
Path Matters: Industrial Data
Meet Quantum Optimization

Lukas Schmidbauer
Technical University of

Applied Sciences Regensburg
Regensburg, Germany

lukas.schmidbauer@othr.de

Carlos A. Riofrío
BMW AG

Munich, Germany
carlos.riofrio@bmwgroup.com

Florian Heinrich
BMW AG

Munich, Germany
florian.heinrich@bmw.de

Vanessa Junk
OptWare GmbH

Regensburg, Germany
vanessa.junk@optware.de

Ulrich Schwenk
OptWare GmbH

Regensburg, Germany
ulrich.schwenk@optware.de

Thomas Husslein
OptWare GmbH

Regensburg, Germany
thomas.husslein@optware.de

Wolfgang Mauerer
Technical University of

Applied Sciences Regensburg
Siemens AG, Technology

Regensburg/Munich, Germany
wolfgang.mauerer@othr.de

Abstract—Real-world optimization problems must undergo a
series of transformations before becoming solvable on current
quantum hardware. Even for a fixed problem, the number of
possible transformation paths—from industry-relevant formu-
lations through binary constrained linear programs (BILPs),
to quadratic unconstrained binary optimization (QUBO), and
finally to a hardware-executable representation—is remarkably
large. Each step introduces free parameters, such as La-
grange multipliers, encoding strategies, slack variables, rounding
schemes or algorithmic choices—making brute-force exploration
of all paths intractable. In this work, we benchmark a rep-
resentative subset of these transformation paths using a real-
world industrial production planning problem with industry
data: the optimization of work allocation in a press shop
producing vehicle parts. We focus on QUBO reformulations
and algorithmic parameters for both quantum annealing (QA)
and the Linear Ramp Quantum Approximate Optimization
Algorithm (LR-QAOA). Our goal is to identify a reduced set of
effective configurations applicable to similar industrial settings.
Our results show that QA on D-Wave hardware consistently
produces near-optimal solutions, whereas LR-QAOA on IBM
quantum devices struggles to reach comparable performance.
Hence, the choice of hardware and solver strategy significantly
impacts performance. The problem formulation and especially
the penalization strategy determine the solution quality. Most
importantly, mathematically-defined penalization strategies are
equally successful as hand-picked penalty factors, paving the
way for automated QUBO formulation. Moreover, we observe
a strong correlation between simulated and quantum annealing
performance metrics, offering a scalable proxy for predicting QA
behavior on larger problem instances.

Index Terms—Industrial Production Planning, BILP, QUBO,
Annealing, LR-QAOA

I. INTRODUCTION

Optimization problems are widespread in industrial pro-
cesses. Great effort is usually employed to lowering costs,
boosting efficiency, and enhancing production. Among these
processes, production and logistics is of special interest as
decisions on supply chains, factory placements, and pro-
duction allocation are of increasingly more complexity in

an interconnected world. Many of these problems can be
cast as combinatorial optimization, which are known to be
hard to solve as the number of variables increases. Solving
these problems at large scale presents a challenge for current
computation paradigms, that is, classical super computers.

Quantum computing promises to help dealing with limits
of classical computing. In fact, many algorithms for solving
combinatorial problems have been proposed, for instance,
the Quantum Approximate Optimization Algorithm (QAOA)
[1], recursive QAOA (rQAOA) [2], [3], linear-ramp QAOA
(LR-QAOA) [4], adiabatic quantum optimization or quantum
annealing [5], and counter adiabatic QAOA (CA-QAOA) [6],
which could help alleviating the scaling limitations of classical
algorithms. For a review of QAOA and its variants see [7] and
for a practical description of problem formulations see [8].
Despite recent progress, it is still unclear whether quantum
optimization will be able to solve industry relevant problems.
In fact, few classes of problems are known to have guaranteed
quantum advantage [9] and others show promising scaling
[10]. Most of these algorithms have been implemented in
quantum computers for small problem instances with varying
levels of success. For example a variant of QAOA has been
used to solve instances of the Max-Cut problem up to 127
qubits in quantum hardware [11]. Currently, due to cloud
access to quantum computers, researchers are able to routinely
test and deploy optimization algorithms in small scale quantum
computers, so-called NISQ (noisy intermediate-scale quantum)
[12], [13] devices.

Most experiments and demonstrations of quantum algo-
rithms are carried out with a reduced class of problems, for
instance, Max-Cut, Max-SAT [14], or traveling salesperson
problem (TSP) [15], which are meant to be representative
problems (and suitable abstractions) that are hard to solve
classically. However, industrial problems seldom fall exactly
in a standard category. In this work, we compare the perfor-
mance of quantum and simulated annealing, as well as the

ar
X

iv
:2

50
4.

16
60

7v
1

 [
qu

an
t-

ph
]

 2
3

A
pr

 2
02

5

https://orcid.org/0009-0001-7171-0865
mailto:lukas.schmidbauer@othr.de
https://orcid.org/0000-0002-7346-9198
mailto:carlos.riofrio@bmwgroup.com
mailto:florian.heinrich@bmw.de
https://orcid.org/0000-0003-1675-8548
mailto:vanessa.junk@optware.de
mailto:ulrich.schwenk@optware.de
https://orcid.org/0009-0008-7647-9376
mailto:thomas.husslein@optware.de
https://orcid.org/0000-0002-9765-8313
mailto:wolfgang.mauerer@othr.de

Production Planning

Industry Data

AR1 AR2 AR3

LR-QAOA &
Annealing &

Simulated Annealing

Hardware Benchmark

Solver
Parameter

Set

...

Figure 1: Processing stages overview. Algebraic representa-
tions (AR) devised from the Production Planning use case are
cast into hardware executable representations for LR-QAOA,
(quantum) annealing and simulated annealing.

Linear Ramp Quantum Approximate Optimization Algorithm
(LR-QAOA), ran in quantum hardware, when deploying an
industry-relevant production and logistics use case: the capac-
ity planning for production of the body parts of a vehicle. Our
problem is formulated with real production data and real-world
constraints, which in general differ from standard classes
of optimization problems. Fig. 1 gives an overview of the
general data flow in terms of abstraction layers. While the real
industry data forms the input of the parameterized production
planning use case, there are a multitude of possibilities to cast
that problem into a hardware executable form. We compare
different problem encodings (see Fig. 1: AR1, AR2, AR3)
and investigate how the quality of solutions varies with them.
In particular, we vary the formulation of penalty constraints
and data refinement, while also considering different solver
specific parameters. We aim to bridge the gap in benchmarking
quantum hardware including non-standard, industry-relevant
problems.

The remainder of the paper is divided as follows: While
Sec. II discusses the current state of the art, Sec. III introduces
the necessary algorithmic building blocks. We go into detail
about the formulation of the industry relevant use case in
Sec. IV. Although we focus on 3 different algebraic repre-
sentations, experiments have many more free parameters to
optimize for cost, solution quality or time-to-solution. Sec. V
describes which parameters form the basis for the empirical

evaluation in Sec. VI. Sec. VII concludes our study and
suggests future improvements.

This paper is augmented by a comprehensive reproduction
package (link in PDF) that also allows for extending our
work. It also provides additional detailed figures about our
experiments.

II. RELATED WORK

Nenno and Caspari [16] analyze the general steps needed
for using quantum computers on dynamic optimization prob-
lems with respect to an industry-relevant simplified chemical
reactor by incorporating a Quadratic Unconstrained Binary
Optimization (QUBO) formulation. The QUBO is based on
a system of differential-algebraic equations that is embedded
into the optimization problem—opposed to former methods
that require analytic or parametric solutions [17], [18].

