literal pair (i.e.,
lis = ljt ; i ̸= j) in GSAT introduces an edge (is, jt). Then, the
following statements are logically equivalent:

• ψ(x⃗) is satisfiable.
• GSAT has a MIS of size m.

The known QUBO formulation of a MIS [39] incorporates
its graph G and was recently used by Zielinski et al. [40] to
compare it to other transformations to QUBO. Its optimisation
function is given by [41]:

γ(x1, . . . , xn) =
∑
i∈V

cixi −
∑

(i,j)∈E

Jijxixj , (8)

where ci = 1 is the weight for nodes in the graph2 and
Jij > 1 ∀(i, j) ∈ E. Maximising function γ(x1, . . . , xn)
solves the MIS problem. In particular, the set of nodes
mis(G) = {i ∈ V : x∗i = 1}, where (x∗1, . . . , x

∗
n) =

argmax(x1,...,xn)∈{0,1}n γ(x1, . . . , xn), corresponds to MIS.
Zielinski et al. [40] structure 3-SAT clauses into four types,

depending on (negated) literals. They present an algorithm to
search for valid QUBO representations3 Qi, i ∈ {1, . . . ,m}
for single 3-SAT clauses and then combine each Qi to a QUBO
Q, using methods presented in [37]. This method results in a
QUBO size of n + m, where n is the number of variables

2SAT reduces to an unweighted graph.
3Note that there are infinitely many valid representations.

in the original SAT instance and m is the number of clauses.
Note that defining types of k-SAT clauses, as before for 3-
SAT, scales exponentially in k. However, textbook reductions
from k-SAT to 3-SAT can be applied prior to type definition
(see Sec. II).

This method is closely linked to quadratisation techniques
found in the works of Boros et al. [36], [42], [43]: We can
reformulate the above stated as firstly defining a family of
valid quadratisations for clause types that use a single ancilla
variable. Alternatively, one can use the methods presented in
Sec. III-E to formulate higher-order PBFs fi, i ∈ {1, . . . ,m}
and then apply one of many reductions from [44] to arrive at
a similar quadratic function for clauses. Secondly, a PBF for
the original 3-SAT instance is determined by summation:

f =

m∑
i=1

fi. (9)

Dobrynin et al. [45] point to a similar argument by incor-
porating different penalty terms in their PUBO to QUBO
transformation. In [46], the n+m approach provides different
penalty terms with fewer interactions than the standard penalty
(see Sec. II). Despite these penalties not obeying the quadrati-
sation criteria, they preserve at least one minimum4. Although,
every isolated k-SAT clause Ci has 2k − 1 satisfying variable
assignments, penalty terms that do not obey the quadratisation
criteria potentially reduce the set of valid possible solutions for
isolated clauses. However, since clauses Ci, i ∈ {1, . . . ,m}
typically share variables or literals in a given k-SAT formula,
it is important to preserve all local satisfying solutions for
clauses. If not, satisfying variable assignments for the given
k-SAT formula do not map to minimum in QUBO. Take
into consideration that the effect of this local inaccuracy is
especially pronounced on k-SAT formulas with high inter-
clause connectivity, high number of clauses or high k. We
therefore emphasize the importance to adhere to the quadrati-
sation criteria (see Eq. 5), when building upon small solution
sets.

D. k-SAT to MIS to QUBO

Through a similar argument for the reduction from 3-SAT
to MIS (see Sec. III-C), we extend this study by comparing
QUBO mappings for k-SAT instances. Analogously, each
exact k-SAT clause Ci creates a fully connected sub-graph
in G with k nodes. As before, conflicting literals in different
sub-graphs are connected. Note that if there are conflicting
literals in the same sub-graph, they are already connected by
construction. Hence, for exact k-SAT with m clauses, there
are k ·m nodes in the graph.

As a side note, the size of resulting QUBO is at least twice
the number of variables squared, when all literals are used
in the SAT formula. As with the 3-SAT to MIS construction,
choosing Jij > min(ci, cj), ci > 0 is required.

4We refer to the penalties given for (a ∨ b ∨ c) and (a ∨ b ∨ c).

E. k-SAT to PUBO

Let ψ(x⃗) be an exact k-SAT formula in CNF with clauses
Ci, i ∈ {1, . . . ,m}. For example, let C1 = (x1∨x2∨x3) and
C2 = (x2 ∨ x3 ∨ x4). Then, contrary to Choi’s reduction, we
can encode a negated variable xi as 1− xi. The same applies
for clause negation, by using DeMorgan’s rules for multiple
variables (see also [45]). Hence, equivalent PBFs for clauses
C1 and C2 are given by

fC1(x1, x2, x3) = 1− x1x2x3
fC2(x2, x3, x4) = 1− (1− x2)(1− x3)x4.

(10)

Their sum then encodes the decision problem:

fSAT(x1, x2, x3, x4) = fC1
(x1, x2, x3) + fC2

(x2, x3, x4).

A similar construction for 3-SAT formulas can be found in
[47]. Note that if a clause Ci evaluates to true the correspond-
ing PBF fCi

evaluates to 1. If Ci evaluates to false, then fCi

evaluates to 0—effectively encoding Ci into a maximisation
problem. The minimisation problem can easily be obtained
by negating fCi . For both maximisation and minimisation
problem, the SAT formula is satisfiable, iff

∃x⃗ ∈ {0, 1}n : |fSAT(x⃗)| = m. (11)

If |fSAT(x⃗)| = s, then there are s many satisfied clauses
for the assignment x⃗, which can be used for the generalised
optimisation of MAX-SAT.

