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Abstract—In this work, we propose a framework in the form
of a Python package, specifically designed for the analysis of
Quantum Machine Learning models. This framework is based
on the PennyLane simulator and facilitates the evaluation and
training of Variational Quantum Circuits. It provides additional
functionality ranging from the ability to add different types
of noise to the classical simulation, over different parameter
initialisation strategies, to the calculation of expressibility and
entanglement for a given model. As an intrinsic property of
Quantum Fourier Models, it provides two methods for calculating
the corresponding Fourier spectrum: one via the Fast Fourier
Transform and another analytical method based on the expansion
of the expectation value using trigonometric polynomials. It also
provides a set of predefined approaches that allow a fast and
straightforward implementation of Quantum Machine Learning
models. With this framework, we extend the PennyLane simula-
tor with a set of tools that allow researchers a more convenient
start with Quantum Fourier Models and aim to unify the analysis
of Variational Quantum Circuits.

Index Terms—Quantum Machine Learning, Quantum Com-
puting, Quantum Software Framework

I. INTRODUCTION

Variational Quantum Circuit (VQC) are a promising ap-
proach on the Noisy Intermediate Scale Quantum (NISQ) era
towards Fault-Tolerant Quantum Computing (FTQC). With per-
vasive challenges such as barren plateaus [1] and the resulting
limitations on trainability, there are still many questions to
be answered [2]. It was found that VQCs following a certain
structure can be represented by a truncated Fourier series [3].
In the remainder of this paper we will refer to such models
as Quantum Fourier Model (QFM) (which are different from
the well-known Quantum Fourier Transform). The Fourier
spectrum is considered as an important property to characterise
a Quantum Machine Learning (QML) model, as it reflects its
ability to learn non-linearities with asymptotically being a
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universal function approximator [4]. The study of the spectrum
of QFMs sparked a series of exciting research [5], [6], [7],
[8] and gives insights on the dequantisability of a given QML
model [9], also in the context of noisy computation [10].

By introducing QML-ESSENTIALS we provide a tool to
explore the properties of QFMs in the context of QML. We also
implement algorithms to compute key metrics of VQCs, such
as expressibility and entangling capability [11]. Since noise
is an intrinsic property of Quantum Computing (QC), QML-
ESSENTIALS provides the ability to apply noise to the simula-
tion to investigate the behaviour of such algorithms on today’s
NISQ devices. By providing open access to the algorithms, we
aim to standardise the computation of these metrics for specific
algorithms across the QML community [12].

In this article, we first discuss related work and other
quantum frameworks for working with QML models in Sec. II.
We then give an overview of the framework, the implemented
algorithms and metrics in Sec. III. In Sec. IV, we show some
examples of how the framework can be used to reproduce
existing results in the literature and conclude in Sec. V.

II. RELATED WORK

We acknowledge that there are numerous other exceptional
software projects that facilitate research in the field of QC [13].

The PennyLane [14] library, which functions as a backend
for the proposed framework, offers a classical simulator of
quantum computing and a comprehensive suite of tools that ex-
tend the capabilities of the simulator. These include the ability
to simulate noise, calculate gradients, and perform numerous
other operations. Nevertheless, while PennyLane also provides
an implementation to calculate the Fourier coefficients of a
given circuit using the Fast Fourier Transform (FFT), it is too
limited for extensive research with QFMs.

With PennyLane being more focused on hybrid computation
and machine learning, the framework Qiskit [15] is targeted
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towards more hardware-aware development. In comparison
to PennyLane, Qiskit offers a more extensive suite of tools
for direct manipulation of quantum circuits during the trans-
pilation process, as well as for direct manipulation at the
pulse level. However, it should be noted that Qiskit provides
limited support for QML models compared to PennyLane,
which restricts its applicability to QFMs.

Horqrux, a backend of Qadence [16], is a simulation frame-
work designed for QML. It provides options to fit non-linear
functions as well as solving partial differential equations.
There are other full-stack frameworks such as Qibo [17] and
QRISP [18] that provide different simulator backends and
allow for working with QML in general to some extent, but
are not tailored to QFM.