Formulating problems as QUBO or more general as pseudo
boolean functions (i.e., polynomials) is not a trivial task. For
example, Häner et al. [19] outline the challenges for evalu-
ating non-polynomial functions on quantum hardware. Apart
from implementation challenges, highly industry relevant join-
ordering problems and their performance-critical formulation
into QUBO form for database query optimization can be found
in [20].

To map such problems into QUBO form, it is necessary to
identify and map (in-)equality constraints, discretize continu-
ous variables, apply Lagrange factors, etc.. Glover et al. [21]
provide an extensive study on transforming optimization prob-
lems (e.g., quadratic assignment, knapsack, constraint satisfac-
tion or max-cut) into QUBO form. From the point of view of
a real application, mapping to QUBO requires identifying un-
ambiguous similarities to optimization problems. For example,
Schütz et al. [22] show how to cast robot trajectory planning
into QUBO form. Apart from direct QUBO mappings, firstly
mapping to Polynomial Unconstrained Binary Optimization
(PUBO) and then transforming to QUBO can be a valid
choice that, however, impacts non-functional requirements and
changes problem specific characteristics. We shed light on this
method for a Job-Shop Scheduling problem by using automatic
means of transformation [23]. These algebraic representations
form the basis for further transformations down to a hardware
executable representation (see Fig. 1)—for instance, selecting
a solver strategy.

Hauke et al. [24] and Yarkoni et al. [25] give a broad
overview of industrial applications and perspectives using
quantum annealing—including traffic flow, scheduling, quan-
tum simulation and finance. A recent work by Vandelli et
al. [26] simulates QAOA and annealing for power consump-
tion in telecommunication networks for up to 31 qubits. They
show that finding near-optimal solutions is possible—even for
constrained problems with 31 qubits. Krol et al. [27] present
a quantum version of an industrial shift scheduling problem
via another solving strategy, that is, Grover’s search.

https://github.com/lfd/QCE24-IndustryQubo
https://github.com/lfd/QCE24-IndustryQubo

III. FUNDAMENTALS

A. LR-QAOA

QAOA, originally proposed by Farhi et al. [1], is a hybrid
quantum classical algorithm. Apart from using QAOA as a
solver for Optimization Problems (OPs), Morales et al. [28]
consider the conditions for universal computations. The quan-
tum circuit for QAOA consists of p layers of a problem specific
part HC(γi) and a mixer HM (βi), parametrized by rotation
angles γi and βi. These angles are subject to a classical
optimizer, which requires multiple executions of the quantum
circuit to find a (local) minimum of an optimization problem,
encoded in HC .

In contrast to QAOA, LR-QAOA [29] uses predetermined
values for rotation angles in each layer. The values for γi (the
problem specific part) increase linearly, while the values for
βi (the mixer) decrease linearly with each layer, respectively.
However, this necessitates normalizing the objective function,
which is computationally feasible in polynomial time. Since
quantum annealers can also realize linear schedules, compar-
ing them to LR-QAOA is interesting in view of industrial
use cases in terms of performance, solution quality, resource
requirements, scaling behavior, as well as characterizing the
impact of problem formulations on these measures.

B. Adiabatic Quantum Computing

Contrary to discretized circuit-based models of quantum
computation, adiabatic quantum computing is a continuous
process. Nevertheless, both models of computation are poly-
nomially equivalent in their computational power [30]. When
slowly evolving a time-dependent Hamiltonian H(τ) (τ ∈
[0, T]), while starting in the ground state at τ = 0, the ground
state is preserved at τ = T with probability P . The probability
P is close to 1 when the spectral gap δ(τ) (i.e., the absolute
eigenvalue difference between the first excited state and the
ground state1) is strictly greater than 0 (∀τ ∈ [0, T]) and the
process evolves slowly [31]: Let n denote the problem size
and let δm denote the minimum spectral gap. Then, the time
T is polynomial in n, iff δm is inverse polynomial in n.

The time-dependent Hamiltonian

H(τ) =
T − τ

T
Hinit +

τ

T
Hfinal (1)

can be split into an easy to prepare initial Hamiltonian Hinit
(with known ground state) and a Hamiltonian Hfinal that
encodes the optimization problem. While Eq. 1 interpolates
linearly between Hinit and Hfinal, other annealing schedules are
possible. Unfortunately, finding the minimum spectral gap to
adjust the schedule is a hard problem with recent development
in terms of mitigating anti-crossings [32]–[34].

The D-Wave Quantum Annealer is a non-universal quantum
computer in the sense that not every possible state in the

1We assume a non-degenerate ground state of H(τ).

Hilbert Space can be reached. This is a result of the time-
dependent Hamiltonian that is realized in hardware [35]:

H = −A(τ)

2

∑
i

σ(i)
x (2)

+
B(τ)

2

∑
i

hiσ
(i)
z +

∑
i<j

Jijσ
(i)
z σ(j)

z

 , (3)

where σ
(i)
x and σ

(i)
z denote the Pauli-X and -Z operations

applied to qubit i, respectively. Similarly to Eq. 1, A(τ) and
B(τ) adjust the influence of the initial Hamiltonian (Eq. 2) and
the problem Hamiltonian (Eq. 3). In particular, we can choose
A(τ) and B(τ) to represent an approximately linear annealing
schedule. Although the D-Wave Quantum Annealer cannot
reach any possible state in Hilbert Space, it is a universal
model of computation in the sense of solving NP-complete
problems due to solving QUBOs. As a side note, by exploiting
level crossings, one can implement gate operations beyond σz

and σx [36].

C. Simulated Annealing

Simulated annealing is a probabilistic classical method to
solve optimization problems [37] and in particular Pseudo-
Boolean Functions (PBFs). Therefore, this method can serve
as a classical baseline for experiments. In essence, one chooses
a random initial state and then repeats the following n times:
Firstly, choose a random variable in the current bit string and
flip it2. If this flip lowers the energy of the PBF3 f , accept that
flip. Conversely, if this flip increases the energy of f , accept
this flip based on a random experiment. The probability to
accept the flip depends on the energy difference as well as a
typically decreasing base probability [31]. For example, one
can choose the probability P as P = min(1, e−(∆/i)), where
∆ denotes the energy difference to the function without the
bit flip and i is the iteration count. If the random experiment
does not accept the flip, revert it.

IV. USE CASE MODELLING

A. Description and Mathematical Formulation

In the complex process of vehicle mass production, forming
of raw materials into product parts is an early and fundamental
step. One of such processes is done in the press shop, in
which metal sheets are shaped into the components of the body
of a vehicle. Press shops may house several press machines,
which provide the force by which the metal is reshaped and
cut using toolkits, which are the tooling components with the
shape of body parts. Press shops are distributed globally and
do not necessarily coincide with the assembly plants, which
put together the whole vehicle. Production and logistic costs
are associated with every choice of production allocation as
well as legal and technical constraints regarding volume of
parts which can be produced at a given time and location. For
example, each press machine has a maximum capacity it can

2Deterministically choosing the next variable is also possible.
3For minimization problems.

Figure 2: An exemplary scheme of three production sites, two
comprising a press shop and an assembly plant, one with an
assembly plant only, sized to convey an impression of distance
(smaller means farther away). Toolkits are assigned to the
press machines of the press shops, thus determining where
which parts are pressed and where consequently the flows of
produced parts to the assembly plants must originate from.
Product flows of a door and a side-frame can be seen, each
fulfilling onsite as well as offsite demands.

offer during a given production period and each toolkit must
produce a given number of parts. Figure 2 gives an illustration
of the setting.