In general, for exact k-SAT formulas, this leads to mono-
mials of degree k in the resulting PBF. Monomials of degree
smaller than k occur whenever non-negated variables appear
in a clause Ci. Note that if a clause Ci consists of k negated
variables (e.g., (x1 ∨ x2 ∨ x3 ∨ x4})), then the resulting PBF
has a single degree-k monomial (e.g., x1x2x3x4). Monomials
can can be quadratised via either ⌈log2(k)⌉ − 1 or a sin-
gle extra variable—depending on whether αS is positive or
negative [43], [44]. Although redundant clauses are excluded
from the input SAT formula, the resulting degree-k monomial
can occur in other transformed PBFs fCj . For example, let
Cj = (x1 ∨ x2 ∨ x3 ∨ x4}). Then x1x2x3x4 occurs in
fCj

(x⃗) = 1 − (1 − x1)x2x3x4
5, which offers potential to

efficiently quadratise multiple occurrences at once.
Conversely, assume a clause Ci consists of k distinct and

non-negated variables (i.e., no negative literal). Then, the
resulting PBF fCi

has all possible monomials of degree i,
i ∈ {1, . . . , k}. Since there are

(
k
i

)
many possible degree-i

monomials, clause Ci introduces

k∑
i=0

(
k

i

)
= 2k − 1

5We do not consider prefactor α here.

many monomials. If one would brute force reduce all degree-i
(i > 2) monomials via a single variable in every clause6, there
would be

m ·
k∑

i=3

(
k

i

)
= m ·

(
2k −

(
k

2

)
− k − 1

)
many new variables in fSAT. However, arbitrary SAT instances
usually do not fit into one of the above categories (all positive
or all negative literals) and hence a reduction method exploit-
ing the inner structure of fSAT is needed.

F. PUBO to QUBO

Problem PUBO

QUBO Quantum
Circuit

R
educ
p

Figure 3: Abstracted PUBO / QUBO relation. (Dashed) lines:
(Multiple intermediate) transformation(s).

Let PUBO and QUBO denote two formulations for the same
problem (see Fig. 3). It is possible to encode both PUBO and
QUBO into quantum circuits and transpile them onto hardware
that features at most two qubit operations. On the one hand
the PUBO formulation leads to necessary decompositions of
higher-order gates. On the other hand, the QUBO formulation
has to cope with encoding the same information and therefore
has potentially more gates than the original PUBO. Reducing
the degree of monomials in a PUBO f can benefit circuit
metrics (i.e., circuit depth, distribution of gates and number of
gates), when, for example, creating a Quantum Approximate
Optimisation Algorithm (QAOA) circuit [2]. Note that these
results stem from an empirical study, featuring an industry
relevant Job-Shop Scheduling problem with at most degree-4
monomials. Contrary to that, Campbell and Dahl [48] execute
small instances of the four corner graph colouring problem
with QAOA and COBYLA and found better results when
directly using their PUBO formulation.

There are many possible transformations from PUBO fP to
QUBO fQ—including monomial-wise reductions or consider-
ing specific monomial properties [44]. When structural prop-
erties cannot be leveraged to simplify fP , new variables are
introduced to reduce the degree of fP . A fast quadratisation
algorithm (Local Structure Reduction (LSR)) was published
in [49], which uses iterative quadratisation and has a free
parameter p ∈ [0, 1]. Parameter p influences properties of the
resulting QUBO fQ. For instance, a higher value of p can lead
to less variables, but higher degree-2 density in fQ and vice
versa.

Mapping a given logical quantum circuit onto hardware
(that depends on given QUBO) often requires the use of

6This term is a lower bound, since ⌈log2(k)⌉−1 extra variables are required
for positive degree-k monomials [43].

SWAP-gates to accommodate for missing connections. Finding
balance between connectivity in QUBO and number of qubits
is performance-relevant and thus should be considered by
an automated (quantum) toolchain. Percentile p is a simple
tunable parameter for this task.

IV. EXPERIMENTS

Recall that introduced MAX-k-SAT to QUBO formulations,
as well as Choi’s reduction via MIS scale with the number
of clauses, but do not consider inter-clause relations (i.e., the
inner structure). Contrary, the iterative reduction is able to
exploit the inner structure of the resulting PUBO formulation,
when quadratising to QUBO—not only requiring less extra
variables, but also influencing structure of resulting QUBO.
Hence, comparing these methods is of interest for the fol-
lowing experiments. Our experiments also extend depicted
research by considering structural properties of input, inter-
mediate and output problem representations.

A. Setup

Let V be the set of variables. Then L = V ∪ {x : x ∈ V }
is the set of literals, where x is the negation of x. For all
experiments, we randomly sample k literals from L and repeat
that step m times (number of clauses). Since the number of
actually used variables in ψ(x⃗) can be less than |V |, we use the
number of actually used variables as the x-axis of our graphs.
At first we shed light on the scaling effects and then analyse
the structural properties of (intermediate) representations for
a single instance. Take into consideration that, for k = 3,
textbook reduction has no effect on its input. Hence, Choi
and Choi*, as well as Dobry. and DeMorg. perform similarly
among all figures for k = 3.

B. Results

Fig. 4, 5 and 6 have equal structure: The x-axis represents
the number of variables in the input k-SAT instance. Each
horizontal facet shows one of the tested variants, that is, Choi
(Textbook reduction to 3-SAT, followed by MIS to QUBO),
Choi* (generalised version, i.e., direct MIS to QUBO), Dobry.
(Textbook reduction to 3-SAT, followed by direct PUBO map-
ping and quadratisation) and DeMorg. (direct PUBO mapping,
followed by quadratisation). Fig. 9 also gives a bird eye view
on their relation. Each vertical facet represents k in the input
instance, while the colour indicates the number of clauses m
in the input instance.

Fig. 4 shows the number of variables in resulting QUBO
on its y-axis (log scale). For each method, the number of
clauses increases the number of variables. For both Choi and
Choi*, the increase is linear in the total size of clauses, with
respect to the input 3- or k-SAT instance. However, Choi has
to cope with increased total clause size due to introducing
extra variables (see Sec. III-A) and hence, scales worse than
k ·m. In particular, the resulting 3-SAT formula has (k−2) ·m
clauses and therefore a total size of 3(k−2) ·m 7. The effects
of the textbook reduction are also visible in Dobry., which

7Note that 3(k − 2) ·m > k ·m ⇔ k > 3 ∀m ∈ N.

leads to small dependence on the number of variables in k-
SAT, since variables in 3-SAT clauses after textbook reduction
contain at least 1/3 new (negated) variables (depending on
the particular pair choice in iterative textbook reduction).
Conversely, DeMorg. scales with the number of variables in
k-SAT, but introduces less variables up to k = 7 compared to
Choi* and Dobry. and up to k = 10 for Choi and Dobry..

