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Abstract—Combining quantum computers with classical com-
pute power has become a standard means for developing al-
gorithms and heuristics that are, eventually, supposed to beat
any purely classical alternatives. While in-principle advantages
for solution quality or runtime are expected for increasingly
many approaches, substantial challenges remain: Non-functional
properties like runtime or solution quality of many suggested
approaches are not yet fully understood, and need to be explored
empirically. This, in turn, makes it unclear which approach is best
suited for a given problem. Accurately predicting behaviour and
properties of quantum-classical algorithms opens possibilities for
software abstraction layers, which in turn can automate decision-
making for algorithm selection and parametrisation. While
such techniques find frequent use in classical high-performance
computing, they are still mostly absent from quantum software
toolchains.

In this paper, we present a methodology (accompanied by
a reproducible reference implementation) to perform algorithm
selection based on desirable non-functional requirements. This
greatly simplifies decision-making processes for end users. Based
on meta-information annotations at the source code level, our
framework traces key characteristics of quantum-classical heuris-
tics and algorithms, and uses this information to predict the most
suitable approach and its parameters for given computational
challenges and their non-functional requirements. As combinato-
rial optimisation is a very extensively studied aspect of quantum-
classical systems, we perform a comprehensive case study based
on numerical simulations of algorithmic approaches to implement
and validate our ideas. We develop statistical models to quantify
the influence of various factors on non-functional properties,
and establish predictions for optimal algorithmic choices without
manual user effort. We argue that our methodology generalises
to problem classes beyond combinatorial optimisation, such as
Hamiltonian optimisation, and lays a foundation for integrated
software layers for quantum design automation.

Index Terms—quantum-HPC integration, design automation

I. INTRODUCTION

For many practical use cases, quantum computing (QC)
has theoretical advantages over classical alternatives regarding
execution time or solution quality. However, hardware errors
and low qubit counts severely limit the capabilities of current
systems. Even in larger, fault-tolerant hardware regimes, due
to the specialised nature of many quantum approaches, it is
widely accepted that rather than replacing existing systems,
quantum computers will likely be integrated into high perfor-
mance computing (HPC) architectures to accelerate specific

Wolfgang Mauerer
Technical University of
Applied Science Regensburg
Siemens AG, Technology
Regensburg/Munich, Germany
wolfgang.mauerer @othr.de

tasks such as optimisation or simulation. This hybrid approach
allows HPC (or embedded or specialised) systems to leverage
the strengths of both quantum and classical computing.

For many problems classes, end users are faced with a wide
choice of quantum algorithms. For the simulation of physical
systems, for instance, various algorithms exist [1]-[3], which,
depending on the precise characteristics of the system, have
vastly different scaling behaviour, qubit usage and approxima-
tion errors. Finding the optimal technique for a given system is
a difficult task. Similarly, in combinatorial optimisation, many
approaches have been proposed [4]-[10], including analogue
techniques as well as hybrid algorithms like QAOA [5]. A
recent survey [11] identified 18 different QAOA variants. Most
of them can be further customised through parameters like
number of circuit layers or measurements, resulting in a vast
array of possibilities.

When integrating quantum algorithms into classical HPC
systems, application-specific requirements such as solution
quality, execution time or, in the case of non-fault-tolerant
hardware, noise resistance must be considered. This results
in a number of trade-offs that need to be carefully assessed.
Choosing a different algorithm or parametrisation can have
non-obvious effects on runtime or solution quality. These
effects are further complicated by the interplay of the quantum
and classical parts in hybrid algorithms, making it difficult
to decide a-priori which algorithm variant performs best
for which task. Ideally, selecting a suitable algorithm and
parametrisation depending on application requirements should
be handled automatically by the compiler or runtime, as is
common in HPC software stacks. However, the effects of
instance and algorithm properties on runtime and solution
quality are still insufficiently understood. As a consequence,
design automation techniques are notably missing from most
quantum toolchains.

We propose a design automation framework that selects the
appropriate quantum algorithm for a given problem instance
from a pool of variants based on application-specific non-
functional requirements, which are specified by the user in
the form of code annotations. To validate our framework, we
consider hybrid classical-quantum algorithms for combinato-
rial optimisation, since these have been studied extensively in
recent years. Using numerical simulations, we aim to identify
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factors that influence solution quality and runtime of these
algorithms, in both fault-tolerant and noisy hardware regimes.
Our goal is to develop statistical models which predict al-
gorithm behaviour for unknown problem instances based on
data collected for a set of baseline instances. We investigate
how such models can be used to perform algorithm selection
automatically, given selection criteria provided by the end user
at the code level. We further demonstrate how our proposed
framework can be applied to a wider range of problem classes,
such as Hamiltonian simulation. We provide the source code
for our framework as well as our models and evaluation results
in form of a comprehensive code repository and reproduction
package (links in PDF) [12].