The question for long-term planning is to decide which
toolkits should be assigned to which press machines in a way
that is cost optimal. The decisions, for example, how many
parts to produce or which toolkit to use for the production
of which part, are given parameters and not degrees of
freedom in finding optimal solutions. Therefore, each toolkit
can be assumed to “carry” a given amount of parts demanded,
which, via press-machine dependence and given work rates,
translates into an effective (possibly press-machine dependent)
workload. Thus, the allocation decision can be cast as an
optimization problem in which the total production costs are
minimized. The minimization is subject to all parts being
produced while respecting the maximum capacities of every
machine.

This optimization problem can be formulated as a binary
constrained linear program. We define T as the set of all
toolkits and M as the set of all machines. Then, we can
introduce the decision variable xtm to encode which toolkit

t ∈ T is assigned to which machine m ∈ M ,

xtm =

{
1 if toolkit t is assigned to machine m,
0 otherwise.

(4)

The cost arising by an assignment is given by ctm, leading to
the objective function

min
x

∑
t∈T

∑
m∈M

ctm xtm, (5)

where x = (xtm)t∈T,m∈M ∈ {0, 1}T×M . Each machine has
a maximum capacity hm, usually given in units of hours
per production period, and each toolkit assignment requires a
demanded workload wtm, also in hours per production period,
resulting in the capacity constraints∑

t∈T

wtm xtm ≤ hm, ∀ m ∈ M. (6)

Moreover, each toolkit has to be assigned to a machine exactly
once, which is encoded as∑

m∈M

xtm = 1, ∀ t ∈ T. (7)

This constraint ensures that each toolkit is assigned to exactly
one location and also prevents that nothing is produced despite
of existing demands. Note that producing nothing would be the
cheapest option concerning the objective Eq. 5.

We use this linear program both for deriving the problem
formulation for the quantum computer and for computing the
optimal solutions of the problem instances in Sec. V. For the
latter, we use the SCIP – short for Solving Constraint Integer
Programs – solver [38] via the pywraplp interface from Google
OR-Tools [39]. This is done for comparison purposes.

B. QUBO Creation and Penalty Terms

The standard way to run an optimization problem in a quan-
tum computer is to reformulate it as a QUBO. The procedure
of transforming the original, constrained, optimization (Eq. 5,
6 and 7) into an unconstrained problem is to add the constraint
violations as penalty terms to the objective function (Eq. 5).
For our reformulation, we use the Qiskit optimization library
(version 0.6.0) [40]. In the following, we sketch the resulting
steps.

First, inequality constraints, in our case the capacity-
constraints (Eq. 6), are transformed into equality constraints.
The transformation is achieved by introducing so-called “slack
variables”, which we denote by Sm since there is one capacity
constraint for each press machine. The reformulated capacity
constraints read∑

t∈T

wtm xtm + Sm − hm = 0, ∀m ∈ M, (8)

where 0 ≤ Sm ≤ hm, since the lower bound of∑
t∈T wtm xtm is zero. Next, the newly introduced slack

variables Sm have to be split into a binary representation to
fulfill the requirements of a QUBO,

Sm =

rm−1∑
j=0

2jsmj + (hm − 2rm + 1)smrm , (9)

extending the problem by the binary variables sm0, . . . , smrm

per press machine m, where rm = ⌊log2(hm)⌋.
Now, all constraints are equalities and can be transformed

into penalties of parabolic shape that are added to the objective
function. For the assignment constraints (Eq. 7) we obtain the
penalty terms

λt

(∑
m∈M

xtm − 1

)2

, ∀ t ∈ T, (10)

with penalty factors λt and for the capacity constraints (Eq. 6)
we write the penalty terms

λm

(∑
t∈T

wtm xtm + Sm − hm

)2

, ∀m ∈ M, (11)

with penalty factors λm and Sm substituted by Eq. 9. The
total QUBO problem is then given by the objective function

min
x,(sm)m∈M

[∑
t∈T

∑
m∈M

ctm xtm +
∑
t∈T

λt

(∑
m∈M

xtm − 1

)2

+
∑
m∈M

λm

(∑
t∈T

wtm xtm + Sm − hm

)2
 ,

(12)

with Sm given by the binary variables smj defined in Eq. 9,
combined to the binary vector sm = (sm0, . . . , smrm). The
QUBO problem (Eq. 12) can also be brought into matrix form,

min
x∈{0,1}N

xTQ̂x+ C, (13)

where the binary vector x collects all decision variables xtm

and slack variables smj , and the constant C subsumes all
constants. Since x2 = x for binary variables x, all coefficients
of the terms of degree 1 and 2 in the variables xtm and smj

can be collected in the QUBO matrix Q̂.
So far, we have not discussed how to choose the penalty

factors λt and λm. Moreover, there are different possibilities
for encoding the data of actual problem instances into the
linear program and thus the QUBO. In Sec. V we present
three different approaches for building the QUBO which we
benchmark on quantum hardware in Sec. VI.

V. EXPERIMENTAL SETUP

A. Problem instances

For our experiments, we create 6 problem instances from
anonymized production data. These problem instances are
small enough to fit in a quantum computer, but the values
of costs and capacities are taken to represent real situations.
That means that the costs, capacities, and restrictions are
quantitatively comparable with real production data. The only

adjustment we make is to safely round the values entering the
capacity constraint to integers, that is, the maximum machine
capacity hm is rounded down and the capacity wtm required
by a toolkit assignment is rounded up. We summarize the
problem instances in Tab. I.

Table I: Problem instances.

Toolkits Machines Qubits

3 2 22
9 2 36
13 2 46
16 2 54
18 2 58
19 2 60

All problem instances are represented by 3 different QUBO
encodings (see Fig. 1: AR1, AR2, AR3):

1) Raw QUBOs: We take the data directly without any
processing and create QUBO formulations for each problem
instance. We do not optimize the penalty factors. Instead,
we choose them in a broad grid λm ∈ {103, 104, 105} and
λt ∈ {107, 108, 109}, taking the same values for all machines
m and toolkits t, respectively.

2) Scaled QUBOs: We adjust the scaling of the assignment
constraint by multiplying Eq. 7 with λs ∈ {0.1, 1}. Moreover,
before transforming the constraints to penalties but after trans-
forming inequalities to equalities, we rescale the constraints
from Eq. 7 and Eq. 8 such that they obtain a similar value
range as the objective function in Eq. 5. We define the value
range v of a term f as

v = |⌈f⌉ − ⌊f⌋| . (14)

For the rescaling, we first determine the largest value range
vmax occurring in the linear program by evaluating Eq. 14
for the objective function in Eq. 5 and the left-hand side of
the constraints in Eq. 8 and Eq. 7 (after multiplying Eq. 7
with λs). Then, we divide both the objective function, Eq. 5,
and all constraints, Eq. 7 and Eq. 8, by their respective range
v and then multiply them by vmax. Afterwards, we proceed
with the transformation of the linear program to a QUBO by
transforming the constraints to penalties. The rescaling of the
constraints replaces optimizing the penalty factors, such that
λm = λt = 1 for all m ∈ M and t ∈ T .

3) Rounded-cost QUBOs: For this formulation, we first
take the data and rescale the production costs so that the
minimum cost is 1. To avoid non-integer cost values, we
employ integer division for this rescaling. Then, we proceed
with the same transformation routine as described for the
scaled QUBOs. The aim of rescaling the costs is that the
resulting QUBO matrix should be more balanced than for the
first two formulations—meaning that the difference between
the minimum and maximum value in the QUBO matrix is
significantly reduced.