Fig. 5 shows the number of monomials (mostly interactions)
in QUBO on its y-axis (log scale). DeMorg. and Dobry.
scale similarly with according arguments as before for Fig. 4.
For Choi and Choi*, the number of monomials decreases
as the number of variables in k-SAT increases. Recall that
their construction (see Sec. III) introduces interconnections in
MIS graph, whenever there are conflicting literals in different
clauses. Hence, increasing the number of variables in randomly
sampled k-SAT instances, decreases the expected number
of conflicts. Interestingly, this effect also transitively applies
through textbook reduction to Choi, since the size of cliques
reduces, although the total size of 3-SAT clauses increases
compared to k-SAT.

Fig. 6 shows the total time for the k-SAT to QUBO
reduction in seconds on its y-axis (log scale), which is relevant
for time constraint applications. It is evident that the runtime
mostly depends on the number of clauses and k for Choi,
Choi* and Dobry.—with Dobry. featuring consistently lower
values than Choi, albeit both using textbook reduction. Up
to k = 20, generalised Choi* is faster than Choi, although
it has to generate 20-cliques in MIS graph. In other words,
the number of edges in the MIS graph per k-SAT clause is
quadratic in k, whereas the textbook reduction introduces k−2
3-SAT clauses per k-SAT clause. Take into consideration that
directly mapping k-SAT to PUBO introduces an exponential
amount of monomials in the number of positive literals, due to
term expansion. We therefore do not recommend this method
beyond a certain kα > 20. However, DeMorg. outperforms
Choi and Choi* up to k = 10 and more than 132 clauses. Note
however that the underlying implementation can be further
optimised in time.

Fig. 7 shows the ratio of actual to possible clauses and
degree-2 monomials on the x- and y-axis respectively. Each
method tends to generate sparse QUBO representations for
k ≥ 10. For k = 3, DeMorg. and Dobry. result in significantly
denser QUBOs than Choi and Choi*, since they do not intro-
duce additional variables. For k = 10, Choi* and DeMorg.
provide higher density due to less introduced variables, as
discussed for Fig. 4. Also note that the randomly sampled
input k-SAT instances become less dense as k increases.

Fig. 8 shows the number of variables in QUBO on its y-
axis (log scale). Contrary to previous figures, where p = 1, its
horizontal facets show different percentiles p (see Sec. III-F)
for quadratisation and method DeMorg.. In general, higher
percentile p ∈ [0, 1] leads to less variables in QUBO, since
higher p leads to the iterative reduction of variable pairs
that occur in more monomials per iteration. Note however
that finding the minimum number of new variables for a
valid quadratisation is NP-hard [36]—indicating potential

instabilities in the heuristic polynomial time approach. Be that
as it may, Fig. 8 suggests a relatively stable process for the
tested input instances—supporting the general statement for p.

Apart from scaling of metrics, the internal structure and
the effect of transformations in each step are relevant to
extrapolate our findings to other input problems. Fig. 9 shows
this exemplary for a single 6-SAT instance with 5 clauses and
14 variables. Each path of transformations has intermediate
representations, which are shown as graphs, introduced in
Sec. II. Note that comparing graphs visually can be deceiving,
when using arbitrary node positions and ordering. Therefore,
only for the visualisation in Fig. 9, we sort nodes according
to the highest clique they occur in (see Alg. 1), where
MAX_CLIQUE(G) returns a list of nodes, contained in a
maximum clique of G and operation “+” (Alg. 1: l. 3) appends
the set of nodes C to list V ′. In addition to node positioning,

Algorithm 1 Sorted nodes by clique size.
Input Graph G(V,E)
Output Sorted list of nodes V ′

1: while V ̸= ∅ do
2: C ← MAX_CLIQUE(G)
3: V ′ ← V ′ + C; V ← V \ C
4: end while
5: return V ′

we show the difference in nodes and edges to the previous
representation by colouring new nodes and edges in red.
Also recall that edge labels correspond to multiplicity (see
Sec. II). Hence, an edge e with label 3 between nodes i and
j corresponds to 3 edges. Therefore, pair {i, j} occurs in 3
clauses (in case of SAT) or 3 monomials (in case of PBF).
Fig. 9 shows a subtle characteristic for Choi’s reductions,
namely k-cliques, where k depends on the input SAT instance.
Hence, shown MIS graph of Choi* has 5 6-cliques, since there
are 5 clauses and the input is a 6-SAT instance. Likewise,
shown MIS graph of Choi has 20 3-cliques, since there are
20 clauses in the input 3-SAT instance. Note that the size of
cliques is upper bounded by k, since a variable in clause Ci

cannot be in conflict with all variables of another clause Cj—
due to the construction of k-SAT instances. Since we exclude
self-edges or linear terms in PBF (see Sec. II), the resulting
QUBO graph for Choi(*) is isomorph to the MIS graph.

This is in contrast to the methods that map a k-SAT
instance directly to PUBO—leading to monomials of degree
less than or equal to k. Since, in general, the quadratisation
of PUBO requires additional variables and constraint terms
(see Sec. III-F), resulting QUBOs change in structure and
variables. Note that each PUBO graph is isomorphic to its 3-
or k-SAT graph up to edge labels, which increase. Increasing
edge labels are a result of degree-t, t < k monomials. After
quadratisation, each QUBO graph has edge label 1, which is
not shown explicitly. Fig. 9 shows many more red edges in
QUBO in the direct mapping (DeMorgan) compared to firstly
reducing to 3-SAT (Dobrynin). Red edges in QUBO are a
result of the quadratic penalty term (see Eq. 6) and quadratic

k = 3 k = 7 k = 10 k = 15 k = 20

C
hoi

C
hoi*

D
eM

org.
D

obry.