To the best of our knowledge, no framework unifies the
analysis of QFMs in the context of QML with the variety of
tools that are elaborated in this paper.

III. QML-ESSENTIALS FRAMEWORK

The modules of the Python package, which is available
on PyPi1 and Github2, are summarised in Tab. I with an
overview of its dependencies shown in Fig. 1. The Model sits
at the core of QML-ESSENTIALS and is built upon a chosen
Ansatz. It can either be used in training and other applications
outside of QML-ESSENTIALS, or passed to the corresponding
functions of the Expressibility (Sec. III-C1), Entanglement
(Sec. III-C2 and Sec. III-C3), Coefficients (Sec. III-B1) and
FourierTree (Sec. III-B2) modules explained in the referenced
sections. In this work, we only focus on the aforementioned
aspects of our framework. Nonetheless it should be noted that
there is a plethora of other features in QML-ESSENTIALS
such as (1) different initialisation strategies and parame-
ter sampling, (2) changing of, or providing custom feature
maps, (3) different measurements based on provided output
shapes, (4) caching of results using hashed parameters and
(5) oversampling of the Fourier spectrum. These features are
not covered in this article but are explained on our curated
documentation page.3

TABLE I
PYTHON MODULE OVERVIEW.

Module Description

Model Data-reuploading model class with various options
to change initialisation strategy, encoding,
measurement qubit and noise.

Ansaetze Set of circuits to be used within a model.

Coefficients Calculate coefficients (FFT or analytical).

Expressibility Tools to calculate expressibility.

Entanglement Calculate entangling capability (Meyer-Wallach
measure or Bell measurements).

1https://pypi.org/project/qml-essentials/
2https://github.com/cirKITers/qml-essentials/
3https://cirkiters.github.io/qml-essentials/
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Fig. 1. Overview of the classes of the QML-ESSENTIALS framework. Mod-
ules of the framework are depicted in teal, an excerpt of their corresponding
functions in orange.

In the following, we introduce the main concepts to QML
models, and explain how they can be utilised and analysed
using modules of the QML-ESSENTIALS framework.

A. Quantum Machine Learning

Generally, the goal of QML is the same as for classical
machine learning, that is to “learn” a function f , using
a function approximator fθ, parametrised by p parameters
θ ∈ Rp. The parameters θ are “trained” to minimise the
difference between f(x) and fθ(x), for some input x ∈ RN

with N input features, using classical optimisation routines,
such as gradient descent [19].

In the case of QML, the function approximator utilises a
VQC, characterised by the parametrised unitary Uθ, acting
on a system of n qubits. The function evaluation of the
approximator then corresponds to the expectation value of an
observable O on the circuit’s state:

fθ(x) = 〈0|⊗n
U†
θ (x)OUθ(x) |0〉⊗n

. (1)

B. Quantum Fourier Models

The basis of our framework forms the QFM, which utilises
a specific structure of unitary Uθ, namely an interleaving
pattern of trainable- and encoding unitaries W := Wθ and
S respectively:

Uθ(x) =W (L+1)S(x)W (L) · · ·W (2)S(x)W (1). (2)

As shown in the seminal works of Ref. [3] and Ref [4],
circuits following this unitary structure (1) represent universal
function approximators [3] and (2) can be represented as a
truncated Fourier series with the frequencies ω ∈ Ω and
their corresponding magnitudes cω(θ) as its characteristic
properties:

fθ(x) =
∑
ω∈Ω

cω(θ)e
iωx. (3)

1) Coefficient calculation using the FFT: Practically, basic
signal analysis allows us to retrieve the coefficients of a given
circuit by evaluating its expectation value Eq. 1 at different
inputs and applying a FFT. Given a model, its coefficients can
be estimated using the static Coefficients.get_spectrum()
method.
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While providing a fast and in general reliable method,
the estimation of coefficients using the FFT also bears some
disadvantages. Firstly, the frequencies must be evenly spaced
or the number of sampling points must be chosen such that
intermediate frequencies are captured correctly. Even then it
only gives an approximation based on the provided sampling
points without taking into account the actual circuit properties.
This can lead to scenarios in which frequencies are not
captured at all [5]. Secondly, the highest frequency must be
estimated in advance to fulfil the Nyquist criterium. Otherwise
frequency artefacts caused by the repeating structure of the
Fourier transform will be observed.

