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Abstract
Multiple-query optimization (MQO) seeks to reduce redundant

work across query batches. While MQO offers opportunities for

dramatic performance improvements, the problem is NP-hard, lim-

iting the sizes of problems that can be solved on generic hardware.

We propose to leverage specialized hardware solvers for optimiza-

tion, such as Fujitsu’s Digital Annealer (DA), to scale up MQO to

problem sizes formerly out of reach.

We present a novel incremental processing approach that com-

bines classical computation with DA acceleration. By efficiently

partitioning MQO problems into sets of partial problems, and by

applying a dynamic search steering strategy that reapplies initially

discarded information to incrementally process individual problems,

our method overcomes capacity limitations, and scales to extremely

large MQO instances (up to 1,000 queries). A thorough and com-

prehensive empirical evaluation finds our method substantially

outperforms existing approaches. Our generalisable framework

lays the ground for other database use-cases on quantum-inspired

hardware, and bridges towards future quantum accelerators.

CCS Concepts
• Theory of computation → Design and analysis of algo-
rithms; • Hardware→ Quantum technologies.
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1 Introduction
Processing ever-increasing computational loads and queries of

growing size requires efficient data management techniques ca-

pable of maintaining high energy efficiency and computational

throughput. One approach that is particularly attractive in highly

parallel cloud DBMS deployments is to reduce query execution

times by (1) considering queries as part of a query batch to be

executed in conjunction, rather than in isolation, (2) identifying

commonalities between queries within a batch, and (3) deriving a

globally optimal execution plan for the entire query batch to avoid

redundant result generation, thus reducing joint execution time.

By balancing plan costs and cost savings opportunities, query op-

timisers can obtain speedups over the individually fastest plans,

which may only feature few cost savings with other plans. This

procedural outline is known as the classical problem of multiple
query optimisation (MQO).

Despite its long history in data management research [42], com-

paratively few approaches have been proposed for MQO compared

to other long-standing problems in the field. Yet, MQO remains

uniquely well suited to address increasing computational demands

particularly in cloud-centric query optimisation.

MostMQOmethods target conventional general-purpose systems.

Their performance stagnates with the end of Moore’s law. Achiev-

ing substantial computational performance increases, particularly

while maintaining energy efficiency, is an increasingly challenging

effort. To address these growing concerns, recent trends in the data-

base (DB) domain involve the analysis and use of special-purpose
systems that are tailored to excel at specific computational tasks.

Quantum Hardware. Quantum processing units (QPU) count

among the most highly anticipated special-purpose devices. Based

on quantum bits (qubits), they are capable of exploiting quantum

phenomena to obtain possibly exponential speed-ups over conven-

tional systems. Trummer and Koch assessed their utility for MQO

by deriving a suitable quantum annealer encoding [47].

Yet, contemporary quantum devices remain early-stage proto-

types limited by various imperfections [20] that prevent their use

on problems of industrially relevant sizes [38]. While Trummer

and Koch identified the technological potential for small problem
classes, the culminated impact of these limitations severely ham-

pers the scalability aptness to larger problem sizes. Qubit capacity,
as dominant limitation, substantially restricts scalability. Fig. 1 il-

lustrates this issue for the original method by Trummer and Koch,

which exceeds the capacity of annealers at the time of writing for

problems featuring over 21 queries and moderate amounts of plans:

https://doi.org/XXXXXXX.XXXXXXX
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Figure 1: Qubit capacity requirements for the original quan-
tum MQO method of VLDB’16 [47]. We show the required
amount of qubits for a given number of queries for batches of
ten problems with ten alternative execution plans per query.
Crosses denote exceeded QPU capacity limits.

Their approach clearly does not scale to largeMQO instances. Given

hardware noise and other imperfections, solution accuracy quickly

degrades even within the capacity limits of contemporary quantum

systems, which limits quantum utility.

Quantum-Inspired Hardware. This sobering state prompts the

study of quantum-inspired systems: Special-purpose accelerators
whose design is informed by the workings of real quantum systems.

Unaffected by the quantum HW imperfections, remarkable perfor-

mance of quantum-inspired HW such as the Fujitsu Digital An-

nealer (DA) [2] has been demonstrated for large-scale problems that

prove challenging for conventional general-purpose devices [39].

Such devices are thus ideal substitutes before actual quantum sys-

tems reach sufficient levels of maturity. Nonetheless, scalability

on quantum-inspired hardware is also limited by their capacity to

encode optimisation variables (e.g., only 8,192 on DA hardware [2]).

Achieving Scalability. Still, the capabilities of quantum(-inspired)

devices remain desirable to achieve our goal of efficiently processing

ever-increasing data loads and overcoming the limits of general-

purpose systems. In this paper, we therefore address the scalability

limits of both, MQO approaches performed on conventional general-

purpose systems, as well as the original quantum annealing method

for MQO by Trummer and Koch [47], by deriving a novel incremen-
tal multi-phase method for quantum(-inspired) large-scale MQO

that overcomes any device-specific capacity constraints.

Below, we briefly outline the salient characteristics of our hybrid

approach that combines conventional and quantum(-inspired) HW.

(a) Problem Partitioning. To achieve our goal of overcoming ca-

pacity constraints, we apply a novel problem partitioning strategy

tailored to MQO in the first phase of our method. Our approach

transforms any MQO problem into a set of partial problems that

can be individually processed within the capacity limitations of any

target system. However, performing the partitioning phase on con-

ventional HW would re-introduce the bottlenecks associated with

general-purpose system. To avoid such slowdowns, our method

involves multiple uses of quantum-inspired HW, respectively rely-

ing on it for (1) the actual MQO phase, yet moreover for (2) the

partitioning phase, to derive ideal sets of partial MQO problems.

Thereby, our approach achieves scalability aptness for large-scale

problems beyond the capacity limits of any given quantum-inspired

device, rendering MQO compatible with any existing and future

system regardless of its individual size limitations.

(b) Dynamic Search Steering. While problem partitioning allows

us to overcome capacity limitations, the resulting loss of global

problem information may substantially degrade optimisation accu-

racy. The specific manner in which to process the resulting partial

problems hence requires careful consideration. As such, we pro-

pose a novel dynamic search steering (DSS) strategy: By re-applying
information initially discarded by the partitioning phase, we dy-

namically steer the search space exploration of still unsolved partial

problems in accordance with the hitherto obtained partial solution.

Rather than processing partial MQO problems independently, we

thereby incrementally derive a total MQO solution tailored towards

each partial problem. Doing so, our method not only maintains

a high level of optimisation quality, but moreover substantially

improves over competing partitioning approaches when solving

very large problems, as we empirically show.

Contributions. In detail, our contributions are as follows:

(1) We derive a novel incremental processing strategy for quantum-

inspired annealing that is tailored to MQO. Our method over-

comes HW capacity limits by (1) partitioning MQO scenarios

into sets of partial problems, and (2) incrementally process-

ing them using our dynamic search steering (DSS) method, to

account for initially discarded problem knowledge.

(2) We empirically assess the soundness of our novel incremental

quantum-inspired annealing method for a variety of MQO sce-

narios. Firstly, our analysis includes a comprehensive parameter

sweep that allows us to identify scenarios where the advantage

of our method is most pronounced, and yields insights into

special cases where the performance advantage deteriorates.

To provide further indication on the general applicability of

our method, our analysis moreover includes MQO scenarios

derived from established query optimisation benchmarks, and

demonstrates the advantage of our approach over both, estab-

lished MQO baselines as well as alternative problem partition-

ing methods implemented by HW vendors. Most importantly,

our method proves robust against the bulk of considered MQO

scenarios, including extremely large problems featuring up to

1,000 queries, which prove intractable for competing methods.

(3) We benchmark the performance of two contemporary quantum

and quantum-inspired HW types, including (1) the D-Wave

Hybrid Quantum Annealer, and (2) the Fujitsu Digital Annealer.

In our empirical analysis, we identify the most capable device

for large-scale optimisation problems.

(4) Our complete algorithmic stack provides a framework to de-

couple quantum-inspired MQO from hardware constraints, ren-

dering our method device-independent and compatible with all

existing and future quantum-inspired annealing systems.

The remainder of this paper is structured as follows. Sec. 2 pro-

vides fundamentals on quantum(-inspired) annealing devices. Sec. 3

outlines MQO fundamentals and our considered problem model.

In Sec. 4, we describe our novel incremental quantum(-inspired)

annealing method for MQO in detail. Sec. 5 outlines our extensive

empirical assessment of our method. Finally, we discuss related

work in Sec. 6, and conclude in Sec. 7.
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2 Quantum(-Inspired) Annealing
Quantum annealing constitutes a restricted variant of adiabatic

quantum computation [16] and seeks to identify the ground state

of an Ising Hamiltonian [15] that expresses a solution to an optimi-

sation problem. It is not feasible to give a complete introduction to

adiabatic quantum computation here. We thus refer the interested

reader to Farhi et al. [16], and provide an overview of contempo-

rary HW types implementing either pure quantum annealing, or a

quantum-inspired variant. We discuss D-Wave’s Hybrid Quantum

Annealing in Sec. 2.2, and Fujitsu’s Digital Annealing in Sec. 2.3.