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

101
102
103
104

101
102
103
104

101
102
103
104

101
102
103
104

Variables in k-SAT

#
V

ar
ia

bl
es

in
Q

U
B

O
[l

og
]

Clauses

288

236

184

132

93

54

15

Figure 4: Number of variables in k-SAT (x-axis) vs number of variables in resulting QUBO (y-axis), coloured by the number
of clauses. Horizontal facet: Transformation path. Vertical facet: k in k-SAT. For DeMorg. and Dobry., p = 1.

k = 3 k = 7 k = 10 k = 15 k = 20

C
hoi

C
hoi*

D
eM

org.
D

obry.

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

102
103
104
105

102
103
104
105

102
103
104
105

102
103
104
105

Variables in k-SAT

#
M

on
om

ia
ls

in
Q

U
B

O
[l

og
]

Clauses

288

236

184

132

93

54

15

Figure 5: Number of variables in k-SAT (x-axis) vs number of monomials in resulting QUBO (y-axis), coloured by the number
of clauses. Horizontal facet: Transformation path. Vertical facet: k in k-SAT. For DeMorg. and Dobry., p = 1.

k = 3 k = 7 k = 10 k = 15 k = 20

C
hoi

C
hoi*

D
eM

org.
D

obry.

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

10-2

100

102

10-2

100

102

10-2

100

102

10-2

100

102

Variables in k-SAT

Ti
m

e
fo

r
pa

th
tr

an
sf

or
m

at
io

ns
[s

,l
og

] # Clauses

288

236

184

132

93

54

15

Figure 6: Number of variables in k-SAT (x-axis) vs transformation time (y-axis), coloured by the number of clauses. Horizontal
facet: Transformation path. Vertical facet: k in k-SAT. For DeMorg. and Dobry., p = 1.

k = 3 k = 7 k = 10 k = 15 k = 20

C
hoi

C
hoi*

D
eM

org.
D

obry.

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0.0
0.2
0.4

0.0
0.2
0.4

0.0
0.2
0.4

0.0
0.2
0.4

k-SAT density

Q
U

B
O

de
ns

ity
de

gr
ee

2
Clauses

288

236

184

132

93

54

15

Figure 7: k-SAT density (i.e., ratio of actual to possible clauses; x-axis) vs QUBO density for degree-2 monomials (i.e., ratio
of actual to possible degree-2 monomials) (y-axis), coloured by the number of clauses. Horizontal facet: Transformation path.
Vertical facet: Value of k in k-SAT. For DeMorg. and Dobry., p = 1.

k = 3 k = 7 k = 10 k = 15 k = 20

0.01
0.1

1

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

101
102
103
104
105

101
102
103
104
105

101
102
103
104
105

Variables in k-SAT

#
V

ar
ia

bl
es

in
Q

U
B

O
[l

og
]

Clauses

288

236

184

132

93

54

15

Figure 8: Number of variables in k-SAT (x-axis) vs number of variables in resulting QUBO (y-axis), coloured by the number
of clauses. Horizontal facet: Percentile p for direct mapping to PUBO (DeMorgan). Vertical facet: k in k-SAT.

monomials. For example, term x1x2x3x4
x1x2=y1−→ y1x3x4 +

p(x1, x2, y1)
x3x4=y2−→ y1y2+p(x1, x2, y1)+p(x3, x4, y2) leads

to a new edge {y1, y2} and at least 2 more edges per penalty
term.

In summary, quadratisation spreads the information en-
coded by PUBO over new variables. However, directly map-
ping k-SAT to PUBO leads to more concentrated regions
of high and low connectivity, while first mapping to 3-SAT
leads to a more uniform distribution of graph connectivity.
The varying spread of interactions is also visible for Choi’s
reductions. One can take advantage of these variations in later
steps, when, for example, transpiling a circuit onto specific
hardware topologies.

C. Qualitative Extrapolation

Motivated by structure inducing industry relevant problems
and based on discussed results for random exact k-SAT

instances, we make qualitative arguments for different input k-
SAT formulas with varying structure. This enables estimating
structural properties of resulting QUBO for structured or
degenerate input instances. We therefore consider:

(1) High degeneracy in k
(2) High inter-clause connections (communities/cliques)

In the following, we assume that the input is no longer
necessarily given as an exact k-SAT instance. Therefore,
clauses Ci, i ∈ {1, . . . ,m} can have different size—up to k.
Let ψ(x⃗) =

∧
i Ci be a SAT formula in CNF.

a) Textbook k-SAT to 3-SAT: The transformation from
k-SAT to 3-SAT solely depends on the number of clauses
of size k > 3. Therefore, inter-clause relations do not affect
this transformation (2). Note that due to newly introduced
variables, there cannot be redundant clauses. A high degen-
eracy in k or less clauses of size k lead to less new variables
(1). To be more precise, for a clause of size k, k − 3 new