B. Methods

Evaluating multiple problem instances with multiple solver
strategies and (quantum) hardware represents paths in the

abstraction layer graph (compare to Fig. 1). On top of choosing
a path, free parameters in transformations influence properties
and ultimately performance. We always test all mentioned
problem sizes (see Tab. I)—independently of the used solver
strategy and hardware. Additionally, depending on the used
problem instance (raw, scaled and rounded), we test their
respective penalty factors for all solver strategies.

For the solver strategy LR-QAOA, we identify the number
of layers p and the variation in the slope defining parameters
∆γ , ∆β (see Sec. III) as important parameters. Preliminary
tests on hardware indicated that any p > 10 does not lead
to improved performance. Hence, we select p ∈ {1, 2, 5, 10}.
Montanez-Barrera and Michielsen [29] test ∆γ , ∆β-dependent
performance for six optimization problems. Based on their
results for pure optimization problems, we choose ∆γ = 0.9
and ∆β = 0.6. Any logical quantum circuit can be depth-
optimized in polynomial time—only differing from the optimal
solution by at most one [41]. The edge coloring problem and
Vizing’s theorem [42] provide the basis for this argument.
However, optimizing circuit depth becomes NP-hard, when
considering restricted arbitrary hardware topologies. For spe-
cific topologies there have been advances [43], in particular for
the heavy-hex topology [44]. We employ an almost depth opti-
mal logical circuit (via edge coloring), which is then transpiled
to the hardware gate set and topology of ibm_marrakesh.
Qiskit [45] provides four levels of optimization of which we
use level 0 (no optimization) and 3 (highest optimization).

For the solver strategy of quantum annealing, recall
that annealing-based approaches are influenced by
the minimum spectral gap (see Sec. III). Hence, the
annealing time is an important parameter to avoid level
crossings. Therefore, we choose the annealing time
τ ∈ {10, 20, 40, 80, 160, 320, 640, 1280}[µs] for the
Advantage_system4.1 QPU that covers 5760 qubits via
the Pegasus topology [46]. Note that the maximum allowed
annealing time also depends on the number of shots, which
we choose to be 500 to improve measurement statistics.
Additionally, a custom annealing schedule can accelerate
annealing where the spectral gap is large and decelerate
annealing where the spectral gap is small. Since solving for
an optimal annealing schedule is at least as hard as solving
the optimization problem at hand4, we use 4 annealing
schedules:

1) Linear:
2) Bowover:
3) Bowunder:
4) SteepFlatSteep:

Picture a linearly decreasing schedule sLinear(τ)
5. Then,

Bowover represents a schedule above sLinear(τ)—leading to
slow annealing at the start and faster annealing when pro-
gressing. Analogously, Bowunder represents a schedule below
sLinear(τ)—having the exact opposite effect. Finally, SteepFlat-
Steep is a combination of Bowunder at the start and Bowover

4We would need to know the spectral gap for every τ .
5A decreasing schedule refers to Hinit. Hfinal is scaled accordingly.

at the end—leading to slower annealing in the middle of the
process. To map a given problem instance onto D-Wave’s
hardware, we use the heuristic MinorMinor embedding [47]:
It finds a minor-embedding of the graph representation of a
given QUBO instance in the graph that represents D-Wave’s
hardware (see [48] for more information on graph minors).
Note that an embedding for a QUBO of size |Q| usually
requires more than |Q| qubits in D-Wave’s hardware.

Similar to the time parameter in quantum annealing, sim-
ulated annealing can employ longer classical runtime (i.e.,
steps n; see Sec. III) to heuristically refine the current local
minimum. Also, the probability function can be changed to, for
instance, overcome local minima. However, we use simulated
annealing as a baseline and thus use the standard geometric
schedule and set n = 1280.

To accommodate for a single bit-flip error, we use a classical
post-processing error mitigation technique for all experiments
(see [29]): For each bit x in a sampled bitstring x, we test
if the negation of x improves the energy with respect to the
QUBO (see Sec. V). We then use x′ with lowest energy. Note
that its runtime scales linearly in the size of the bitstrings and
the number of samples.

C. Expected Behavior

It is evident that current Noisy Intermediate Scale Quantum
(NISQ)-era hardware still is restricted by noise. Although
Quantum Error Correcting Codes (QECCs) are in development
and have provable advantages, their use is to the detriment
of requiring more qubits (see [49]). QECCs offer potential
to allow for some degree of noise, while protecting the
intended quantum state. Hence, (depending on the number of
additionally used qubits), QECCs will eventually make noisy
quantum hardware behave similar to noiseless systems and
noiseless simulations. For the following experimental analysis,
we expect bigger problem sizes to perform worse, due to either
exponentially scaling search spaces or noise that arises from
inherently longer circuits (LR-QAOA) and bigger embedding
size (annealing).

As the number of layers p in LR-QAOA increases, the
logical circuit depth increases linearly with p. While noise-
less LR-QAOA converges to an optimal solution (under the
assumptions of the adiabatic theorem; see Sec. III), hardware
noise eventually leads to a (non-uniform6) random output
distribution. We confirm the convergence to optimal solutions
numerically by simulating the 3 Toolkit (22 qubit) case for
up to p = 100 LR-QAOA layers. Notably, even for p = 1
and 1000 shots, we find the optimal solution regardless of the
problem variant (raw, scaled or rounded). However, we notice
that the rounded variant performs better for p ≥ 5 than the raw
and scaled variant. The reproduction package (link in PDF)
contains detailed figures. Take into consideration that system
noise eventually diminishes better Trotterization accuracy (i.e.,
higher p). Noise can also blur variant-specific effects. There-
fore, the free parameter p is subject to balancing both noise

6This is hardware dependent (e.g., via topology).

https://github.com/lfd/QCE24-IndustryQubo

and approximating annealing through Trotterization. Hence,
a (variant-dependent) tipping point should be evident, when
increasing p. A similar effect can be expected for the annealing
time and the annealing schedule to avoid level-crossings in the
adiabatic evolution. They are also free parameters that need
to balance the expected noiseless performance gain and the
effects of noise.

Concerning the different QUBO formulations, raw, rounded,
and scaled, the number of effective hardware runs differs for
each of the variants due to the QUBO’s respective penalization
strategy. For raw we have 9 combinations; for scaled 2 com-
binations, and for rounded 1 combination. If our experiments
were mere random sampling and all effects of the quantum
circuit on the final state measurement were washed out by
noise, we would expect the raw QUBO to perform best
simply due to being run more often than the other versions
and thus having the highest probability of sampling a good
result eventually. Of course, we expect the quantum circuit
to have a measurable effect on the final quantum state in
our experiments and the different penalization strategies alter
the QUBO formulation and should hence perform differently.
Nevertheless, the different number of runs could result in a
(slight) bias in favor of the raw variant.

VI. EXPERIMENTAL RESULTS

For each of the following combined figures, we show results
for quantum annealing on top and results for LR-QAOA below.
Each figure has the problem size (i.e., the number of toolkits)
on its (non-equally-spaced) x-axis. Note that toolkits directly
translate to number of qubits, since we always use 2 press
machines (see Tab. I). Data points in each figure must adhere
to its respective criteria (e.g., being valid). Consequently, if
there are no data points for toolkits t, we omit t in the figure.