2.1 Problem Encoding
Before discussing quantum(-inspired) annealing HW, we briefly

outline the required problem encoding that is presupposed by all

devices described in the following. Rather than running arbitrary

code, quantum(-inspired) annealing requires problems to be en-

coded in accordance to the quadratic unconstrained binary opti-
misation (QUBO) formalism, which (1) only involves quadratic in-
teractions between variables, (2) is unconstrained, therefore not

supporting explicit constraints, (3) only features binary variables,

and (4) encodes optimisation problems. Mathematically, they are

given by the multivariate polynomial

𝑓 ( ®𝑥) =
∑︁
𝑖

𝑐𝑖𝑖𝑥𝑖 +
∑︁
𝑖≠𝑗

𝑐𝑖 𝑗𝑥𝑖𝑥 𝑗 ,

where 𝑥𝑖 ∈ {0, 1} are variables, and 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖 ∈ R coefficients,

which may be interpreted as graph edges representing variable

interactions between variable nodes. Physically, QUBO encodings

correspond to energy formulas, and annealers seek their minimum
energy configuration. Therefore, to encode optimisation problems

for such devices, they have to be transformed in such a way that the

minimum energy configurations of the resulting QUBO encoding

correspond to ideal solutions for the original problem.

2.2 D-Wave Hybrid Quantum Annealing
We first consider the D-Wave Hybrid Quantum Annealer (HQA),

which features both, use of quantum annealing, as well as steps

performed on classical HW [23]. The system conducts an itera-

tive optimisation that repeatedly queries quantum annealers on a

limited representation of the overall problem input. These queries,

representing sub-problems of limited size, are small enough to be

solved on current quantum annealers and yield suggestions on

search space regions to further explore. This hybrid framework

allows the HQA to mitigate the size limitation of contemporary

quantum annealers, which feature roughly 5,600 qubits to repre-

sent variables. By coordinating the overall optimisation via classical

means, the HQA reduces the detrimental impact of noise, which

perturbs computation on present-day quantum systems.

2.3 Fujitsu Digital Annealing
The Fujitsu Digital Annealer (DA) is a quantum-inspired device fea-

turing special-purpose architecture tailored to solve QUBO-encoded

problems based on an enhanced SA algorithm. The HW inherently

supports problems featuring up to 8,192 optimisation variables.

However, by performing problem partitioning steps
1
, larger prob-

lems featuring up to 100,000 variables can be solved. While the

DA’s default partitioning method supports general QUBO-encoded

problems, our novel incremental annealing method, described in

detail in Sec. 4, is tailored to the characteristic properties of MQO.

We analyse the advantage of our method in Sec. 5.

The DA enhances conventional SA in multiple ways. Firstly,

it evaluates state updates for all all decision variables in parallel
in each optimisation step, while conventional SA only considers

flips for single variables at a time [2]. Doing so, the probability

for state updates is substantially boosted [2]. In contrast to SA on

classical HW, which yields a worst-case complexity of O(𝑁 ) for 𝑁
variables, the DA’s HW performs the required state updates in con-
stant time (O(1)), regardless of the amount of associated variables.

Further, the DA applies a dynamic offset escape method: If, upon

assessing all variables, no state update is considered acceptable, the

acceptance probability is increased in the next algorithmic step,

thereby boosting the DA’s aptitude to escape from local minima.

For full details on the DA’s algorithmic properties, we refer the

reader to Aramon et al. [2].

Alternatives. In recent years, quantum-inspired alternatives to

the DA have been made accessible. This includes the NEC Vector

Annealer [33], which similarly performs a HW-augmented SA vari-

ant. While we have included the device in our initial assessment,

we found both its optimisation accuracy and runtime performance

to be dominated by the DA. Our empirical analysis of quantum-

inspired HW in Sec. 5 hence focuses on the Fujitsu DA.

Accessibility. While our method is compatible with any future

quantum device, we emphasise that our method does not require

pure quantum computers. While inspired by quantum systems,

systems such as the Fujitsu DA operate on purely classical means.

Hence, like other conventional HW accelerators and high-perfor-

mance computers, they are readily accessible via cloud services

or direct HW purchases, and constitute very capable temporary

substitutes for real quantum systems, as our experiments will show.

3 Formal MQO Model
Multiple query optimisation (MQO) seeks an ideal plan configu-

ration minimising the accumulated execution cost for a batch of

queries to be executed in conjunction [42]. Naively, a query op-

timiser may greedily select the individually fastest plan for each

single query, failing to account for overlaps and cost savings op-

portunities with other query plans. Such plans may therefore be

suboptimal when compared with plans selected by MQO, which

are tuned to exploit common sub-expressions and cost savings op-
portunities between plans. Hence, by sharing intermediate query

results, processing times for redundant result generation can be

avoided, resulting in lower processing times compared to the naive

selection of individually optimal query plans. The goal of MQO

is hence to determine the selection of plans that yields the glob-
ally minimal execution costs, featuring the most efficient balance

between individual plan costs and cost savings between plans.

1
The specific algorithmic steps to partition QUBO-encoded problems are not fully

disclosed by Fujitsu, and can thus not be further described here.
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MQO involves two fundamental phases, and MQO methods may

be classified in accordance to the steps they perform: The first cat-

egory of MQO methods seeks to generate execution plans and to

identify their common sub-expressions [9, 25]; in contrast, based

on these results, the second category seeks to identify the glob-

ally ideal selection of execution plans, to minimise overall costs

by exploiting common sub-expressions. The method proposed in

this paper belongs in the second category, and hence presupposes

the existence of common sub-expressions for plans whose ideal

execution configuration is to be determined.

For the remainder of this section, we follow the formal NP-hard

MQO problem model as presented by Trummer and Koch [47].

3.1 MQO Problem Input
Formally, the input for an MQO problem is given by (a) a set of

queries𝑄 to be executed, (b) a total set of execution plans 𝑃 , and (c)

a set of cost savings 𝑆 . Each query with index 1 ≤ 𝑞 ≤ |𝑄 |, where
|𝑄 | denotes the size of 𝑄 , features an associated set of mutually

exclusive execution plans 𝑃𝑞 ⊆ 𝑃 . Further, each cost saving sp1,p2 ∈
𝑆 refers to a pair of different plans (𝑝1, 𝑝2) not associated with

the same query. Finally, each plan 𝑝𝑖 , with 1 ≤ 𝑖 ≤ |𝑃 |, where
|𝑃 | denotes the size of 𝑃 , features an associated execution cost

𝑐𝑖 > 0. This cost may be reduced by spi,pj ≥ 0, given cost sharing

opportunities with another plan 𝑝 𝑗 .

𝑞2

𝑞1

𝑞4

𝑞3

10

𝑝4

10

𝑝2

9𝑝3

9𝑝1

9 𝑝8

9 𝑝6

14

𝑝7

11

𝑝5

1

1

1

5

1

5 1

1

5 5

2

𝑞1 𝑝2

𝑝1

2

𝑞3𝑝5

𝑝6

2

𝑞2

𝑝3

𝑝4

2

𝑞4

𝑝8

𝑝7

(a) (b)

8

5

8

5

Figure 2: (a) MQO graph representing an MQO problem fea-
turing four queries (𝑞1, ..., 𝑞4) and eight plans (𝑝1, ..., 𝑝8) in
total. Nodes of varying colors represent plans associated with
different queries. Edges represent cost savings between pairs
of execution plans. Finally, nodes and edges are labeled with
their respective costs and savings magnitudes.
(b) Partitioning graph compressing the MQO graph shown
in (a), with nodes corresponding to queries labeled with the
amount of associated plans, and edges labeled with the accu-
mulated cost savings.

Each MQO problem may be represented by a corresponding

MQO graph 𝐺 = (𝑉 , 𝐸), where each plan 𝑝𝑖 ∈ 𝑃 is represented by

a node 𝑣𝑖 ∈ 𝑉 , and each cost saving spi,pj ∈ 𝑆 is represented by a

corresponding edge ei,j ∈ 𝐸. Fig. 2 (a) depicts an MQO graph for

a problem featuring four queries with two alternative execution

plans per query. The MQO graph representation will prove useful

for the partitioning phase of our approach.

We select the MQO input model outlined above due to its strong

adherence to the required encoding formalism for quantum(-inspired)

systems discussed below. Note, however, that the model is func-

tionally equivalent to the alternative task-based model applied for

prior MQO research [4, 11, 12], as discussed in [47].