2) Coefficient calculation using the analytical method:
Wiedmann et al. [5] introduced an analytical method to
estimate the coefficients of a given QML model. The proposed
algorithm builds upon the work by Nemkov et al. [7], which
proposes an expansion of fθ(x) in terms of trigonometric
polynomials. This method relies on all operations in the
circuit being either Pauli-rotation or Clifford gates, to which
any VQC can be decomposed into. The circuit Uθ is then
transformed into a circuit that only consists of Pauli rotation
gates, with all Clifford gates moved towards the end of
the circuit to be included in the observable. We implement
their method in our framework and it is accessible via the
FourierTree.get_spectrum() method after instantiating the
FourierTree class using a QML model. While significantly
slower, it provides an accurate estimation of the Fourier
spectrum which leaves the choice between these two methods
up to the user.

C. Expressibility and Entangling Capability

As the design of Ansätze in QML is still an open field of
research, our framework provides tools to calculate the ex-
pressibility and entangling capability as two common metrics
of interest.

1) Expressibility: For the expressibility we utilise the def-
inition introduced in Ref. [11] which is the Kullback-Leibler
(KL) divergence [20] between the distributions obtained by
sampling from the Haar integral

∫
Haar (|ψ〉〈ψ|)

⊗tdψ and the
model

∫
Θ
(|ψθ〉 〈ψθ|)⊗t

dθ respectively:

DKL

(
P̂Model(F ;θ)‖PHaar (F )

)
(4)

Here, the fidelity F = |〈ψϕ | ψφ〉| is the probability of
state overlaps, whereas the distributions of state overlaps is
p (F = |〈ψϕ | ψφ〉|).

This metric yields zero if P̂Model(F ;θ) = PHaar (F ), mean-
ing the states sampled from the QFM are Haar distributed. For
the least expressive case, i.e. the idle circuit, the KL divergence
becomes ln(nbins) where nbins describes the number of bins
that are used for discretising the probability distribution using
a histogram. In this work, we refer to the expressibility as the
inverse of KL divergence.

In QML-ESSENTIALS, the expressibility of a given model
can be calculated with the following steps:

(1) The state fidelities of two uniformly random parameter
sets are calculated using the corresponding method providing a

|0〉
Uθ

H

|0〉 H

|0〉
Uθ

|0〉

Fig. 2. Setup of a “Bell-Measurement” for a 2 qubit circuit described by Uθ .

number of samples, (2) the Haar integral for the same number
of qubits as in the model is computed, (3) the results of both
calculations are passed to the kullback_leibler_divergence
method of the Expressibility class to obtain the distance
between the two distributions given a number of bins.

2) Entangling Capability using Meyer-Wallach measure:
As shown in Refs. [21], [22], the entangling capability for a n-
qubit system can be defined based on the trace of the squared
partial density matrix ρk for subsystem k:

Q(|ψ〉) = 2

(
1− 1/n

n−1∑
k=0

Tr
[
ρ2k
])

(5)

This metric has the property that if Tr
[
ρ2j
]

= 1 ∀j,
implying Q = 0, then |ψ〉 is a product state whereas Q =
1 ⇐⇒ Tr

[
ρ2k
]
= 1/2 ∀k, meaning the state is maximally

mixed. Notable, access to the density matrix is required for this
metric, which is not available on real devices without further
ado.

In QML-ESSENTIALS this metric can be calculated using
the meyer_wallach method within the Entanglement module
class, given a number of parameter samples.

3) Entangling Capability using Bell-Measurements: As an
alternative method to calculate the entangling capability, we
implement the “Bell-Measurement” [23], [24], [25]. We con-
sider a circuit where the state of interest is vertically prepared
twice and an inverse Bell-state is applied onto each pair of
qubits between the two subsystems. The setup is depicted in
Fig. 2.