For Fig. 3, 4 and 5, we pick the best performing penalty
for each annealing time or layer p (see Sec. V-B) per toolkit
and problem formulation and then show their values in a
boxplot. Its box is bounded by the first and third quartile
and additionally shows the median as a line. Furthermore, its
whiskers extend to at maximum 1.5 ·IQR (depending on actu-
ally available data points), where the interquartile range (IQR)
is the distance between the first and third quartile. Any data
point outside this range is shown as a (partially translucent)
circle (). Moreover, we show the best performing penalty for
each x-value (i.e., toolkits) explicitly as a shape: For the raw
variant, a (rotated) rectangle (,) corresponds to λm = 3
and a rotated triangle (,) corresponds to λm = 4. Their
respective rotation encodes λt. The scaled variant only has two
penalties, which we show as a circle with a cross (λs = 0.1)
or a circle with an x (λs = 1). Analogously, we show the
rounded variant as a circle. Small problem sizes lead to many
best performing penalty weights and hence we omit explicit
shapes for 3 and 9 toolkits. For a comparison to classical
methods, we use simulated annealing (1280 steps) and the
best out of 1000 randomly generated bitstrings as reference.
Although we test four annealing schedules, as described in
Sec. V, we only show the linear schedule due to its similarity

to LR-QAOA. Note that the type of our test schedules only has
minor influence on the performance. Similarly, for LR-QAOA
we test optimization level 0 and 3 in Qiskit, but restrict Fig. 3,
4, and 5 to level 3. Take into consideration that optimization
level 0 usually worsens the results—with outliers that probably
originate from system noise.

raw rounded scaled

Q
uantum

A
nnealing

L
R

Q
A

O
A

3 9 13 16 18 19 3 9 13 16 18 19 3 9 13 16 18 19

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Toolkits

#
V

al
id

so
lu

tio
ns

/
al

l
so

lu
tio

ns

Penalties
λm=10

3, λt=10
9 λm=10

4, λt=10
9

λs=1 rounded

Random reference Simulated Annealing reference

Figure 3: Problem size (x-axis) vs percentage of valid (i.e.,
constraint satisfying; see Sec. IV) solutions (y-axis) and corre-
sponding best performing penalties (see Sec. V). Closer to 1.00
is better. Horizontal facets: quantum annealing on D-Wave
and LR-QAOA on IBM. Vertical facets: problem formulation
(see Sec. IV and Fig. 1). Random (solid line) and Simulated
Annealing (dotted line) as reference (same values for both
horizontal facets).

Fig. 3 shows the percentage of valid solutions (closer to 1.00
is better). Valid solutions satisfy the problem constraints given
in Sec. IV (i.e., capacity constraint, Eq. 6, and assignment
constraint, Eq. 7). For both LR-QAOA and quantum annealing
and each QUBO variant (raw, rounded, and scaled), we see
that a specific set of penalties leads to the highest percentage
of valid solutions for bigger problem instances. Note that we
test 9 penalty combinations for the raw, two for the scaled, and
one for the rounded variant, due to their different construction.
LR-QAOA rarely finds valid solutions for bigger problem
instances. Contrary, annealing performs exceptionally well—
finding ≥ 90% valid solutions for bigger problem instances.
Interestingly, the simulated annealing reference is Pearson-

correlated [50] to the mean of the quantum annealing results:
rraw ≈ 0.2736, rrounded ≈ 0.9297 and rscaled ≈ 0.9659.
Hence, the rounded and scaled variant, seem to have beneficial
numerical nature for simulated and quantum annealing, which
allows for some degree of extrapolation.

raw rounded scaled

Q
uantum

A
nnealing

L
R

Q
A

O
A

3 9 13 16 18 19 3 9 13 16 18 19 3 9 13 16 18 19

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Toolkits

#
O

pt
im

al
(1

%
)

/
#

va
lid

so
lu

tio
ns

Penalties

λm=10
3, λt=10

8 λm=10
4, λt=10

8 λm=10
4, λt=10

9

λm=10
5, λt=10

9 λs=0.1 λs=1

rounded

Random reference Simulated Annealing reference

Figure 4: Problem size (x-axis) vs ratio of valid (i.e., constraint
satisfying; see Sec. IV) solutions within 1% of the optimum
to valid solutions (y-axis) and corresponding best performing
penalties (see Sec. V). Closer to 1.00 is better. Horizontal
facets: quantum annealing on D-Wave and LR-QAOA on IBM.
Vertical facets: problem formulation (see Sec. IV and Fig. 1).
Random (solid line) and Simulated Annealing (dotted line) as
reference (same values for both horizontal facets).

Although Fig. 3 reduces the set of solutions to valid
solutions, they can be numerically far from optimal in terms
of production cost. Hence, Fig. 4 restricts the set of valid
solutions to solutions that lie within 1% of the optimal solution
(closer to 1.00 is better). A higher share of (near) optimal
solutions also leads to faster time-to-solution, which is cost
beneficial for computation. Smaller problem instances have
a higher share of optimal solutions—potentially due to the
exponentially scaling solution space, see random reference
(red) that only finds valid solutions for 3 and 9 toolkits
and only close-to-optimal solutions for 3 toolkits. LR-QAOA

fails to find (near) optimal solutions for 18 and 19 toolkits,
while quantum annealing finds (near) optimal solutions for all
tested toolkits—although their share decreases with increasing
problem size. As before, we calculate the Pearson correlation
[50] between simulated annealing and the average quantum
annealing results: rraw ≈ 0.9874, rrounded ≈ 0.9965 and
rscaled ≈ 0.9960. Note that Fig. 4 does not show absolute
values and depicts a subset of Fig. 3. By multiplying the
percentage of valid solutions (Fig. 3) by the share of (near)
optimal to valid solutions (Fig. 4), one can obtain the per-
centage of (near) optimal solutions, which further highlights
the difference between quantum annealing on D-Wave and
LR-QAOA on current IBM devices.

raw rounded scaled

Q
uantum

A
nnealing

L
R

Q
A

O
A

3 9 13 16 18 19 3 9 13 16 18 19 3 9 13 16 18 19

1.00

1.01

1.02

1.03

1.04

1.00

1.01

1.02

1.03

1.04

Toolkits

L
ow

es
t

va
lid

co
st

/
op

tim
al

co
st

Penalties
λm=10

3, λt=10
8 λm=10

3, λt=10
9 λm=10

4, λt=10
9

λs=0.1 λs=1 rounded

Random reference Simulated Annealing reference

Figure 5: Problem size (x-axis) vs normalized lowest cost for
valid (i.e., constraint satisfying; see Sec. IV) solutions (y-axis)
and corresponding best performing penalties (see Sec. V).
Closer to 1.00 is better. Horizontal facets: quantum annealing
on D-Wave and LR-QAOA on IBM. Vertical facets: problem
formulation (see Sec. IV and Fig. 1). Random (solid line) and
Simulated Annealing (dotted line) as reference (same values
for both horizontal facets).