3.2 MQO Solution
A solution for an MQO problem is given by a set of plans 𝑃𝑒 , which

includes those plans selected for execution. Thereby, ∀𝑞 ∈ 𝑄 :

|𝑃𝑞
⋂

𝑃𝑒 | = 1 must hold, i.e., for each query, precisely one out of all

alternative plans is selected. The size of the solution space is hence

given by Nsol =
∏

𝑞∈𝑄 |𝑃𝑞 | in general, or by Nsol = PPQ |𝑄 | for a
fixed amount of plans per query (PPQ). Finally, the total cost for a
MQO solution is given by 𝐶 (𝑃𝑒 ) =

∑
𝑝𝑖 ∈𝑃𝑒 𝑐𝑖 −

∑
{𝑝𝑖 ,𝑝 𝑗 }⊆𝑃𝑒 spi,pj ,

i.e., the accumulated execution cost for all selected plans reduced

by the amount of cost savings between plan pairs. An optimal MQO

solution minimises this cost formula.

Example 3.1. To illustrate the MQO problem, let us consider the

MQO scenario depicted in Fig. 2, featuring four queries with plans

Pq1 = (𝑝1, 𝑝2), Pq2 = (𝑝3, 𝑝4), Pq3 = (𝑝5, 𝑝6) and Pq4 = (𝑝7, 𝑝8).
We assume corresponding execution costs as 𝑐1 = 9, 𝑐2 = 10, 𝑐3 =

9, 𝑐4 = 10, 𝑐5 = 11, 𝑐6 = 9, 𝑐7 = 14, 𝑐8 = 9, and further assume

cost savings as sp1,p3 = 1, sp1,p4 = 1, sp2,p3 = 1, sp2,p4 = 5, sp2,p7 = 5,
sp4,p5 = 5, sp5 ,p7 = 5, sp5 ,p8 = 1, sp6,p7 = 1, sp6,p8 = 1.

Without considering result sharing opportunities, a query opti-

miser may greedily select the locally cheapest plan for each query,

yielding the set of execution plans Pgr = (𝑝1, 𝑝3, 𝑝6, 𝑝8). While we

obtain total costs 𝐶 (Pgr ) = 9 + 9 + 9 + 9 = 36 if the queries are

executed in isolation, they can be reduced to 34 by considering cost

savings sp1,p3 = 1 and sp6,p8 = 1. However, by considering such sav-

ings directly during during the plan generation, MQO can obtain the

globally optimal set of execution plans Popt = (𝑝2, 𝑝4, 𝑝5, 𝑝7), yield-
ing total execution cost𝐶 (Popt ) = 10+10+11+14−5−5−5−5 = 25.

The exponential growth of the solution space, alongside its NP-

hard nature, renders MQO a challenging problem when scaling to

many queries. The industrial requirement to optimally process ever-

increasing computational loads therefore prompts the use of novel

HW such as quantum(-inspired) systems, which promise scalability

and robustness through high architectural efficiency.

4 Incremental Quantum(-Inspired) Annealing
In this section, we present our incremental method for solving large-

scale MQO problems with quantum(-inspired) annealing, using our

novel partitioning and dynamic search steering strategies. We begin

by discussing our problem partitioning phase in Sec. 4.1, and further

outline our dynamic search steering phase in Sec. 4.2.

4.1 Problem Partitioning
The first phase of our method involves the partitioning of any

given MQO problem into a set of partial problems that adhere to

the capacity constraints of the quantum(-inspired) device. To avoid

bottlenecks on conventional devices, we seek to not only rely on

quantum(-inspired) annealers for the actual MQO phase, but more-

over for the partitioning phase. However, processing the raw MQO

problem on the device is clearly infeasible, since its insufficient
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capacity prompts the partitioning phase in the first place. To still

conduct this step on the device, we must hence transform the raw

MQO problem into a compressed form adhering to capacity limits.

To this end, we compress the input MQO graph into a partitioning
graph of reduced size, such that conducting graph partitioning on

the device yields the desired partial MQO problems.

4.1.1 Partitioning Graph Generation. To ideally minimise optimi-

sation inaccuracies due to a loss of information by partitioning, we

require an ideal set of partial MQO problems featuring the smallest

possible amount of dependencies; that is, plans featured by different

partial problems share the smallest possible amount of cost savings.

To this end, the first step of our method involves the generation of a

partitioning graph, which constitutes a compressed representation

of the MQO graph, and features aggregated information to guide

the subsequent graph partitioning step.

Formally, the partitioning graph 𝐺 = (𝑉 , 𝐸) contains a weighted
node 𝑣 ∈ 𝑉 for each query 𝑞 ∈ 𝑄 featured by the raw MQO prob-

lem, where the weight 𝜔vi for a node 𝑣𝑖 is given by the amount of

alternative plans |Pqi | associated with query 𝑞𝑖 . Further,𝐺 contains

a weighted edge 𝑒 ∈ 𝐸 for each pair of queries (𝑞𝑖 , 𝑞 𝑗 ) sharing at

least one cost saving between any of their respective plans, where

𝜔ei,j =
∑
spl ,pm ∈𝑆,𝑝𝑙 ∈Pqi ,𝑝𝑚∈Pqj spl ,pm . Fig. 2 (b) illustrates the parti-

tioning graph representing the MQO graph depicted in Fig. 2 (a).

Example 4.1. (cont’d) To illustrate the partitioning graph gener-

ation, we continue our MQO example for the scenario depicted in

Fig. 2. Firstly, we derive the four nodes 𝑉 = (v1, v2, v3, v4), corre-
sponding to the four queries featured by the problem, with equal

weights 𝜔v1 = 𝜔v2 = 𝜔v3 = 𝜔v4 = 2 to represent the two plans fea-

tured by each query. We further add edges for each query pair shar-

ing at least one cost saving: For (𝑞1, 𝑞2), we add an edge e1,2 , and de-
rive its weight𝜔e1,2 = sp1,p3 +sp1,p4 +sp2,p3 +sp2,p4 = 1+1+1+5 = 8 by

summing over savings between plans featured by both queries. Like-

wise, we add edges e1,4 , e2,3 , and e3,4 withweights𝜔e1,4 = 5,𝜔e2,3 = 5

and𝜔e3,4 = 8. In contrast, we do not require edges e1,3 and e2,4 , as no
savings are possible between plans featured by (𝑞1, 𝑞3) and (𝑞2, 𝑞4).
We thus obtain the partitioning graph depicted in Fig. 2 (b).

4.1.2 Quantum(-Inspired) Graph Partitioning. Having outlined the

generation of a partitioning graph, let us next consider the appli-

cation of a weighted graph partitioning algorithm, which splits

the set of graph nodes into two equally weighted subsets while

minimising the accumulated weight of edges connecting nodes

of the respective subsets. Since the node weights correspond to

the amount of plans associated with the queries represented by

each node, we obtain partial MQO problems featuring (1) two dis-

tinct, non-overlapping query subsets, and (2) approximately equally

sized subsets of execution plans. We may recursively repeat this

process by further partitioning our partial problems until none of

them exceed the capacity limit of our target device. Further, by

minimising the accumulated weight of edges connecting nodes of

the respective subsets, a partitioning algorithm applied on our par-

titioning graph moreover minimises the accumulated magnitude of

discarded savings represented by such edges. Thereby, our method

yields valid partial MQO problems fulfilling our goal of maintaining

high optimisation accuracy by minimising the loss of information.

Let us now consider a concrete method for processing the parti-

tioning graph on a quantum(-inspired) device. As a precondition,

the target device must feature variable capacity equal or greater

than the amount of nodes in the partitioning graph, representing

queries of the raw MQO problem. Then, we may derive a suitable

mathematical encoding adhering to the QUBO formalism outlined

in Sec. 2.1, which allows the use of quantum(-inspired) HW. For

our method, we extend the base encoding for unweighted graph

partitioning proposed in Lucas [27], to obtain an encoding for our

weighted variant. Given our partitioning graph 𝐺 = (𝑉 , 𝐸) with
node weight 𝜔vi for node 𝑣𝑖 and edge weight 𝜔ei,j for edge 𝑒𝑖, 𝑗 con-

necting nodes 𝑣𝑖 and 𝑣 𝑗 , and a spin variable 𝑠𝑖 ∈ {−1, 1} 2 for each
𝑣𝑖 ∈ 𝑉 , the encoding formula has the following partial terms:

𝐻𝐴 =

(
𝑁∑︁
𝑖=1

𝜔vi𝑠𝑖

)2
, 𝐻𝐵 =

∑︁
(𝑢,𝑣) ∈𝐸

𝜔eu,v
1 − 𝑠𝑢𝑠𝑣

2

.

Minimising 𝐻𝐴 ensures equal-sized, distinct query sets, while
minimisation of 𝐻𝐵 minimises the loss of information resulting

from partitioning, as respectively shown by Theorem 4.2 and Theo-

rem 4.3 in the following.

Theorem 4.2. Minimisation of 𝐻𝐴 obtains two equal-sized, dis-
tinct sets of queries.