x2

x8

x10

x18x11

x14

x15

x7

x1

x9

x6 x3

x16

x13

33

2

2

2

2

2

2

2

2

2

2

k-SAT

x1

x18

x28

x2

x32

x33

x6

x24x23

x10

x14

x31

x13

x25

x26

x15

x9

x19

x3

x22

x7

x30 x8

x11

x20

x16

x21

x27

x29

2

2

3-SAT

x0cx8

x0cx2

x0cx18

x0cx16

x0cx15

x0cx9

x1cx7

x1c!x15x1cx6

x1c!x8

x1cx3

x1cx2

x2cx6

x2cx14

x2cx15

x2c!x13

x2cx2

x2cx13

x3c!x15

x3c!x7

x3cx15

x3c!x9

x3cx18 x3cx1

x4cx11

x4c!x8

x4c!x2

x4cx18

x4cx10

x4cx14

x0c!x19

x0cx15

x0cx9

x1c!x20

x1cx16

x1cx19

x2c!x21

x2cx18

x2cx20

x3cx8

x3cx2

x3cx21

x4c!x22

x4cx3
x4cx2x5c!x23x5c!x8x5cx22

x6c!x24

x6cx6

x6cx23

x7cx7

x7c!x15

x7cx24

x8c!x25

x8cx2

x8cx13

x9c!x26

x9c!x13

x9cx25

x10c!x27

x10cx15

x10cx26

x11cx6

x11cx14

x11cx27

x12c!x28

x12cx18

x12cx1

x13c!x29

x13c!x9

x13cx28

x14c!x30
x14cx15x14cx29x15c!x15x15c!x7

x15cx30

x16c!x31

x16cx10

x16cx14

x17c!x32

x17cx18

x17cx31

x18c!x33

x18c!x2

x18cx32

x19cx11

x19c!x8

x19cx33 MIS

x1

x18

x28

x2

x32

x33

x6

x24x23

x10

x14

x31

x13

x25

x26

x15

x9

x19

x3

x22

x7

x30 x8

x11

x20

x16

x21

x27

x29

2

2

2

2

2

2

2

2

2

2

3

2

2

2

2

2

2

2

3
2

2

2

2

2

2

3

2

2

2

2

2

2

2

2

2

2

x2

x8

x10

x18x11

x14

x15

x7

x1

x9

x6 x3

x16

x13

2

2

2

3
7

16

27

16

23

48

4

8

12 8

8

4

4

88

4

8

12

8

4

8

1
2

4

2

16

30

1
6

23

8

8

8

2
0

16

18

4

4

44

4

8

8

4
4

16

18

1
6

PUBO

x0

x1

x2

x3

x4

x5

x6

x7x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22 x23

x24

x25

x26

x27

x28

x29

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13
x14x15x16x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

x32

x33

x34

x35

x36

x37

x38

x39

x40

x41

x42
x43 x44 x45 x46

x47

x48

x49

x50

x51

x52

x53

x54

x55

x56

x57

x58

x59

x2

x8

x21

x37

x6

x41

x27

x14

x1

x28

x36
x3x38x22

x9

x19

x44

x10

x46

x31

x13

x35

x25

x32

x18

x50

x40

x24

x23

x15

x34

x30

x20

x16
x48 x33 x43

x47

x26

x29

x51

x49

x7

x42

x11

x45

x39

x19

x8

x2

x20

x16

x9

x18

x21

x15

x10x11
x29

x37

x23

x6

x22

x24

x40

x7

x3

x28

x25

x14

x13

x39

x42

x1

x32
x33 x34

x35

x36

x38

x41

x26

x27

x30

x31

QUBO

Textbook

C
hoi*

D
eM

organ

D
obryninC

hoi

C
hoi*

C
hoi

L
SR

p
=
1

L
SR

p
=
1

Figure 9: Structural graph evolution of transformations and transformation paths, starting at a 6-SAT instance with 5 clauses
and 14 variables. Choi* marks a generalised version of Choi’s 3-SAT to MIS to QUBO transformation. Nodes are placed,
according to the largest clique they occur in—leading to clustered nodes. Newly introduced nodes and edges are shown in red
compared to the last representation. Due to their unique construction, MIS graphs do not adopt edges or nodes.

variables are introduced. Take into consideration that there are
variations of the introduced textbook reduction (see Sec. II)
that, for instance, choose different variable pairs in the iterative
process. This affects the inner structure and interconnectivity
of resulting 3-SAT clauses.

b) Choi(*): Recall that in a first step Choi’s reduction
creates fully connected sub-graphs for literals in each clause.
Hence, a high degeneracy in k (1) directly influences size of
cliques in MIS graph. Since resulting QUBO graph is isomor-
phic to MIS graph, it is also directly influenced. Since Choi’s
reduction introduces edges, whenever conflicting literals occur
in different clauses, a high conflicting inter-clause connectivity
(2) leads to more densely connected cliques in MIS graph.
Take into consideration that influence from textbook reduction
are transitively applied, when firstly reducing to 3-SAT.

c) SAT to PUBO: Directly mapping SAT to PUBO, as
shown in Sec. III, is locally dependent on clauses and their
structure. For the number of introduced monomials, differenti-
ating between positive and negative variables is decisive, as the
number of monomials scales exponentially with the number
of positive variables in clauses. Hence, a high degeneracy
in k (1) or reducing the size of clauses results in less
monomials in the resulting PUBO. The number of variables
in PUBO is independent of structural properties in ψ(x⃗).
Compared to random instances, a high inter-clause connection
(2) potentially increases chances that a variable pair occurs
in multiple monomials—enabling to reduce the same variable
pair in multiple monomials at once and thereby decreasing the
number of introduced variables when transforming to QUBO.
As before, transitive effects from textbook reduction apply—
potentially decreasing inter-clause connectivity.

V. IMPLICATIONS ON QUANTUM SOFTWARE

At a certain kα it becomes infeasible to encode kα-SAT
clauses directly into PUBO form. Although we demonstrate
scaling behaviour in time and size for k, the concrete value
for kα depends on a concrete application. An upstream re-
duction of clause size by, for example, textbook reduction
(see Sec. II), makes PUBO a well suited abstraction for
quantum toolchains—also considering their expressivity in
other problem formulations [2] and potential speedup over
QUBO in annealing [50]. Choi(*)’s reduced QUBO has high
connectivity among former clauses in k-SAT. It can also be
combined with textbook reductions, to increase the number
of variables, but decrease clique-size and keep its regular
structure. Ultimately a hardware executable representation is
needed and hence further transformation steps. A quantum
toolchain can leverage these results by choosing suitable paths
and parameters based on later steps. For example, a quantum
hardware that features high local, but low global connectivity,
benefits from the structure of Choi(*)’s reduction, whereas
a low qubit count hardware benefits from PUBO to QUBO
reduction in the case of 3-SAT and parameter p = 1.

Higher order formulations (i.e., increasing k) of k-SAT,
tend towards sparsely connected QUBOs, which emphasises
the need for efficient classical data structures, representing

monomials in QUBO. This aspect is of interest in high
performance data centres [51], where communication time is
a vital aspect of performance. Moreover, estimating time for
preparatory steps can be beneficial for schedulers that manage
work loads on restricted (quantum) nodes.

The mapping problem (i.e., finding a hardware executable
circuit) is also relevant for Quantum Error Correcting Codes
(QECC), since they typically add additional gates or qubits
to introduce redundancy (see [52], [53] for more information
about QECC). Since circuit depth or the number of additional
qubits scales with the number of correctable errors, it is
sensible to also consider hardware topology and hardware
noise in advance (e.g., by reducing circuit size or depth
by a pre-optimised hardware specific mapping). This aspect
can be combined with characteristics that are introduced by
transformation paths in an automated quantum toolchain (e.g.,
connectivity and error rates around additional qubits used for
QECC).