It was shown that the squared trace of the density matrix is
linearly dependent on the probability of measuring the parity
between each of the qubits in the individual subsystems:

Tr
[
ρ2k
]
= 1− 2 · Podd,k, (6)

where Podd,k is the probability of odd, non-zero parity in the
outcomes of the kth qubit on each copy. Inserting this in Eq. 5,
translates to

Q(|ψ〉) = 2

(
1− 1

n

n−1∑
k=0

(1− 2 · Podd,k)

)
, (7)

resulting in the same estimate of the entangling capability as
when using the squared trace of the density matrix directly.

The bell_measurements method within the Entanglement
in QML-ESSENTIALS provides a way to calculate the Bell-
measurement, given a number of parameter samples. While
the computational costs of the “Bell-Measurement” also scale



exponentially with the number of qubits in a classical sim-
ulation of the QML model, it provides a physical observable
measurement of the entangling capability, applicable to real
quantum systems.

D. Noise

As long as FTQCs are not available, noise remains one of
the primary challenges of QML, not only distorting model
predictions, but also limiting the trainability [1]. As the effect
of noise on QFM is an interesting research direction [10], we
offer a low-barrier interface to enable various types of noise
as shown in Tab. II to be added to a QML model.

TABLE II
AVAILABLE NOISE TYPES IN QML-ESSENTIALS.

Noise Description

BitFlip Per-gate bit-flip with probability pbf.

PhaseFlip Per-gate phase-flip with probability ppf.

Depolarization Per-gate depolarisation with probability pdp.

AmplitudeDamping Amplitude Damping noise with probability pad
applied at the end of the circuit.

PhaseDamping Phase Damping noise with probability ppd
applied at the end of the circuit.

ThermalRelaxation Thermal relaxation of the system characterised
by t1, t2 and gate time factor t_factor.

Measurement Bit-Flip error with probability pme applied at
the very end of the circuit.

StatePreparation Bit-Flip error with probability psp applied at
the very beginning of the circuit.

GateError Imprecise gate operations with error
ε ∼ N (0, µ) as coherent per-gate noise.

Our parameterisable noise model is depicted in Fig. 3 for a
single qubit model.

|0〉 NSP(psp) U(θ + ε) NG ND

Gate Noise

Fig. 3. Noise model consisting of state preparation noise NSP, coherent
rotational error ε that goes into a noisy gate U with incoherent gate error
NG, damping noise ND .

Fig. 4 shows the decomposition of the gate noise NG
into bit-flip, phase-flip and depolarisation. Similarly, Fig. 5
shows the decomposition of the incoherent gate error ND
into amplitude damping and phase damping noise, as well as
the measurement error, each of which is parametrised by its
corresponding probability.

NG = BF(pbf) PF(ppf) DP(pdp)

Fig. 4. Decomposition of a single noise operation applied after each gate into
bit-flip, phase-flip and depolarising noise.

The individual types of incoherent noise, summarised
in Tab. II utilise the Kraus-operator mechanism implemented

ND = AD(pad) PD(ppd) BF(pme)

Fig. 5. Decomposition of a noise operation applied at the end of the circuit
into amplitude- and phase damping noise.
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Fig. 6. A single layer of a circular 4-qubit Hardware Efficient Ansatz.

in PennyLane [14]. As StatePreparation and Measurement
errors are not directly implemented in PennyLane, we model
these by applying a bit-flip Kraus channel at the beginning,
or end of the circuit, respectively. Additionally, the coherent
GateError, in which ε ∼ N (0, µ) is drawn randomly from
a Gaussian distribution for each gate, allows for modelling
unintended rotation offsets on potential real devices.

For specific noise parameter tuning to represent actual
quantum systems, we refer to Ref. [26] for a review. By
providing a noise_params Python dictionary to the call of the
Model class, the full parametrised noise model can be applied
to the corresponding VQC.

E. Ansätze

QML-ESSENTIALS includes a set of predefined Ansätze
that can be used to build up a model. Currently, this set
includes • Circuit 1*, • Circuit 2*, • Circuit 3*, • Circuit
4*, • Circuit 6*, • Circuit 9*, • Circuit 10*, • Circuit 15*,
• Circuit 16*, • Circuit 17*, • Circuit 18*, • Circuit 19*,
• No Entangling, • Strongly Entangling, • Hardware Efficient,.
Ansätze marked with * are implemented based on the Work
from Sim et al. [11] and can be viewed in their corresponding
paper.