Proof. Recall that the device seeks any variable configuration

minimising 𝐻𝐴 , which requires the sum inside the quadratic opera-

tion to ideally equal 0. Thus, to minimise 𝐻𝐴 , the solver splits the

set of spin variables into two subsets respectively featuring positive

and negative spins, such that the accumulated weights (represent-

ing plan amounts featured by queries) are of equal magnitude and

thus reciprocally eliminated. Otherwise, an energy penalty propor-

tional to the size difference of the sets of plans is added. Since spins

represent queries, minimising 𝐻𝐴 obtains two distinct query sets

featuring equal-sized amounts of plans. □

Theorem 4.3. Minimisation of 𝐻𝐵 minimises the magnitude of
cost savings discarded by the partitioning.

Proof. Minimising 𝐻𝐵 requires 𝑠𝑢 = 𝑠𝑣 for as many pairs of

nodes (𝑣𝑢 , 𝑣𝑣) connected by edges in 𝐸 as possible. Otherwise, if

𝑠𝑢 ≠ 𝑠𝑣 , edge weight𝜔eu,v is added for any edge connecting nodes of

unequal partitions. Thus, minimising𝐻𝐵 yields node subsets where

the accumulated edge weight between nodes of either set, and hence

the savings magnitude discarded by partitioning, is minimised. □

Example 4.4. (cont’d) We continue our MQO example for the

scenario depicted in Fig. 2, by demonstrating how quantum solvers

minimise the encoding discussed above. We begin by considering

𝐻𝐴 , whose minimisation yields balanced MQO partitions part1 and
part2 . For instance, the annealer may obtain part1 = (𝑞1, 𝑞2) and
part2 = (𝑞3, 𝑞4), where the corresponding spin variables 𝑠1 = 1,

𝑠2 = 1, 𝑠3 = −1 and 𝑠4 = −1, with weights corresponding to the two

plans for each query, yield energy𝐻𝐴 = (2·1+2·1+2·−1+2·−1)2 = 0.

The same energy is obtained for any other configuration repre-

senting a split into equal-sized partitions. In contrast, an imbal-

anced split part1 = (𝑞1, 𝑞2, 𝑞3) and part2 = (𝑞4) yields energy

2
This encoding is functionally equivalent to the model featuring a binary variable

domain outlined in Sec. 2.1 [5].
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𝐻𝐴 = (2 · 1 + 2 · 1 + 2 · 1 + 2 · −1)2 = 16, while failure to apply

any partitioning with part1 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) and part2 = ∅ obtains
𝐻𝐴 = (2 · 1 + 2 · 1 + 2 · 1 + 2 · 1)2 = 64.

Thus far, energy minimisation obtains any balanced set of parti-

tions. However, we seek those configurations that minimise the loss

of information, i.e., the accumulated savings between queries be-

longing to different partitions, expressed by the weight 𝜔ei,j for any

pair of queries (𝑖, 𝑗). Hence, we further consider the energy induced
by 𝐻𝐵 : For the configuration part1 = (𝑞1, 𝑞2) and part2 = (𝑞3, 𝑞4),
we obtain the minimum energy 𝐻𝐵 = 𝜔e1,2 · 0 +𝜔e1,4 · 1 +𝜔e2,3 · 1 +
𝜔e3,4 ·0 = 8 ·0+5 ·1+5 ·1+8 ·0 = 10. In contrast, part1 = (𝑞1, 𝑞4) and
part2 = (𝑞2, 𝑞3) obtains𝐻𝐵 = 8·1+5·0+5·0+8·1 = 16, while part1 =
(𝑞1, 𝑞3) and part2 = (𝑞2, 𝑞4) yields𝐻𝐵 = 8 · 1+ 5 · 1+ 5 · 1+ 8 · 1 = 26.

In our example, an annealer may attempt to further reduce the

𝐻𝐵 energy from 10 to ideally 0, by breaking the balance established

by 𝐻𝐴 . However, as shown above, 𝐻𝐴 penalises imbalances with

an even larger energy penalty of at least 16, rendering such at-

tempts fruitless in our example. However, in general, imbalanced

configurations may yield lower energies depending on the specific

properties of the MQO problem.

Such imbalances are tolerable if they do not hamper subsequent

processing steps, and may be desirable to prevent an unfavourable

distribution of queries that yields a large loss of information. They

become problematic if partial problems violate capacity constraints

of the target device. Thus, to avoid excessive imbalances and po-

tentially ineffective partitions caused by strict balancing, we apply

a two-folded approach: Firstly, a Lagrange multiplier 𝜔A augments

𝐻𝐴 , such that the positive energy penalty induced by validity vi-

olations in 𝐻𝐴 always outweighs any negative energy benefit ob-

tainable for 𝐻𝐵 as a result of violations. This guarantees balanced

partitions in minima of 𝐻 = 𝜔A𝐻𝐴 + 𝐻𝐵 (Theorem 4.5 below). Sec-

ondly, a post-processing mechanism described in Sec. 4.1.3 further

reduces loss of information by effectively re-arranging query parti-

tions, while giving us full control over minimum partition sizes to

achieve a sufficient size reduction.

Theorem 4.5. Minimising 𝐻 = 𝜔A𝐻𝐴 + 𝐻𝐵 obtains balanced
query partitions if 𝜔A = max𝑞𝑖 ∈𝑄 (

∑
𝑞 𝑗 ∈𝑄,𝑞 𝑗≠𝑞𝑖 𝜔i,j).

Proof. We begin by considering the minimisation of 𝐻𝐴 for a

set of queries 𝑄 , which yields equal-sized query partitions as per

Theorem 4.2. Consider the combined encoding 𝐻 = 𝐻𝐴 + 𝐻𝐵 on a

query 𝑞𝑖 . While 𝐻𝐵 yields energy 0 for each query 𝑞𝑠 ∈ Part (qi),
i.e., if 𝑞𝑖 is featured by the same partition Part (qi) as 𝑞𝑖 , it induces a
further penalty of𝜔ei,j for each query𝑞 𝑗 ∉ Part (qi) (recall that𝜔es i,j
denotes an edge weight in the partitioning graph). As annealers

minimise the global energy 𝐻 = 𝐻𝐴 + 𝐻𝐵 , partition balance may

be violated by shifting partitions for a query 𝑞𝑖 , if the magnitude of

the positive energy penalty 𝑝 thus induced by 𝐻𝐴 is smaller than

the negative energy benefit 𝑏 =
∑
𝑞 𝑗∉Part (qi ) 𝜔ei,j induced by 𝐻𝐵 .

An upper bound bmax = max𝑞𝑖 ∈𝑄 (
∑
𝑞 𝑗 ∈𝑄,𝑞 𝑗≠𝑞𝑖 𝜔i,j) over all

queries denotes the maximum accumulated cost savings shared

between one query and all others. Augmenting 𝐻𝐴 as 𝐻 = 𝜔A𝐻𝐴 +
𝐻𝐵 with 𝜔A = bmax = max𝑞𝑖 ∈𝑄 (

∑
𝑞 𝑗 ∈𝑄,𝑞 𝑗≠𝑞𝑖 𝜔i,j) ensures that the

energy penalty for violating𝐻𝐴 outweighs any benefit of sacrificing

the partition balance induced by 𝐻𝐵 . □

4.1.3 Post-Processing. While minimising the QUBO encoding dis-

cussed above ensures balanced query partitions, controlled imbal-

ances can be desirable for queries that cannot be evenly divided

without a substantial loss of information. We hence propose the

post-processing algorithm featured in Algorithm 1, to obtain more

fine-grained query distributions.

Algorithm 1 Post-Processing Partitioning Results

1: function PostProcess(𝑃𝐺 , part1, part2, numParses, minSize)
2: for 𝑖 ← 1 to numParses do
3: for query ∈ part1 do
4: if |part1| == minPartSize then
5: break
6: // Calc. the accumulated savings to either partition

7: // in accordance with partitioning graph 𝑃𝐺

8: p1Conformance← AccSavToP1(PG, query, part1)
9: p2Conformance← AccSavToP2(PG, query, part2)
10: if p1Conformance < p2Conformance then
11: part1.remove(q)
12: part2.append (q)
13: return (part1, part2)

The goal of our post-processing method is to shift queries from

the first given partition part1 to part2 if it can thus achieve a re-

duction in the magnitude of discarded cost savings. For each query

contained in part1, our method determines both, the conformance

of the query to its own assigned partition part1, as well as the
second partition part2. The conformance values correspond to its

respective accumulated cost savings to queries contained in part1
(AccSavToP1) or part2 (AccSavToP2), based on the edge weights of

the partitioning graph 𝑃𝐺 . If a query contained in part1 thus fea-
tures a higher conformance to queries of part2, and may only have

been assigned to part1 by the annealer to obtain equal-sized parti-

tions, it is accordingly reassigned to part2, to further reduce the loss
of information. Our method terminates once part1 has been reduced
to the specified minimum size, and can hence be parameterised in

accordance to the capacity constraints of any target device.