Fig. 3 and 4 give insights in the distribution of solutions
and therefore allow to extrapolate the time-to-solution or runs
required to obtain a sufficiently good solution. Ultimately,
the solution with the least cost is of interest for production.
Therefore, Fig. 5 gives the ratio for the lowest valid to the
optimal cost (closer to 1.00 is better). Although the results

for quantum annealing all lie within 0.41% of the optimal
solution, the difference in problem formulation is apparent. At
19 toolkits, the raw variant performs worse than the rounded
an scaled variant. For completeness, we calculate the Person
correlation [50] between the mean value for annealing and
simulated annealing [50]: rraw ≈ 0.9516, rrounded ≈ 0.4224 and
rscaled ≈ 0.4184. As LR-QAOA produces little to none valid
solutions for increasing problem sizes (see Fig. 3), they are
increasingly farther from the optimal solution. Nevertheless,
the final measured state obtained from LR-QAOA still contains
problem specific information, since LR-QAOA is dramatically
better than the random reference, which cannot find valid
solutions for more than 9 toolkits. Hence, system noise does
not render the final state useless. Upcoming implementations
of error correction should therefore make a significant contri-
bution to improving the results. Although, a higher annealing
time has a slight net positive effect on the QUBO energy,
with outliers potentially originating from system noise, we
do not find a strong influence of annealing time on QUBO
energy. Hence, the spectral gap does not appear to be the
limiting factor for the tested problem sizes. This also applies
to LR-QAOA analogously.

Overall, quantum annealing outperforms LR-QAOA for the
tested problem instances. However, scaling behavior beyond
the capabilities of current hardware can put that result into a
different perspective. For LR-QAOA, we identify the number
of transpiled non-local gates (i.e., two qubit gates in our case)
as the relevant metric. Note that the circuit depth, the number
of total gates and the number of used qubits can also be
valid metrics. When considering the effect of transpilation,
missing connections in hardware are resolved by introducing
additional (non-local) gates. Hence, a gate-based approach
tends towards deeper circuits, while the number of qubits is
not a hard limiting factor: Given a quantum hardware with
qh many qubits that form a connected graph. Then, for any
given logical quantum circuit with ql ≤ qh qubits, there exists
a unitary-equivalent (deep) hardware executable circuit (see
[51] or [52]). Contrary, for quantum annealing, we use the
embedding size on hardware as the eventually limiting factor,
when increasing problem size, since missing connections are
resolved by combining hardware qubits [53]. Fig. 6 shows
these metrics on the y-axis. The x-axis shows the number
of toolkits (we omit the label for 18 toolkits, but show its
data). It is linearly spaced by the number of qubits, since
they correspond to toolkits (see Tab. I). In LR-QAOA, the
number of layers p increases the number of non-local gates
in the logical circuit linearly. We found that this is similar
for the transpiled circuit—meaning that the transpiler has
no significant impact in combining layers. Hence, we only
show p = 1 for optimization levels 0 and 3. Optimization
level 3 roughly halves the number of transpiled gates and
therefore has significant impact on solution quality that is
highly influenced by gate noise. Compared to LR-QAOA,
quantum annealing has a higher spread in embedding size,
with the least spread for the rounded variant—albeit there
being only minor differences between problem formulations.

Take into consideration that the x-axis is spaced in terms of
qubits, but labeled with toolkits (see Tab. I), which allows for
comparing the scaling behavior with other industry relevant
problems. Also take into consideration, that the QPU access
time is significantly higher with IBM devices and LR-QAOA,
which is relevant for a cost-to-solution estimation. On average,
for a single experiment (500 shots), the D-Wave annealer uses
≈ 0.3 seconds, while IBM (1000 shots) uses ≈ 7.8 seconds.

raw rounded scaled

Q
uantum

A
nnealing

3 9 1613 19 3 9 1613 19 3 9 1613 19

100

200

300

Toolkits

E
m

be
dd

in
g

si
ze

raw rounded scaled

L
R

Q
A

O
A

3 1613 199 3 1613 199 3 1613 199
0

5’000

10’000

15’000

Toolkits

#
Tr

an
sp

ile
d

no
n-

lo
ca

l
ga

te
s

(p
=

1
)

Qiskit optimization level 3 0

Figure 6: Problem size (x-axis; linearly spaced by # qubits:
see Tab. I) vs scaling behavior (i.e., embedding size or number
of transpiled non-local gates for p = 1; y-axis). Lower is
better. Horizontal facets: quantum annealing on D-Wave and
LR-QAOA on IBM. Vertical facets: problem formulation (see
Sec. IV and Fig. 1). Qiskit optimzation level only applies to
LR-QAOA.

In summary, the experiments suggest that a choice of
penalty weights that clearly outperforms the others emerges
with increasing problem size. Hence, for similarly structured
problems, it can be beneficial to first find a set of suitable
penalty weights by analyzing smaller but growing problem
instances. These optimized weights should then also perform
well for larger problem instances. Moreover, we find similar
or better performance for the rounded and scaled variant
over the raw variant. From an industry point of view, it is
therefore not necessary to perform a grid search over the basic
formulation, but rather automatically select suitable parameters
(as in the scaled and rounded case). On top of that, we show a

high correlation of the average annealing result and simulated
annealing for the scaled and rounded variant. Therefore, it is
possible to (locally) extrapolate to higher problem instances
by using classical simulated annealing and then use quantum
annealing to improve the results.

VII. CONCLUSION AND OUTLOOK

Creating good QUBO formulations for industry use cases is
not a trivial problem: encodings, slack variables, and penalty
terms play a crucial role in performance. Formulations that
limit the number of qubits, if they exist, should be prioritized.
However, in the long term, quantum computers may have
enough qubits and be sufficiently robust for naive formulations
to work. In this work, we have explored the formulation
and solution of an industrial optimization application using
quantum computing techniques. We used real anonymized data
to describe the problem of allocating production capacity for
a network of press shops.

We observed that quantum annealing via D-Wave hardware
performs surprisingly well, even for modest-size problem
instances. This approach offers great potential, but the em-
bedding dimension scaling with the problem size is not yet
ideal. Hopefully, better architectures with better connectivity
will become available in the future.

Even modest-size problems require significant quantum
resources to work for all algorithms and platforms we tested.
Noisy quantum hardware and incomplete connectivity seem
to be the main limiting factors for scaling quantum computers
to industry-level needs. Compared to QAOA, LR-QAOA is
simpler and cheaper to implement—using orders of magnitude
less quantum resources in time. However, when deployed
on IBM machines, it lags behind the classical baseline of
simulated annealing—mainly due to noise. Although the noisy
nature of quantum gates is evident from the obtained solutions,
they still contain problem-specific information. Moreover,
noiseless simulations return good results for small problem
instances. Hence, we expect that solution quality will improve
with QECCs.

Understanding the limitations of quantum algorithms for
industry-relevant problems is still an open problem. It is impor-
tant to not only hand-pick idealized problems, but to test the
complexity of real data and real use cases. Moreover, industrial
adoption of quantum technologies requires building a strong
software infrastructure and (automated) toolchains. Although,
specialized knowledge (i.e., quantum physics) is still needed to
program and make sense of results of quantum optimization,
the entry barrier for practitioners is being continuously lowered
by software development, which is reflected in the relative
ease of use of tools such as those from vendors like D-Wave
or IBM.
Acknowledgments This project was carried out within the TAQO-
PAM consortium from the German Federal Ministry of Education
and Research (BMBF) funding program “Quantum Technologies—
from Basic Research to Market”, grant #13N15647, with fund-
ing codes #13N16092 (LS, WM), #13N16095 (VJ, US, TH) and

#13N16268 (CAR, FH). WM acknowledges support by the High-
Tech Agenda Bavaria. Furthermore, we thank Martin Zehetmaier,
Sebastian Ortlepp, and Carsten Tham, from BMW, and Georg Fraun-
hofer from OptWare GmbH for valuable discussions and proofreading
the manuscript.