For the Hardware-Efficient Ansatz, which only utilises
native gates of a typical quantum device and linearly scaling
circuit depths, we chose the structure as shown in Fig. 6. We
acknowledge that this approach is sometimes realised without
the last CNOT gate, which we included for symmetric reasons.

The Strongly-Entangling Ansatz is inspired by [27] and
displayed in Fig. 7.

As data embedding we utilise a Pauli RX rotation as default.
Further embeddings and Ansätze can be added by providing
a callable function upon instantiation of the model.

IV. EXAMPLES AND VALIDATION

In this section, numerical results are presented that validate
the implementation of the coefficients, expressibility and en-
tanglement calculation using a subset of the Ansätze presented
in Ref. [11]. Notable, the results presented here show only
a fraction of what is covered by automated testing in our
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Fig. 7. A single layer of a 4-qubit Strongly Entangling Ansatz as introduced
in Ref. [27].

continuous integration and development pipeline. For all of the
following numerical results we use a model with 4 qubits and a
single variational layer if not stated otherwise. The parameters
of the model are sampled from a uniform distribution between
0 and 2π, with 200 samples in the case of the coefficients
and 5000 samples for the expressibility and entanglement
calculations.

A. Coefficients

Although no reference results are available for the circuits
introduced in Ref. [11], we can validate our implementation
of the coefficients by comparing the analytical calculation
with the results obtained using the FFT. In this experiment
we focus on the measurement of a single qubit. The upper
part of Fig. 8 shows the results of this validation, where each
measurement represents the average of the coefficients over
all frequencies. As mentioned in Sec. III-B2, the calculation
of coefficients using the FFT bears some caveats when it
comes to the estimation of the correct number of frequencies.
We demonstrate this discrepancy in the lower part of Fig. 8
where it is clearly visible that only a few circuits actually
contain the frequencies indicated by the FFT. By filtering out
the frequencies that are not present in the circuit, we obtain
identical results from both methods.
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B. Expressibility

The validation of our implementation of the expressibility
is performed by referring to the results from the study by
Sim et al. [11]. Fig. 9 presents the outcomes of this validation,
with expressibility defined as the inverse of the KL divergence
between the Haar distribution and the model distribution. It
is evident that there is a near-perfect alignment between the
reference results and the experimental findings.
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Fig. 9. Expressibility of various circuit with respect to the Haar distribution
as KL divergence as reference from [11] (black) and our implementation (teal)
for one and three layers.

C. Entangling Capability

Similarly to expressibility, we validate our implementation
of calculating the entangling capability using the results from
Ref. [11] as a reference with the exact same setup. Fig. 10
shows the results of this validation. It can be observed that
the entangling capability is generally overestimated with an in-
creasing discrepancy towards lower values as well as a higher
number of layers. The discrepancy may be partly attributed to
the unavailability of the precise results from the experiments
in Ref. [11]. Furthermore, the present implementation is based
on the work of Brennen et al. [22]. While this is technically
equivalent, it is not exactly the same as the method used in
Sim et al. [11]. However, it is notable that the results of both
methods, the Meyer-Wallach and the Bell-Measurements, align
perfectly.
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Fig. 10. Entangling Capability of various circuits as reference from [11]
(black) and our implementation using the Meyer-Wallach (teal) measure and
Bell-Measurements (orange).



V. CONCLUSION AND OUTLOOK

With QML-ESSENTIALS we provide a framework that aims
to give researchers a tool at hand to explore properties of QFMs.
To this end, our framework provides algorithms to calculate the
expressibility and entangling capability as well as the Fourier
coefficients of a provided QFMs. The latter can be achieved
by either a FFT or analytical method with the advantage of
obtaining the “true” number of coefficients. We implement
various tests with the intention of ensuring the accuracy of
provided algorithms and aim for a maximum of flexibility to
allow adaptation to a variety of use cases.

In future work, we want to extend our framework by adding
more testing and validation while also implementing more
features including, (1) Pulse-level control of QFMs, (2) Support
for the Qiskit [15] framework (3) Direct support to solve
partial differential equations
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