Further, as the conformance values dynamically change with ev-

ery query shifted to part2, our post-processing method repeats this

process for every query in accordance with the specified number

of parses (numParses). Hence, while a query may not be reassigned

during the first parse, the partition swap of strongly associated

queries may cause its shift during subsequent parses. Naturally,

the outcome of our method depends on which of two partitions is

specified as part1, thus having queries removed, and which is spec-

ified as part2 and is accordingly assigned further queries. As such,

our post-processing method is best performed on both possible

assignments, to select the best among both results.

4.2 Incremental Optimisation with DSS
Having obtained partial MQO problems adhering to the size limita-

tions of our target device, we next outline the actual optimisation

phase of our method. We begin by contrasting two possible strate-

gies to optimise the set of partial problems.
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Parallel Optimisation. The first processing option involves op-

timising each partial MQO problem independently, which obtains

partial solutions optimised for each individual partial problem. By

merging all partial solutions, we then obtain a total solution to the

original MQO problem. Independently processing each problem

allows parallel execution on multiple annealers, which accordingly

reduces the total optimisation time. However, by disregarding de-

pendencies between partial problems, solution quality may be se-

verely hampered, leading to suboptimal performance in contrast to

processing strategies that account for such dependencies. Indeed,

we propose one such method in the following, and assess its advan-

tage over the naive, parallel processing variant in our experiments

discussed in Sec. 5.

Example 4.6. (cont’d) We show the parallel optimisation strategy

by continuing our MQO example for the scenario depicted in Fig. 2.

Following Example 4.4, the partitioning phase yields two partitions

part1 = (𝑞1, 𝑞2) and part2 = (𝑞3, 𝑞4). By applyingMQO on each par-

tition independently, we obtain the solutions sol1 = (𝑝2, 𝑝4) with
costs𝐶 (sol1) = 𝑐2 +𝑐4− sp2,p4 = 10+10−5 = 15, and sol2 = (𝑝6, 𝑝8)
with costs 𝐶 (sol2) = 𝑐6 + 𝑐8 − sp6,p8 = 9 + 9 − 1 = 17. By merging

sol1 and sol2 , we obtain the total solution solttl = (𝑝2, 𝑝4, 𝑝6, 𝑝8),
and accounting for all original savings yields costs 𝐶 (solttl) =

𝑐2+𝑐4+𝑐6+𝑐8−sp2,p4 −sp6,p8 = 10+10+9+9−5−1 = 32. By failing to

account for the discarded savings sp2,p7 and sp4,p5 , the parallel pro-
cessing strategy yields a more expensive solution when compared

with the optimal solution with costs 25 derived in Example 3.1.

Incremental Optimisation. By independently processing each par-
tial MQO problem, we obtain partial solutions that may be optimal

for each of the partial problems. Yet, much like how choosing the

locally optimal execution plan for single queries obtains globally

suboptimal solutions which fail to exploit cost savings between

plans (thus motivating MQO in the first place), optimising par-

tial MQO problems independently yields suboptimal solutions for

the original MQO problem, neglecting to account for and exploit

dependencies between the partial problems. Independent process-

ing of partial problems thus fails to capture cost savings between

plan pairs featured by different partial problems, which have been

discarded by the problem partitioning step.

While it is not possible to account for those cost savings during
the optimisation of a partial MQO problem, we may consider them

inbetween the optimisation steps of the partial problems. We thus

propose an incremental optimisation method which gradually builds

a total solution while coordinating the successive optimisation of

partial problems. The outline of our incremental method is featured

in Algorithm 2. Most importantly, we apply a dynamic solution
steering (DSS) strategy, detailed in Algorithm 3, to tune the optimi-

sation of still unsolved partial problems in accordance with the cost

savings and information extracted from already obtained partial

MQO solutions. Thus, our method incrementally builds a global

MQO solution by gradually steering the partial problem processing

towards a common objective, rather than independent partial goals.

Following Algorithm 2, we begin by encoding each partial prob-

lem based on the encoding method by Trummer and Koch [47],

to obtain a QUBO encoding for quantum(-inspired) annealing. We

next determine the best among all obtained solutions. Rather than

selecting the solution with the lowest costs for the individual partial

Algorithm 2 Incremental Optimisation

1: function IncrementalOptimisation(partProblems)
2: // Initially, our total solution ttlSol is empty

3: ttlSol ← ∅
4: while partProblems ≠ ∅ do
5: // Get next partial problem to process

6: prob← partProblems.𝑝𝑜𝑝 ()
7: // Encode partial problem

8: pe ← EncodeProblem(prob)
9: // Solve partial problem on quantum(-inspired) device

10: partSols← solver .optimise(pe)
11: // Determine best partial solution w.r.t. ttlSol
12: bestPartSol ← BestIntSol(ttlSol, partSol)
13: // Add partial solution to total solution

14: ttlSol ← ttlSol ∪ bestPartSol
15: // If at least one problem remains unsolved

16: if partProblems ≠ ∅ then
17: // Update remaining problems with DSS

18: partProblems← DSS(ttlSol, partProblems)
19: return ttlSol

problem, we identify the best solution as the one that minimises

costs w.r.t. the current total solution encompassing all plans selected

thus far, and add it to our total solution ttlSol, such that ttlSol con-
tains the complete solution after processing all partial problems.

Algorithm 3 Dynamic Search Steering

1: function DSS(intSol, partProblems)
2: for prob ∈ partProblems do
3: // Consider each discarded saving for problem

4: for 𝑠 ∈ prob.discSavings do
5: // Consider each plan in the unsolved problem

6: for 𝑞 ∈ prob.queries do
7: for plan ∈ q.plans do
8: // For each plan in intermed. solution intSol
9: for selPlan ∈ intSol.plans do
10: // Verify if discarded saving applies

11: if (plan, selPlan) ⊆ s.plans then
12: // Reduce costs by disc. saving

13: plan.cost ← plan.cost − s.val
14: return partProblems

Finally, before repeating the process for the next problem, we

adjust each still unsolved partial problem in accordance to our dy-

namic search steering (DSS) strategy. Following Algorithm 3, our

method updates the execution costs of all plans featured by unsolved
problems, such that they reflect the true costs when accounting for

already selected plans stored in the current intermediate solution

intSol. Thus, plan costs of unsolved problems are reduced by each

cost saving shared with already selected plans. Thereby, informa-

tion initially discarded during the problem partitioning phase is

reintegrated into the optimisation process by dynamic plan cost

adjustments. We thus steer the optimisation of individual problems
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towards a common direction, which substantially boosts optimi-

sation quality in comparison to the parallel processing method

described above, as we will show in Sec. 5.

Example 4.7. (cont’d)We continue our running example by demon-

strating our incremental processing strategy with DSS for the parti-

tions part1 = (𝑞1, 𝑞2) and part2 = (𝑞3, 𝑞4) obtained in Example 4.4.

As before, we begin by applying MQO for part1, which yields sol1 =
(𝑝2, 𝑝4) with costs𝐶 (sol1) = 𝑐2 +𝑐4− sp2,p4 = 10+10−5 = 15. How-

ever, rather than optimising part2 independently, we next apply our
DSS method, to steer the optimisation of part2 in accordance to the

partial solution sol1: Exploiting the knowledge that 𝑝2 and 𝑝4 have

already been selected for part1, we update the costs of plans in part2
based on the initially discarded cost savings sp2,p7 and sp4,p5 . Since
sol1 already features 𝑝2, sp2,p7 will apply if 𝑝7 is selected for part2 .
Hence, reducing 𝑐7 = 14 by sp2,p7 = 5, we derive the updated costs

c7DSS = 9. Likewise, we reduce 𝑐5 = 11 by sp4,p5 = 5, knowing that 𝑝4
has already been selected, and obtain c5DSS = 6. Finally, successfully

applyingMQO for part2 now yields the solution sol2 = (𝑝5, 𝑝7) with
costs𝐶 (sol2) = c5DSS +c7DSS −sp5 ,p7 = 6+9−5 = 10, and merging sol1
and sol2 obtains the optimal solution solopt = (𝑝2, 𝑝4, 𝑝5, 𝑝7) with
costs 25, as determined in Example 3.1 for the unpartitioned case.

Post-Processing. While all our considered annealers consistently

obtain valid MQO solutions in our analysis below, validity is not

guaranteed. For devices yielding invalid solutions, post-processing

may, for instance, choose the plan with the lowest costs w.r.t. valid

query plans if multiple plans are selected for a query, and likewise

select the best among all possible plans if no plan was selected.

5 Experimental Analysis
We now conduct a systematic empirical analysis to comprehen-

sively evaluate the aptness of our incremental quantum(-inspired)

annealing method for large-scale MQO.

5.1 Experimental Setup
We seek to identify the most suitable algorithm for large-scale

MQO, by analysing both established MQO approaches, as well as

quantum(-inspired) annealing methods, augmented with our novel

incremental annealing strategy. For MQO problems of limited size,

methods such as the A-* algorithm [10, 42, 43] may be used to deter-

mine optimal solutions. However, their required optimisation time

increases exponentially when scaling up problem dimensions [4].