REFERENCES

[1] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[2] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, “Obstacles to
variational quantum optimization from symmetry protection,” Phys.
Rev. Lett., vol. 125, p. 260505, Dec 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.125.260505

[3] ——, “Hybrid quantum-classical algorithms for approximate graph
coloring,” Quantum, vol. 6, p. 678, Mar. 2022. [Online]. Available:
http://dx.doi.org/10.22331/q-2022-03-30-678

[4] J. A. Montanez-Barrera and K. Michielsen, “Towards a universal
qaoa protocol: Evidence of a scaling advantage in solving some
combinatorial optimization problems,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.09169

[5] T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Rev.
Mod. Phys., vol. 90, p. 015002, Jan 2018. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.90.015002

[6] J. Wurtz and P. J. Love, “Counterdiabaticity and the quantum
approximate optimization algorithm,” Quantum, vol. 6, p. 635, Jan.
2022. [Online]. Available: https://doi.org/10.22331/q-2022-01-27-635

[7] K. Blekos, D. Brand, A. Ceschini, C.-H. Chou, R.-H. Li et al.,
“A review on quantum approximate optimization algorithm and its
variants,” Physics Reports, vol. 1068, pp. 1–66, 2024, a review
on Quantum Approximate Optimization Algorithm and its variants.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0370157324001078

[8] A. Lucas, “Ising formulations of many np problems,” Frontiers in
Physics, vol. 2, 2014. [Online]. Available: https://www.frontiersin.org/
journals/physics/articles/10.3389/fphy.2014.00005

[9] A. Montanaro and L. Zhou, “Quantum speedups in solving near-
symmetric optimization problems by low-depth qaoa,” 2024. [Online].
Available: https://arxiv.org/abs/2411.04979

[10] R. Shaydulin, C. Li, S. Chakrabarti, M. DeCross, D. Herman
et al., “Evidence of scaling advantage for the quantum approximate
optimization algorithm on a classically intractable problem,” Science
Advances, vol. 10, no. 22, p. eadm6761, 2024. [Online]. Available:
https://www.science.org/doi/abs/10.1126/sciadv.adm6761

[11] N. Sachdeva, G. S. Hartnett, S. Maity, S. Marsh, Y. Wang
et al., “Quantum optimization using a 127-qubit gate-model ibm
quantum computer can outperform quantum annealers for nontrivial
binary optimization problems,” 2024. [Online]. Available: https:
//arxiv.org/abs/2406.01743

[12] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018. [Online]. Available: https://doi.org/10.22331/
q-2018-08-06-79

[13] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-
Lea et al., “Noisy intermediate-scale quantum algorithms,” Rev.
Mod. Phys., vol. 94, p. 015004, Feb 2022. [Online]. Available:
https://link.aps.org/doi/10.1103/RevModPhys.94.015004

[14] M. X. Goemans and D. P. Williamson, “Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming,” J. ACM, vol. 42, no. 6, p. 1115–1145, Nov.
1995. [Online]. Available: https://doi.org/10.1145/227683.227684

[15] D. L. Applegate, R. E. Bixby, V. Chvatál, and W. J. Cook, The Traveling
Salesman Problem: A Computational Study. Princeton University Press,
2006. [Online]. Available: http://www.jstor.org/stable/j.ctt7s8xg

[16] D. M. Nenno and A. Caspari, “Dynamic optimization on quantum
hardware: Feasibility for a process industry use case,” Computers &
Chemical Engineering, vol. 186, p. 108704, 2024.

[17] Z. Deng, X. Wang, and B. Dong, “Quantum computing for
future real-time building hvac controls,” Applied Energy, vol. 334,
p. 120621, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0306261922018785

[18] J. Fernández-Villaverde and I. Hull, “Dynamic programming on a
quantum annealer: Solving the rbc model,” 2023. [Online]. Available:
https://arxiv.org/abs/2306.04285

https://link.aps.org/doi/10.1103/PhysRevLett.125.260505
http://dx.doi.org/10.22331/q-2022-03-30-678
https://arxiv.org/abs/2405.09169
https://link.aps.org/doi/10.1103/RevModPhys.90.015002
https://doi.org/10.22331/q-2022-01-27-635
https://www.sciencedirect.com/science/article/pii/S0370157324001078
https://www.sciencedirect.com/science/article/pii/S0370157324001078
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2014.00005
https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2014.00005
https://arxiv.org/abs/2411.04979
https://www.science.org/doi/abs/10.1126/sciadv.adm6761
https://arxiv.org/abs/2406.01743
https://arxiv.org/abs/2406.01743
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://link.aps.org/doi/10.1103/RevModPhys.94.015004
https://doi.org/10.1145/227683.227684
http://www.jstor.org/stable/j.ctt7s8xg
https://www.sciencedirect.com/science/article/pii/S0306261922018785
https://www.sciencedirect.com/science/article/pii/S0306261922018785
https://arxiv.org/abs/2306.04285

[19] T. Häner, M. Roetteler, and K. M. Svore, “Optimizing quantum circuits
for arithmetic,” 2018. [Online]. Available: https://arxiv.org/abs/1805.
12445

[20] M. Schönberger, I. Trummer, and W. Mauerer, “Quantum-inspired
digital annealing for join ordering,” in Proceedings of the VLDB
Endowment, vol. 17, no. 3, 11 2023. [Online]. Available: https:
//doi.org/10.14778/3632093.3632112

[21] F. Glover, G. Kochenberger, and Y. Du, “A tutorial on formulating and
using qubo models,” 2019. [Online]. Available: https://arxiv.org/abs/
1811.11538

[22] M. J. Schuetz, J. K. Brubaker, H. Montagu, Y. van Dijk, J. Klepsch
et al., “Optimization of robot-trajectory planning with nature-inspired
and hybrid quantum algorithms,” Phys. Rev. Appl., vol. 18, p.
054045, Nov 2022. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevApplied.18.054045

[23] L. Schmidbauer, K. Wintersperger, E. Lobe, and W. Mauerer,
“Polynomial reduction methods and their impact on qaoa circuits,”
in 2024 IEEE International Conference on Quantum Software
(QSW), vol. 986. IEEE, Jul. 2024, p. 35–45. [Online]. Available:
http://dx.doi.org/10.1109/QSW62656.2024.00018

[24] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver,
“Perspectives of quantum annealing: methods and implementations,”
Reports on Progress in Physics, vol. 83, no. 5, p. 054401, may 2020.
[Online]. Available: https://dx.doi.org/10.1088/1361-6633/ab85b8

[25] S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, “Quantum annealing
for industry applications: introduction and review,” Reports on Progress
in Physics, vol. 85, no. 10, p. 104001, sep 2022. [Online]. Available:
https://dx.doi.org/10.1088/1361-6633/ac8c54

[26] M. Vandelli, A. Lignarolo, C. Cavazzoni, and D. Dragoni, “Evaluating
the practicality of quantum optimization algorithms for prototypical
industrial applications,” Quantum Information Processing, vol. 23,
no. 10, p. 344, Oct 2024. [Online]. Available: https://doi.org/10.1007/
s11128-024-04560-1

[27] A. M. Krol, M. Erdmann, R. Mishra, P. Singkanipa, E. Munro et al.,
“Qiss: Quantum industrial shift scheduling algorithm,” 2024. [Online].
Available: https://arxiv.org/abs/2401.07763

[28] M. E. S. Morales, J. D. Biamonte, and Z. Zimborás, “On the
universality of the quantum approximate optimization algorithm,”
Quantum Information Processing, vol. 19, no. 9, Aug. 2020. [Online].
Available: http://dx.doi.org/10.1007/s11128-020-02748-9

[29] J. A. Montanez-Barrera and K. Michielsen, “Towards a universal
qaoa protocol: Evidence of a scaling advantage in solving some
combinatorial optimization problems,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.09169

[30] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd et al.,
“Adiabatic quantum computation is equivalent to standard quantum
computation,” SIAM Rev. Soc. Ind. Appl. Math., vol. 50, no. 4, pp. 755–
787, Jan. 2008.