Overall, our results indicate relatively stable scaling be-
haviour, paving the way for extrapolation. Hence, optimising
metrics for error correcting codes, hardware and ultimately
performance and solution quality is possible in a predictable
manner.

VI. CONCLUSION AND OUTLOOK

As there are many transformation paths and free parameters
from an abstract problem formulation down to deploying
it onto hardware, selecting an optimal route requires the
characterisation of global influence of single transformations.
We set the starting point on k-SAT abstraction and investigate
four transformation paths down to QUBO—accompanied by
intermediate representations and their respective properties (3-
SAT, MIS and PUBO). Our empirical study finds relatively sta-
ble property development among all four paths, which enables
predicting their behaviour for larger inputs. We also give qual-
itative arguments to extrapolate our findings beyond random
k-SAT inputs. Although properties develop predictably, their
magnitude and structure differs (e.g., # clauses, # variables,
monomials, distribution). An automated quantum toolchain
can leverage these differences by optimising for metrics most
relevant for a given hardware and therefore improve perfor-
mance, runtime or solution quality.

The mountainous amount of possible paths and free pa-
rameters gives rise to further studies of property development
among a wider range of abstraction layers. For instance, the
energy spectra of a resulting optimisation problem (PUBO or
QUBO) can be interesting in view of (quantum) solvers. Other
studies can also extend our work by incorporating further met-
rics, ranked by their importance to the target representation.
Acknowledgements We thank Simon Thelen for many active discus-
sions and Maja Franz for valuable comments on the ideas presented
in this paper. We acknowledge support from German Federal Ministry
of Education and Research (BMBF), funding program “Quantum
Technologies—from Basic Research to Market”, grant #13N15647
and #13N16092. WM acknowledges support by the High-Tech
Agenda Bavaria.

REFERENCES

[1] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” 1996. [Online]. Available: https://arxiv.org/abs/quant-ph/
9605043

[2] L. Schmidbauer, K. Wintersperger, E. Lobe, and W. Mauerer, “Poly-
nomial reduction methods and their impact on qaoa circuits,” in IEEE
International Conference on Quantum Software (QSW), 07 2024.

[3] M. Schönberger, I. Trummer, and W. Mauerer, “Quantum-inspired
digital annealing for join ordering,” Proc. VLDB Endow., vol. 17, no. 3,
p. 511–524, nov 2023. [Online]. Available: https://doi.org/10.14778/
3632093.3632112

[4] K. J. Mesman, F. Battistel, E. Reehuis, D. d. Jong, M. J. Tiggelman
et al., “Q-profile: Profiling tool for quantum control stacks applied
to the quantum approximate optimization algorithm,” in 2024 IEEE
International Conference on Quantum Software (QSW), 2024, pp. 116–
124.

[5] N. Quetschlich, F. J. Kiwit, M. A. Wolf, C. A. Riofrio, L. Burgholzer
et al., “Towards application-aware quantum circuit compilation,” in 2024
IEEE International Conference on Quantum Software (QSW), 2024, pp.
135–142.

[6] M. Schnaus, L. Palackal, B. Poggel, X. Runge, H. Ehm et al., “Efficient
encodings of the travelling salesperson problem for variational quan-
tum algorithms,” in 2024 IEEE International Conference on Quantum
Software (QSW), 2024, pp. 81–87.

[7] A. Wright, M. Lewis, P. Zuliani, and S. Soudjani, “T-count optimizing
genetic algorithm for quantum state preparation,” in 2024 IEEE Inter-
national Conference on Quantum Software (QSW), 2024, pp. 58–68.

[8] S. Reale and E. D. Nitto, “Quantum graph pursuit: Analysis of the
advantages and challenges of a quantum dynamic combinatorial opti-
mization model from a software developer perspective,” in 2024 IEEE
International Conference on Quantum Software (QSW), 2024, pp. 24–
34.

[9] R. Wille, L. Berent, T. Forster, J. Kunasaikaran, K. Mato et al., “The
mqt handbook : A summary of design automation tools and software
for quantum computing,” in 2024 IEEE International Conference on
Quantum Software (QSW), 2024, pp. 1–8.

[10] T. Yue, W. Mauerer, S. Ali, and D. Taibi, Challenges and
Opportunities in Quantum Software Architecture. Cham: Springer
Nature Switzerland, 2023, pp. 1–23. [Online]. Available: https:
//doi.org/10.1007/978-3-031-36847-9_1

[11] M. Periyasamy, A. Plinge, C. Mutschler, D. D. Scherer, and W. Mauerer,
“Guided-spsa: Simultaneous perturbation stochastic approximation as-
sisted by the parameter shift rule,” in 2024 IEEE International Confer-
ence on Quantum Computing and Engineering (QCE), vol. 01, 2024,
pp. 1504–1515.

[12] C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen et al., “Time-optimal
qubit mapping,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 360–374. [Online].
Available: https://doi.org/10.1145/3445814.3446706

[13] A. Cowtan, S. Dilkes, R. Duncan, A. Krajenbrink, W. Simmons
et al., “On the qubit routing problem,” 2019. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2019/10397/

[14] M. Akram, N. Maas, P. Sanders, and D. Schreiber, “Engineering
optimal parallel task scheduling,” 2024. [Online]. Available: https:
//arxiv.org/abs/2405.15371

[15] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai, “Robust boolean
reasoning for equivalence checking and functional property verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, p. 1377–1394, Dec. 2002. [Online].
Available: http://dx.doi.org/10.1109/TCAD.2002.804386

[16] V. Havlena, L. Holík, O. Lengál, and J. Síč, “Cooking string-integer
conversions with noodles.” Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2024. [Online]. Available: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.SAT.2024.14

[17] I. Shaik and J. van de Pol, “Optimal layout synthesis for deep
quantum circuits on nisq processors with 100+ qubits,” 2024. [Online].
Available: https://arxiv.org/abs/2403.11598