This renders such approaches unsuitable for our experiments, which

seek to evaluate scalability aptness for large-scale problems.

We select a set of baselines known to scale to moderate and

large problem dimensions (hill climbing (HC) [12] and the ge-

netic algorithm [4]). Standard simulated annealing (SA) solves

QUBO-encoded problems on conventional HW, and provides a

baseline to assess the advantage of quantum(-inspired) special-

purpose HW. For this, we consider the D-Wave Hybrid Quantum

Annealer (HQA) [23] and the Fujitsu Digital Annealer (DA) [2].

Processing methods include (1) the default method offered by the

annealer to partition large-scale problems, (2) our parallel annealing

strategy that processes each partitioned problem independently, and

(3) our novel incremental quantum(-inspired) annealing strategy,

using DSS to exploit dependencies between all partitioned problems.

The experimental analysis thus involves eight approaches: HC: Hill

climbing algorithm by Dokeroglu et al. [12]; Genetic: Genetic algo-
rithm proposed by Bayir et al. [4]; SA (Default): Simulated Anneal-

ing on classical HW; SA (Incremental): Simulated Annealing on

classical HW, using our incremental annealing strategy with DSS;

HQA: Hybrid Quantum Annealing, using our incremental anneal-

ing strategy with DSS; DA (Default): Quantum-Inspired Digital

Annealing, using default partitioning as supported by Fujitsu; DA
(Parallel): Quantum-Inspired Digital Annealing, using our parallel

annealing strategy; DA (Incremental): Quantum-Inspired Digital

Annealing, using our incremental annealing strategy with DSS.

For HC and Genetic, we use performance-enhanced
3
Java code by

Trummer [46] wih OpenJDK 18.0.2. For Genetic, we use the Java
Genetic Algorithms Package [29] 3.4.4, and population sizes 50 and

200 with default values for all parameters. We consider the best

results obtained within 300s. For SA (Default), we run an implemen-

tation in python (version 3.8.16) using dwave-neal 0.6.0 with 1,000

annealing iterations (default), and reduced amounts (to ascertain

an identical overall amount of annealing iterations) for each MQO

partition when performing our incremental annealing strategy. We

perform 16 runs for each problem yielding one MQO solution. All

baselines are executed on an octa-core AMD Ryzen 7 PRO 5850U

CPU with 32 GB of DDR4 RAM.

Next, we consider parameter settings for our quantum(-inspired)

annealing devices, where the user may specify either (1) the number

of annealing iterations (algorithmic steps), or (2) the maximum opti-

misation time depending on the device. The D-Wave HQA specifies

minimum optimisation times depending on problem dimensions,

which we choose for each problem. For the DA, we select the min-

imum of 16 runs, with 20s of optimisation time per run. When

performing our incremental annealing strategy, we reduce anneal-

ing iterations and optimisation times for each partition accordingly,

such that the overall annealing time remains constant. In addition

to processing the balanced partitions yielded by the QUBO minimi-

sation, we moreover apply our partitioning post-processing method

with four parses, and select the best results. Finally, given our lim-

ited budget and relatively large HQA minimum optimisation times,

we are unable to conduct HQA experiments for MQO problems

beyond 500 queries. To keep the monetary access fees manageable,

we only apply HQA with our incremental annealing variant, and

restrict our HQA experiments to a single problem instance per class,

which is sufficient to determine the HQA’s performance ranking

compared to our remaining algorithms.

5.2 Parameter Sweep
The first part of our empirical evaluation consists of a comprehen-

sive parameter sweep over input dimensions to identify the most

suitable algorithms for a broad variety of MQO scenarios.

5.2.1 Problem Generation. To assess scalability of all approaches,

we generate problems with varying amounts of queries |𝑄 | and
plans per query (PPQ), corresponding to MQO graphs of increasing

node amounts. This captures both determinants of MQO solution

space size Nsol = PPQ |𝑄 | . For MQO graph edges, corresponding to

3
The optimised baseline implementations can be found in our reproduction pack-

age [41].

https://github.com/lfd/sigmod26
https://github.com/lfd/sigmod26


Large-Scale Multiple Query Optimisation with Incremental Quantum(-Inspired) Annealing Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

cost savings between query plans, we vary (1) cost savings density 4

to see the effect of increasing amounts of cost savings, and (2)

distribution of cost savings to assess the impact of varying graph

shapes, which can substantially impact partitioning methods.

To generate varying graph shapes, we randomly distribute all

queries into distinct query communities, where single communities

semantically imply larger overlaps between queries, and hence a

greater potential for cost savings opportunities. Accordingly, for

sets of plans associated with queries included in the same com-

munity, we sample cost savings densities from increased intervals

(with [0.05, 1] as our largest interval, allowing for the maximum

density of 100%), whereas the cost savings density between plan

pairs separated into different communities is set to 0.05, and is

hence ensured to be lower than community densities.

Finally, cost savings between plans are sampled from [1, 10],
while plan costs are uniformly sampled from [1, 20], and further in-
creased by an offset to account for increasing cost savings between

plan pairs when scaling up problem sizes. Offsets are selected such

that the absolute costs yielded by the best-performing algorithm

remain roughly constant as problem dimensions increase. Thus,

normalised solution costs reflect the evolution of gaps in absolute

cost values yielded by our considered algorithms, and our problem

generation ensures that varying optimisation performance yields

pronounced differences in solution quality. While normalised costs

depend on the chosen cost offsets, the relative performance ranking

between algorithms is invariant w.r.t. offset selection. All generated

problems can be found in our reproduction package [41].

Our parameter sweep includes 140 distinct MQO problems, with

three generated instances for each class. Combined with 60 prob-

lems generated from query optimisation benchmarks, we consider

200 problems representing a large variety of possible scenarios.

5.2.2 Scalability Robustness. To understand the effect of increas-

ing solution space size, Fig 3 depicts results for scenarios with

increasing amounts of queries and PPQ.

Conventional Heuristics. Firstly, we consider conventional heuris-
tics, including both, the genetic algorithm and hill climbing (HC).

Even for our smallest MQO scenario (250 queries and 20 PPQ), ge-
netic normalised solution costs slightly exceed 3, and hence feature

a cost increase of over 200% over the best solution found by any algo-

rithm. In contrast, normalised HC costs are still higher at 3.73.While

already substantial for our smallest problems, the performance gap

between the conventional heuristics and the best-performing algo-

rithms becomes still more pronounced as the number of queries

increases. For 20 PPQ and 750 queries, normalised costs range as

high as 18 for the best genetic algorithm configuration, and beyond

20 for HC, whereas neither method yields normalised costs below

20 for 1,000 queries. Compared to the best performing algorithm

that we discuss below, the conventional heuristics demonstrate a

lack of robustness against large-scale MQO problems.

Simulated Annealing. We next consider results for SA, which per-

forms algorithmic steps akin to DA, albeit on conventional HW. This

provides a baseline to assess the advantage of quantum(-inspired)

special-purpose systems. We find a pronounced advantage, as SA

4
The cost savings density is given by the fraction of cost savings featured by an MQO

instance over all possible cost savings.

yields a performance comparable to conventional baselines, and

even fails to match the performance of the genetic algorithm in

most scenarios. While SA costs are already substantial for MQO

scenarios featuring up to 500 queries, the method obtains solu-

tions approximating normalised costs of 20 for 750 queries. Like

the conventional baseline heuristics, SA hence fails to match the

performance of competing methods for large-scale MQO.

Hybrid Quantum Annealing. We continue by discussing results

for HQA as the first among our quantum(-inspired) MQO algo-

rithms. Compared to most competing methods with the exception

of DA, HQA produces lower solution costs, in particular for scenar-

ios featuring 500 queries: For 40 PPQ, HQA yields normalised costs

of 6.13, whereas the competitors discussed so far obtain costs that

approximately range between 8 and 10. Yet, normalised solution

costs remain relatively large when contrasted with DA performance.

While the further increased minimum optimisation times required

by D-Wave and limited budget prevent us from conducting experi-

ments beyond 500 queries, we may conclude that HQA performance

beats the conventional competitors, yet fails to obtain the same

level of robustness against large MQO solution spaces as the DA.

Digital Annealing. Finally, we consider results obtained by the

Fujitsu DA, where we contrast various processing methods, in-

cluding the default processing as supported by the DA, as well as

both, the parallel processing strategy and our incremental DSS-

guided strategy. For all MQO scenarios depicted in Fig. 3, we ob-

serve that all processing strategies manage to yield significantly

lower solution costs compared to any of our other considered MQO

methods, which demonstrates the general aptness of the DA for

large-scale optimisation. Further contrasting the three processing

strategies, our incremental DA method can be identified as the

best among all methods, obtaining normalised optimal solutions in

all scenarios shown in Fig. 3. As a general tendency, performance

gap between our incremental method and both, default as well

as parallel processing, becomes more pronounced as the solution

space increases, including both (1) growing query amounts and

(2) increasing amounts of PPQ. For our largest problems featuring

1,000 queries and 40 PPQ, normalised costs for default and parallel

processing reach up to 7.3 and 9.7 respectively, exceeding incre-

mental solution costs by a substantial amount, which demonstrates

the aptness of our incremental processing strategy.