[31] C. C. McGeoch, Adiabatic quantum computation and quantum anneal-
ing, ser. Synthesis lectures on quantum computing. Cham: Springer
International Publishing, 2014.

[32] V. Choi, “The effects of the problem hamiltonian parameters on the
minimum spectral gap in adiabatic quantum optimization,” Quantum
Inf. Process., vol. 19, no. 3, Mar. 2020.

[33] A. Braida and S. Martiel, “Anti-crossings and spectral gap during
quantum adiabatic evolution,” Quantum Inf. Process., vol. 20, no. 8,
Aug. 2021.

[34] T. Fujii, K. Komuro, Y. Okudaira, and M. Sawada, “Eigenvalue-invariant
transformation of ising problem for anti-crossing mitigation in quantum
annealing,” J. Phys. Soc. Jpn., vol. 92, no. 4, Apr. 2023.

[35] T. Zaborniak and R. de Sousa, “Benchmarking hamiltonian noise
in the d-wave quantum annealer,” IEEE Transactions on Quantum
Engineering, vol. 2, p. 1–6, 2021. [Online]. Available: http:
//dx.doi.org/10.1109/TQE.2021.3050449

[36] T. Imoto, Y. Susa, R. Miyazaki, T. Kadowaki, and Y. Matsuzaki,
“Universal quantum computation using quantum annealing with
the transverse-field ising hamiltonian,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.19114

[37] A. G. Nikolaev and S. H. Jacobson, “Simulated annealing,” in In-
ternational Series in Operations Research & Management Science,
ser. International series in operations research & management science.
Boston, MA: Springer US, 2010, pp. 1–39.

[38] K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz
et al., “Enabling research through the scip optimization suite 8.0,”

ACM Trans. Math. Softw., vol. 49, no. 2, jun 2023. [Online]. Available:
https://doi.org/10.1145/3585516

[39] L. Perron and V. Furnon, “Or-tools,” Google. [Online]. Available:
https://developers.google.com/optimization/

[40] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman
et al., “Quantum computing with Qiskit,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.08810

[41] A. Broadbent and E. Kashefi, “Parallelizing quantum circuits,”
Theoretical Computer Science, vol. 410, no. 26, p. 2489–2510, Jun.
2009. [Online]. Available: http://dx.doi.org/10.1016/j.tcs.2008.12.046

[42] R. Diestel, Graph Theory, 3rd ed. Springer-Verlag Heidelberg, New
York, 2005. [Online]. Available: http://www.math.ubc.ca/~solymosi/
2007/443/GraphTheoryIII.pdf

[43] J. Kattemölle, “Edge coloring lattice graphs,” 2024. [Online]. Available:
https://arxiv.org/abs/2402.08752

[44] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg et al.,
“Evidence for the utility of quantum computing before fault tolerance,”
Nature, vol. 618, no. 7965, pp. 500–505, Jun. 2023.

[45] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman
et al., “Quantum computing with Qiskit,” 2024.

[46] N. Dattani, S. Szalay, and N. Chancellor, “Pegasus: The second
connectivity graph for large-scale quantum annealing hardware,” 2019.
[Online]. Available: https://arxiv.org/abs/1901.07636

[47] J. Cai, W. G. Macready, and A. Roy, “A practical heuristic for finding
graph minors,” 2014. [Online]. Available: https://arxiv.org/abs/1406.
2741

[48] Z. Dvořák, Graph minors. Cham, Switzerland: Springer International
Publishing, May 2025.

[49] S. Ball, A. Centelles, and F. Huber, “Quantum error-correcting
codes and their geometries,” Annales de l’Institut Henri Poincaré
D, Combinatorics, Physics and their Interactions, vol. 10, no. 2,
p. 337–405, Feb. 2023. [Online]. Available: http://dx.doi.org/10.4171/
aihpd/160

[50] E. B. Niven and C. V. Deutsch, “Calculating a robust correlation
coefficient and quantifying its uncertainty,” Computers and Geosciences,
vol. 40, p. 1–9, Mar. 2012. [Online]. Available: http://dx.doi.org/10.
1016/j.cageo.2011.06.021

[51] V. Shende, S. Bullock, and I. Markov, “Synthesis of quantum-logic
circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 6, pp. 1000–1010, 2006.

[52] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge University Press, 6 2012.

[53] S. Zbinden, A. Bärtschi, H. Djidjev, and S. Eidenbenz, Embedding
Algorithms for Quantum Annealers with Chimera and Pegasus Connec-
tion Topologies. Springer International Publishing, 2020, p. 187–206.
[Online]. Available: http://dx.doi.org/10.1007/978-3-030-50743-5_10

https://arxiv.org/abs/1805.12445
https://arxiv.org/abs/1805.12445
https://doi.org/10.14778/3632093.3632112
https://doi.org/10.14778/3632093.3632112
https://arxiv.org/abs/1811.11538
https://arxiv.org/abs/1811.11538
https://link.aps.org/doi/10.1103/PhysRevApplied.18.054045
https://link.aps.org/doi/10.1103/PhysRevApplied.18.054045
http://dx.doi.org/10.1109/QSW62656.2024.00018
https://dx.doi.org/10.1088/1361-6633/ab85b8
https://dx.doi.org/10.1088/1361-6633/ac8c54
https://doi.org/10.1007/s11128-024-04560-1
https://doi.org/10.1007/s11128-024-04560-1
https://arxiv.org/abs/2401.07763
http://dx.doi.org/10.1007/s11128-020-02748-9
https://arxiv.org/abs/2405.09169
http://dx.doi.org/10.1109/TQE.2021.3050449
http://dx.doi.org/10.1109/TQE.2021.3050449
https://arxiv.org/abs/2402.19114
https://doi.org/10.1145/3585516
https://developers.google.com/optimization/
https://arxiv.org/abs/2405.08810
http://dx.doi.org/10.1016/j.tcs.2008.12.046
http://www.math.ubc.ca/~solymosi/2007/443/GraphTheoryIII.pdf
http://www.math.ubc.ca/~solymosi/2007/443/GraphTheoryIII.pdf
https://arxiv.org/abs/2402.08752
https://arxiv.org/abs/1901.07636
https://arxiv.org/abs/1406.2741
https://arxiv.org/abs/1406.2741
http://dx.doi.org/10.4171/aihpd/160
http://dx.doi.org/10.4171/aihpd/160
http://dx.doi.org/10.1016/j.cageo.2011.06.021
http://dx.doi.org/10.1016/j.cageo.2011.06.021
http://dx.doi.org/10.1007/978-3-030-50743-5_10

	Introduction
	Related Work
	Fundamentals
	LR-QAOA
	Adiabatic Quantum Computing
	Simulated Annealing

	Use Case Modelling
	Description and Mathematical Formulation
	QUBO Creation and Penalty Terms

	Experimental Setup
	Problem instances
	Raw QUBOs
	Scaled QUBOs
	Rounded-cost QUBOs

	Methods
	Expected Behavior

	Experimental Results
	Conclusion and Outlook
	References