[18] J. Yang, Y. A. Kharkov, Y. Shi, M. J. H. Heule, and B. Dutertre,
“Quantum circuit mapping based on incremental and parallel sat
solving.” Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

2024. [Online]. Available: https://drops.dagstuhl.de/entities/document/
10.4230/LIPIcs.SAT.2024.29

[19] C. Ansótegui, M. L. Bonet, J. Giráldez-Cru, and J. Levy, “Structure
features for sat instances classification,” Journal of Applied Logic,
vol. 23, p. 27–39, Sep. 2017. [Online]. Available: http://dx.doi.org/10.
1016/j.jal.2016.11.004

[20] ——, The Fractal Dimension of SAT Formulas. Springer International
Publishing, 2014, p. 107–121. [Online]. Available: http://dx.doi.org/10.
1007/978-3-319-08587-6_8

[21] C. Ansótegui, J. Giráldez-Cru, and J. Levy, The Community Structure
of SAT Formulas. Springer Berlin Heidelberg, 2012, p. 410–423.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-31612-8_31

[22] Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, and L. Simon,
Impact of Community Structure on SAT Solver Performance. Springer
International Publishing, 2014, p. 252–268. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-09284-3_20

[23] C. Ansótegui, M. L. Bonet, and J. Levy, On the Structure of Industrial
SAT Instances. Springer Berlin Heidelberg, 2009, p. 127–141. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-04244-7_13

[24] C. Ansótegui, M. L. Bonet, and J. Levy, “Towards industrial-like random
sat instances,” in Proceedings of the 21st International Joint Conference
on Artificial Intelligence, ser. IJCAI’09. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2009, p. 387–392.

[25] M. Schönberger, I. Trummer, and W. Mauerer, “Quantum optimisation
of general join trees,” in Proceedings of the International Workshop on
Quantum Data Science and Management, ser. QDSM ’23, 08 2023.

[26] M. Franz, T. Winker, S. Groppe, and W. Mauerer, “Hype or heuristic?
quantum reinforcement learning for join order optimisation,” in 2024
IEEE International Conference on Quantum Computing and Engineer-
ing (QCE), vol. 01, 2024, pp. 409–420.

[27] W. v. d. Schoot, D. Leermakers, R. Wezeman, N. Neumann, and
F. Phillipson, “Evaluating the q-score of quantum annealers,” in 2022
IEEE International Conference on Quantum Software (QSW). IEEE,
Jul. 2022. [Online]. Available: http://dx.doi.org/10.1109/QSW55613.
2022.00017

[28] T. Krüger and W. Mauerer, “Quantum annealing-based software
components: An experimental case study with SAT solving,” in
Proceedings of the IEEE/ACM 42nd International Conference on
Software Engineering Workshops, ser. ICSEW’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 445–450.
[Online]. Available: https://doi.org/10.1145/3387940.3391472

[29] M. Mézard and R. Zecchina, “Random k-satisfiability problem:
From an analytic solution to an efficient algorithm,” Physical
Review E, vol. 66, no. 5, Nov. 2002. [Online]. Available: http:
//dx.doi.org/10.1103/PhysRevE.66.056126

[30] T. Gabor, S. Zielinski, S. Feld, C. Roch, C. Seidel et al., Assessing
Solution Quality of 3SAT on a Quantum Annealing Platform.
Springer International Publishing, 2019, p. 23–35. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-14082-3_3

[31] W. Mauerer and S. Scherzinger, “1-2-3 reproducibility for quantum
software experiments,” in IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2022, pp. 1247–1248.

[32] G. S. Tseitin, On the Complexity of Derivation in Propositional
Calculus. Springer Berlin Heidelberg, 1983, p. 466–483. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-81955-1_28

[33] N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda, “Sat
competition 2020,” Artificial Intelligence, vol. 301, p. 103572, Dec.
2021. [Online]. Available: http://dx.doi.org/10.1016/j.artint.2021.103572

[34] S. Butenko and P. M. Pardalos, “Maximum independent set and
related problems, with applications,” Ph.D. dissertation, USA, 2003,
aAI3120100.

[35] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, fourth edition. MIT Press, 2022. [Online]. Available:
https://books.google.de/books?id=HOJyzgEACAAJ

[36] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,” Discrete
Applied Mathematics, vol. 123, no. 1, pp. 155–225, 2002.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0166218X01003419

[37] N. Chancellor, S. Zohren, P. A. Warburton, S. C. Benjamin, and
S. Roberts, “A direct mapping of max k-sat and high order parity
checks to a chimera graph,” Scientific Reports, vol. 6, no. 1, Nov.
2016. [Online]. Available: http://dx.doi.org/10.1038/srep37107

[38] J. Nüßlein, T. Gabor, C. Linnhoff-Popien, and S. Feld, “Algorithmic
qubo formulations for k-sat and hamiltonian cycles,” in Proceedings

https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/10.14778/3632093.3632112
https://doi.org/10.14778/3632093.3632112
https://doi.org/10.1007/978-3-031-36847-9_1
https://doi.org/10.1007/978-3-031-36847-9_1
https://doi.org/10.1145/3445814.3446706
http://drops.dagstuhl.de/opus/volltexte/2019/10397/
https://arxiv.org/abs/2405.15371
https://arxiv.org/abs/2405.15371
http://dx.doi.org/10.1109/TCAD.2002.804386
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.14
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.14
https://arxiv.org/abs/2403.11598
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.29
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.29
http://dx.doi.org/10.1016/j.jal.2016.11.004
http://dx.doi.org/10.1016/j.jal.2016.11.004
http://dx.doi.org/10.1007/978-3-319-08587-6_8
http://dx.doi.org/10.1007/978-3-319-08587-6_8
http://dx.doi.org/10.1007/978-3-642-31612-8_31
http://dx.doi.org/10.1007/978-3-319-09284-3_20
http://dx.doi.org/10.1007/978-3-642-04244-7_13
http://dx.doi.org/10.1109/QSW55613.2022.00017
http://dx.doi.org/10.1109/QSW55613.2022.00017
https://doi.org/10.1145/3387940.3391472
http://dx.doi.org/10.1103/PhysRevE.66.056126
http://dx.doi.org/10.1103/PhysRevE.66.056126
http://dx.doi.org/10.1007/978-3-030-14082-3_3
http://dx.doi.org/10.1007/978-3-642-81955-1_28
http://dx.doi.org/10.1016/j.artint.2021.103572
https://books.google.de/books?id=HOJyzgEACAAJ
https://www.sciencedirect.com/science/article/pii/S0166218X01003419
https://www.sciencedirect.com/science/article/pii/S0166218X01003419
http://dx.doi.org/10.1038/srep37107

of the Genetic and Evolutionary Computation Conference Companion,
ser. GECCO ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 2240–2246. [Online]. Available: https://doi.org/10.
1145/3520304.3533952