While the trend towards growing performance gaps alongside an

increasing solution space holds for most scenarios, we can observe

some outliers where the difference between default and incremental

processing is less pronounced (e.g., for one problem featuring 1,000

queries and 40 PPQ). While these may be attributed to the stochastic

nature of the DA’s search algorithm, they may moreover result from

data characteristics influenced by other, still unconsidered MQO in-

put dimensions. As such, we next further contrast the performance

of our varying processing strategies for other dimensions.

5.2.3 Increasing Numbers of Communities. Having identified the

DA as the most capable MQO approach, we commence to study per-

formance differences between the DA’s default processing method

and our DSS-guided incremental strategy. In Fig. 4, we consider

https://github.com/lfd/sigmod26
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Figure 3: Normalised solution costs (relative to overall best solutions) for instances with varying amounts of queries and plans
per query (PPQ), and four query communities of varying sizes. We sample community densities from [0.05, 1]. Range lines
visualise minimal and maximal normalised costs for a set of instances; individual solutions are given by small dots. Crosses
with value N/A represent prohibitively large costs ≥ 20 (slightly jittered horizontally and vertically to resolve outlier count).

Figure 4: Normalised solution costs for problems with 30 PPQ for varying numbers of queries and query communities;
community densities are sampled from [0.05, 1]. Instances exhibit varying (top row) and equal (bottom row) community sizes.
Costs ≥ 5 are mapped to N/A; other details follow the presentation in Fig. 3.

increasing numbers of query communities, and compare scenarios

with equally sized communities against variations in size.
5

Webeginwith a single query communitywhere plans of all query

pairs are equally likely to feature cost savings. Our incremental

processing method provides no advantage over the DA’s default

processing, as no structural characteristics can be exploited by

our targeted partitioning and DSS methods. While incremental

processing performance deteriorates for unstructured and uniform

cases, they are unlikely for realistic queries, reinforced by results

for conventional query optimisation benchmarks below.

5
As we focus on processing strategies, we omit results for the remaining MQO ap-

proaches. Their solution costs relative to the DA remain substantial across all scenarios,

and the performance ranking identified in Sec. 5.2.2 remains unchanged.

OnceMQO scenarios exhibit apt characteristics (multiple distinct

communities of structurally similar queries likely to feature cost

savings between plan pairs), our incremental method identifies and

exploits these, and consistently obtains cheaper solutions than DA’s

default processing and other algorithms. Similarly to scenarios with

varying PPQ amounts, parallel processing yields substantially more

costly solutions. It is typically inferior to both, the DA’s default

processing and our incremental method, which demonstrates the

benefit of our DSS approach.

By further contrasting scenarios with equal-sized communities

and cases with varying community sizes, we observe a further

trend: While the advantage of our method over the DA’s default

processing is most pronounced for communities of varying size, it

is weaker for equal-sized communities, in particular for scenarios
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featuring relatively small query amounts (250 and 500) distributed

over increasing numbers of communities. For instance, while the

DA’s default processing solutions are near-optimal for 500 queries

distributed over six equal-sized communities, the performance gap

against our incremental method substantially increases for varying

community sizes, with default processing costs of up to 1.62.

For queries distributed equally among communities, the maxi-

mum community size is minimised. This renders dividing the cor-

responding MQO graphs into moderately-sized partitions less chal-

lenging, particularly for increasing amounts of communities that

decrease individual community sizes. Such scenarios tend to be less

challenging for the default DA processing method. In contrast, com-

munities of varying size may feature large individual communities,

which complicates partitioning when seeking to minimise informa-

tion loss. While our DSS-based incremental method re-integrates

initially discarded cost savings and maintains high optimisation

performance, scenarios with potentially large communities cause a

deterioration of the DA’s default processing performance. Similarly

to the unlikely scenario of an entirely uniform distribution of cost

savings, communities cannot be assumed to be equal-sized in real

query loads, and our method is likely to excel for real workloads.

5.2.4 Increasing Densities. We next discuss results for MQO sce-

narios whose community densities are sampled from intervals of

increasing size, as depicted in Fig. 5. For our smallest interval, the

maximum density is given by 0.25, while sampling from our largest

interval can yield densities of up to 100%. For such large densities,

the advantage of our incremental method over default processing

tends to be most consistent and pronounced, and increases along-

side growing amounts of queries. In contrast, the performance

advantage varies more strongly in scenarios featuring lower den-

sities: For the smallest density interval of [0.05, 0.25], normalised

default processing costs range between 1 and 1.4 for 750 queries,

while the corresponding default processing costs for the [0.05, 1]
interval are much less varied, and consistently exceed our incre-

mental costs more than twice. Finally, for small density intervals

and low query numbers, default processing results sometimes yield

slightly lower costs compared to our incremental approach.

The decreasing performance gap for smaller density intervals

can be attributed to the overall weakening impact of communities

resulting from smaller densities. With decreasing densities, MQO

scenarios approximate uniform cases for which the advantage of our

incremental processing method deteriorates. Scenarios with higher

densities offer more structural properties that can be exploited.

Consider an outlier result for interval [0.05, 0.75] and 750 queries,
where our incremental method fails to provide an advantage over

default processing for one scenario despite a relatively large density

interval: Sampled densities happen to be very small for three of

its four query communities (0.21 for one community, and 0.09 for

two communities that feature 55% of all queries). While the fourth

community has a larger density of 0.56, it features only 18 among

the 750 queries, with negligible impact. While the advantage of

incremental processing deteriorates in this specific scenario with

particular characteristics (and in agreement with prior observa-

tions), it remains substantial for the bulk of problem scenarios.

5.3 Conventional QO Benchmarks
A comprehensive parameter sweep on all MQO input dimensions

identifies scenarios where the advantage of our incremental process-

ing method is most pronounced, but also shows some unfavourable

cases. As the latter correspond to special cases not expected from

typical problem loads (such as uniform savings distributions and bal-

anced query communities of equal size), we have obtained a strong

indication for the broader applicability of our approach. We next

consider industrially realistic MQO scenarios generated based on

traditional and established query optimisation (QO) benchmarks, in-

cluding TPC-H [45], LDBC BI [1] and the join order benchmark [26].

5.3.1 Problem Generation. To generate problems from query op-

timisation benchmarks, we could consider all queries as an MQO

query batch. However, this would limit problem sizes to the amount

of queries contained in each benchmark. To reach dimensions suf-

ficient for our large-scale method, we generate batches of queries

by extrapolating from each set of benchmark queries, and derive

cost savings based on overlapping relations between query pairs

(details below). Hence, our extrapolation rests on the base relations

featured by each benchmark: We generate queries by assigning

relations in accordance with probabilities corresponding to their

relative frequencies in the original benchmark queries. Hence, if a

relation 𝐴 is featured in 50% of all original benchmark queries, it is

assigned to any generated query with probability 50%.

Next, we seek to assign cost savings in accordance with the

commonalities featured by each pair of queries. To this end, we

apply a simple metric that numerically captures the overlapping

commonalities and conformance between two benchmark queries:

We determine the conformance cq1,q2 between queries 𝑞1 and 𝑞2
as cq1,q2 = Cardol/Cardttl , where Cardol denotes the accumulated

cardinality of all overlapping relations featured by both queries, and

Cardttl denotes the accumulated total cardinality of all relations fea-
tured by either query. Thus, if 𝑞1 and 𝑞2 operate on entirely disjoint

sets of relations (Cardol = 0), their conformance will be assessed as

cq1,q2 = 0, accurately reflecting that no cost savings opportunities

arise for these queries. Based on this metric, we assign cost savings

between query plans associated with benchmark queries 𝑞𝑖 and 𝑞 𝑗
at probability cqi,qj . Finally, the conformance values for all query

pairs form a conformance graph, which we analyse w.r.t. potential

community structures below. The remaining problem generation

parameters are identical to those used for our parameter sweep. All

generated problems can be found in our reproduction package [41].

5.3.2 Experimental Results. Fig. 6 depicts results for conventional
benchmark scenarios. We consider DA default and incremental

processing, as the DA’s default processing method is closest to the

latter.We omit parallel processing for the DA and default processing

for SA, whose relatively weaker performance remains as in Fig. 3.

Firstly, we observe no pronounced changes in the relative rank-

ing between algorithms. This includes, most importantly, our incre-

mental processing method applied on the DA, whose performance

advantage over the DA’s default processing method remains sub-

stantial in nearly all scenarios, and consistently beats remaining

competitors. This suggests, based on parameter sweep findings,

that scenarios derived from conventional query optimisation bench-

marks possess structural properties that can be exploited by our

https://github.com/lfd/sigmod26
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Figure 5: Normalised solution costs for problems with 30 PPQ and increasing numbers of queries, and four query communities
of varying sizes. Community densities are sampled from increasing intervals (cf. Fig. 3 for details; costs ≥ 5 mapped to N/A).

Figure 6: Normalised solution costs for problems with 30 PPQ and increasing numbers of queries (cf. Fig. 3 for details).

incremental processing method: Their query conformance graphs

show distinct community structures, rather than purely uniform

savings distributions. While JOB and LDBC scenarios feature two

and four roughly equal-sized communities, TPC-H scenarios tend

to feature one large (≈ 55% of all queries), one moderately-sized

(≈ 28%) and one small community (≈ 17%). Performance results

adhere to the advantage observed for our incremental method in

scenarios with non-uniform savings distributions.

Closer inspection of the benchmark results reveals a wider vari-

ance in the performance gap between our incremental DA method

and the DA’s default processing for LDBC, compared to more con-

sistent JOB results. The parameter sweep shows performance ad-

vantage of our incremental approach is most pronounced for large,

distinct query communities, and tends to decrease as the number of

communities increases, particularly with equal-sized communities.

Both trends apply to the LDBC dataset: Compared to JOB scenar-

ios with two communities, LDBC cases feature four equal-sized

communities, which minimises the maximum size of individual

communities. In contrast to JOB, the advantage of our incremental

method is less pronounced for most LDBC scenarios, and even

disappears for some LDBC problems below 500 queries.

For 1,000 queries, variance in LDBC solution quality further

widens, suggesting an increasingly probabilistic partitioning heuris-

tic is applied by theDA’s default processing for largeMQO scenarios.

For one LDBC case and two TPC-H problems, the cost overhead of

default DA processing over our incremental method exceeds the

corresponding JOB overhead. This suggests that for 1,000 queries,

even more numerous equal-sized communities feature individual

sizes that are challenging for the DA’s default processing, and a

larger number of individual communities may constitute more chal-

lenging scenarios once problems feature very large query amounts.

The results for conventional benchmarks confirm our parameter

sweep insights, and further indicate a broader applicability of our

method.

5.4 Runtime Analysis
In Fig. 7, we analyse runtimes for increasing amounts of queries

and savings densities up to 0.8. Our analysis rests on our annealing-

basedmethods and varying processingmethods.We do not consider

the genetic algorithm and hill climbing, as they yield intermediate

results after each optimisation step until timeout, rather than once

after termination (solution quality remains sub-par even after 300s).

For our annealing methods, we compare runtimes of up to 180s.

All scenarios show substantial runtime overheads for default SA
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Figure 7: Optimisation times for various MQO algorithms, yielded for MQO problems featuring increasing numbers of queries,
30 PPQ, as well as increasing savings densities. Cases where no result is obtained before 180s are labeled by N/A.

compared to DA and HQA, which further demonstrates the per-

formance advantage of their special-purpose HW. However, when

augmented with our incremental processing method, SA times are

significantly reduced, showing that SA runtime benefits greatly

from the problem size reduction. For 250 queries, incremental SA

runtime is lower compared to competitors. Yet, SA performance

stagnates with growing size, and its runtime significantly exceeds

the remaining competitors for 1,000 queries and larger densities.

Incremental HQA yields similar runtimes as default and incre-

mental DA processing for a savings density of 0.2. For increasing

densities, HQA runtime scales more gracefully, as HQA terminates

after 40s of optimisation time compared to 50s required by default

and incremental DA, for 500 queries. This suggests the density of

MQO problems to be particularly influential on the DA’s runtime

scalability.

Analysing our varying processing methods confirms this obser-

vation: For a density of 0.2 and 1,000 queries, the runtime of our

incremental strategy tends to be slightly higher (86s) than default

processing times (70s). Yet, the ranking reverses as the density in-

creases, and for a density of 0.8 and 1,000 queries, default runtime

(141s) distinctly exceeds that of our incremental method (116s).

To explain this change in runtime behavior, we may consider two

opposing runtime properties: Firstly, the computational runtime

overhead induced by our partitioning and DSS steps, and secondly,

the reduced annealing runtime resulting from the problem reduc-

tion. As the density increases, the runtime benefit of the problem

size reduction outweighs the overhead of partitioning and DSS,

rendering our incremental method more efficient for increasing

densities. Even for smaller densities with no runtime advantage,

the runtime overhead of our incremental method remains moderate

when accounting for the increase in solution quality discussed in

detail above. Finally, allowing for a parallel processing of partial

problems, the parallel processing strategy naturally yields distinctly

lower runtimes compared to other methods. However, our analysis

above has shown its substantial disadvantage in solution quality,

compared to our incremental method that yields normalised optimal

solutions for the bulk of all considered MQO scenarios.

6 Related Work
MQO is a classical optimisation problem in the DB domain [42].

It broadly involves two fundamental phases: (a) identifying com-

mon sub-expressions between queries and generating execution

plans [9, 25], and (b) identifying ideal plan selections exploiting cost

saving opportunities based on identified common sub-expressions.

The method proposed in this paper addresses category (b), and

hence relates to approaches seeking ideal plan selections based on

previously determined plans and sub-expressions.

Our method builds on the quantum approach by Trummer and

Koch [47], which solves small classes of MQO problems on quantum

annealers, yet is severely limited by their capacity constraints (re-

call Fig. 1). In contrast, our method achieves scalability beyond such

limits by applying partitioning and incremental optimisation strate-

gies. We provide a novel alternative to establishedMQO approaches,

which include methods based on the A-* algorithm [10, 42, 43]

(suited to determine optimal solutions for small problems) or heuris-

tics seeking to determine near-optimal solutions for larger problems

(such as genetic algorithms [4], hill climbing [12], and integer linear

programming [11]). In comparison, our method shows substantially

increased robustness against extremely large solution spaces.

Further, our approach aligns with recent trends in the DB domain

that seek to address the limitations of conventional general-purpose

systems by shifting towards highly optimised special-purpose ac-

celerators like FPGA modules [30–32], or GPUs [17].

Recent work considers the potential of quantum computers, and

involves approaches rendering problems compatible with quan-

tum devices [3], as well as methods boosting the efficiency of ex-

isting quantum algorithms [19, 34, 36]. The prevailing quantum

paradigms include quantum machine learning, as well as QUBO-

based quantum optimisation for various problems in the DB do-

main, such as transaction scheduling [6–8, 21] and join order op-

timisation [18, 38, 40, 48]. For the latter, previous work assessed

the potential of hardware-software co-design methods to optimise

performance [35, 38, 49]. Finally, Trummer and Koch derived the

QUBO-encoding for MQO, solving small problem classes on a quan-

tum annealing device [47]. The method was further evaluated on

gate-based quantum systems [14, 37]. Yet, given the limitations of

current quantum systems, none of these approaches have targeted

large-scale problems, which have been the focus of this paper.
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In contrast, quantum-inspired devices are robust for larger prob-

lems. Matsubara et al. [28] observe speedups by orders of magnitude

on the DA for a variety of combinatorial optimisation problems.

Similar results are known in other areas [13, 22, 24, 44]. Within

the DB domain, Schönberger et al. [39] have used the DA for join

order optimisation. However, all of these approaches are limited

by HW capacity restrictions. In contrast, our incremental anneal-

ing method tailored to MQO overcomes these limits, and has been

empirically shown to outperform general partitioning approaches

supported by various quantum(-inspired) annealers.

7 Discussion and Conclusion
Large-scale database workloads require optimisation across a range

of critical dimensions. This includes maximisingmachine utilisation

and throughput, minimising response latencies, and optimising en-

ergy efficiency. Mounting challenges on general-purpose hardware

prompt a shift towards special-purpose HW accelerators.

Efficient multi-query optimisation holds considerable promise:

While implementations on conventional hardware have reached

scalability limits, our novel approach combines quantum-inspired

hardware accelerators with strategies for complexity reduction and

decomposition, as well as means of improving result quality. We

have successfully overcome hardware constraints and improved

over both, conventional MQO methodologies and alternative parti-

tioning strategies provided by hardware vendors.We observe robust

performance even for exceptionally large MQO scenarios involving

up to 1,000 queries — problem scales known to be intractable for

competing techniques.

However, we did not only achieve significant performance im-

provements over state-of-the-art methods across multiple dimen-

sions, but also believe our framework lays the groundwork for

potential extensions and generalisations to other DBMS challenges.

For instance, we observe structural similarities between the tradi-

tional DB problem of join ordering (JO) and MQO, as both feature

graph-based representations. This suggests our approach may be

adaptable to JO, where nodes and edges correspond to relations

and join predicates: Similarly to our MQO partitioning graph, we

may reduce JO node amounts by merging node sets based on cri-

teria such as interconnectivity, and apply graph partitioning to

decompose the problem while minimising the loss of information.

Finally, we establish a path towards mature quantum systems

that are expected to surpass the capabilities of surrogate technolo-

gies. While the commercial realisation of such systems likely re-

mains years away, our work provides a bridge to this promising

future, positioning it as an essential contribution to the field.
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