[39] V. Choi, “Adiabatic quantum algorithms for the np-complete maximum-
weight independent set, exact cover and 3sat problems,” 2010. [Online].
Available: https://arxiv.org/abs/1004.2226

[40] S. Zielinski, J. Nüßlein, J. Stein, T. Gabor, C. Linnhoff-Popien
et al., “Pattern qubos: Algorithmic construction of 3sat-to-qubo
transformations,” Electronics, vol. 12, no. 16, p. 3492, Aug. 2023.
[Online]. Available: http://dx.doi.org/10.3390/electronics12163492

[41] V. Choi, “Minor-embedding in adiabatic quantum computation: I.
the parameter setting problem,” 2008. [Online]. Available: https:
//arxiv.org/abs/0804.4884

[42] E. Boros and A. Gruber, “On quadratization of pseudo-boolean func-
tions,” 2014.

[43] E. Boros, Y. Crama, and E. Rodríguez-Heck, “Compact quadratizations
for pseudo-boolean functions,” Journal of Combinatorial Optimization,
vol. 39, no. 3, pp. 687–707, 2019. [Online]. Available: https:
//doi.org/10.1007%2Fs10878-019-00511-0

[44] N. Dattani, “Quadratization in discrete optimization and quantum
mechanics,” 2019. [Online]. Available: https://arxiv.org/abs/1901.04405

[45] D. Dobrynin, A. Renaudineau, M. Hizzani, D. Strukov, M. Mohseni
et al., “Energy landscapes of combinatorial optimization in ising
machines,” Physical Review E, vol. 110, no. 4, Oct. 2024. [Online].
Available: http://dx.doi.org/10.1103/PhysRevE.110.045308

[46] J. Nüßlein, S. Zielinski, T. Gabor, C. Linnhoff-Popien, and S. Feld,
Solving (Max) 3-SAT via Quadratic Unconstrained Binary Optimization.
Springer Nature Switzerland, 2023, p. 34–47. [Online]. Available:
http://dx.doi.org/10.1007/978-3-031-36030-5_3

[47] M. Hizzani, A. Heittmann, G. Hutchinson, D. Dobrynin, T. Van Vaeren-
bergh et al., “Memristor-based hardware and algorithms for higher-order
hopfield optimization solver outperforming quadratic ising machines,” in
2024 IEEE International Symposium on Circuits and Systems (ISCAS),
2024, pp. 1–5.

[48] C. Campbell and E. Dahl, “QAOA of the highest order,” in 2022 IEEE
19th International Conference on Software Architecture Companion
(ICSA-C), 2022, pp. 141–146.

[49] L. Schmidbauer, E. Lobe, I. Schaefer, and W. Mauerer, “It’s quick
to be square: Fast quadratisation for quantum toolchains,” 12 2024.
[Online]. Available: https://arxiv.org/abs/2411.19934

[50] S. Nagies, K. T. Geier, J. Akram, D. Bantounas, M. Johanning et al.,
“Boosting quantum annealing performance through direct polynomial
unconstrained binary optimization,” 2025. [Online]. Available: https:
//arxiv.org/abs/2412.04398

[51] K. Wintersperger, H. Safi, and W. Mauerer, QPU-System Co-design
for Quantum HPC Accelerators. Springer International Publishing,
2022, p. 100–114. [Online]. Available: http://dx.doi.org/10.1007/
978-3-031-21867-5_7

[52] J. Roffe, “Quantum error correction: an introductory guide,”
Contemporary Physics, vol. 60, no. 3, p. 226–245, Jul. 2019.
[Online]. Available: http://dx.doi.org/10.1080/00107514.2019.1667078

[53] N. P. Breuckmann and J. N. Eberhardt, “Quantum low-density
parity-check codes,” PRX Quantum, vol. 2, no. 4, Oct. 2021. [Online].
Available: http://dx.doi.org/10.1103/PRXQuantum.2.040101

https://doi.org/10.1145/3520304.3533952
https://doi.org/10.1145/3520304.3533952
https://arxiv.org/abs/1004.2226
http://dx.doi.org/10.3390/electronics12163492
https://arxiv.org/abs/0804.4884
https://arxiv.org/abs/0804.4884
https://doi.org/10.1007%2Fs10878-019-00511-0
https://doi.org/10.1007%2Fs10878-019-00511-0
https://arxiv.org/abs/1901.04405
http://dx.doi.org/10.1103/PhysRevE.110.045308
http://dx.doi.org/10.1007/978-3-031-36030-5_3
https://arxiv.org/abs/2411.19934
https://arxiv.org/abs/2412.04398
https://arxiv.org/abs/2412.04398
http://dx.doi.org/10.1007/978-3-031-21867-5_7
http://dx.doi.org/10.1007/978-3-031-21867-5_7
http://dx.doi.org/10.1080/00107514.2019.1667078
http://dx.doi.org/10.1103/PRXQuantum.2.040101

	Introduction
	Fundamentals
	SAT
	Maximum Independent Set
	PBF, PUBO, QUBO
	Graph Representations for SAT and PBF

	Related Work
	Textbook k-SAT to 3-SAT
	MAX-k-SAT to QUBO
	3-SAT to QUBO
	k-SAT to MIS to QUBO
	k-SAT to PUBO
	PUBO to QUBO

	Experiments
	Setup
	Results
	Qualitative Extrapolation

	Implications on Quantum Software
	Conclusion and Outlook
	References