II. RELATED WORK

Software solutions addressing the challenges of integrating
QC into HPC environments are being designed and im-
plemented [13]-[19]; we cannot review them all in detail.
Karalekas e al. [15] introduce a framework for a quantum-
classical cloud platform, enumerating its architectural re-
quirements and showcasing two platform-level enhancements
that optimise the platform for variational hybrid algorithms.
Bandic er al. [16] survey QC full-stacks, highlighting the
need for tight co-design and vertical integration between
software and hardware. Auto-tuning in HPC environments
was studied by Hoefler er al. [20]. Wintersperger et al. [21]
and Safi et al. [22] study the influence of parameters like
communication latencies and adapted topologies in HPC/QC
systems. Elsharkawy er al. [18] assess the suitability of
quantum programming tools for integration with classical
HPC frameworks. Close integration of classical and quantum
aspects is a paramount desire in most studies.

In classical HPC, significant efforts have been dedicated
to modelling performance in order to optimise runtime, again
allowing us to only review a representative sample. Barnes
et al. [23] explore regression-based approaches to predict
parallel program scalability, using execution data from smaller
processor counts to forecast performance on larger systems. Di
et al. [24] demonstrate the effectiveness of Bayesian models
for predicting host load in cloud systems, achieving high
accuracy compared to traditional methods. Calotoiu et al. [25]
introduce automated performance modelling techniques to
identify scalability bottlenecks early, enabling developers to
address issues before they impact large-scale runs.

Many hybrid quantum algorithms for combinatorial opti-
misation have been proposed, with QAOA [5] being among
the most prevalent. Various similar algorithms have been
suggested, which modify circuit structure (e.g., Refs. [8],
[26]-[29]) or the optimisation process (e.g., Refs. [6], [7],
[30]-[34]). We consider a representative selection for our
evaluation [5]-[8].

Regarding the simulation of quantum algorithms on noisy
hardware, Georgopoulos et al. [35] present an approach to
simulate effects of three error types using quantum channels,
and align the model with experimental observations. Greiwe et
al. [36] investigate the effects of imperfections on quantum

algorithms. Xue et al. [37] confirm the effectiveness of hybrid
algorithms on noisy quantum devices by studying effects of
quantum noise on standard QAOA. Marshall et al. [38] provide
an approximate model for fidelity and expected cost given
noise rate, system size, and circuit depth.

III. CONTEXT AND FOUNDATION
A. Subject Problems

To identify predictable patterns in the behaviour of quantum
optimisation algorithms, we consider five NP-complete prob-
lems: Max-Cut, Minimum Vertex Cover (MVC), Maximum
Independent Set (MIS), Partition and Max-3SAT.

Max-Cut is the problem of partitioning the vertices of an
undirected graph into two sets S and 7" such that the number
of edges between S and T is minimised. For MVC, the goal
is to find the smallest vertex subset C' of an undirected graph
such that, for every edge (u,v), u € C or v € C. MIS is
the complementary problem where the objective is to find the
largest vertex subset C' such that for no edge (u,v), both u
and v are in C. MVC and MIS are closely related since the
vertices which are not part of an independent set form a vertex
cover and vice versa.

Partition is conceptionally similar to Max-Cut: Here, the
objective is to partition a set of numbers into two S and T,
such that the absolute difference between the sum of numbers
in S and the sum of numbers in 7" is minimised. Finally,
a Max-3SAT problem instance is defined by a set of boolean
variables and a set of clauses over these variables. Each clause
is a logical disjunction of exactly three literals where a literal
is either a variable or a negated variable. The objective is to
find an assignment of variables that maximises the number of
satisfied clauses.

The subject problems (a) are well-understood, with many
applications, (e.g., Refs. [39], [40]), (b) can be encoded effi-
ciently for the studied algorithms (e.g., one qubit per vertex for
Max-Cut, MIS and MVC) and (c) differ considerably in their
hardness of approximation: For Partition a fully polynomial—
time approximation scheme is known [41]; MVC, Max-3SAT
and Max-Cut can be approximated in polynomial time within
factors of 2, 0.875 and 0.878 respectively [42]-[44]; MIS
cannot be approximated efficiently within any constant factor
unless P = NP [45].

B. Subject Algorithms

We consider four hybrid quantum optimisation algorithms
which incorporate classical compute power in different ways.
These algorithms are targetted at problems that can be de-
scribed as quadratic unconstrained binary optimisation prob-
lems (QUBOs). Many NP-complete optimisation problems,
including our subject problems, have efficient QUBO encod-
ings [46]-[48]. QAOA is one of the most widely studied hybrid
quantum optimisation algorithms [5]. The QAOA circuit first
prepares an initial state, typically |+)", and applies a series
of unitaries: e~ PrHme=imwto  o=iBiHme—imHe where p
chooses the number of layers. H¢ is the problem Hamiltonian,
which encodes the QUBO objective function. Hy; = Zi xX@
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is called the mixer Hamiltonian. Optimal parameters [;,;
(1 € 7 < p) are found through multiple circuit evaluations
using a classical optimiser. More layers improve, in principle,
results at the expense of runtime, but also amplify noise, which
decreases solution quality in non-fault-tolerant scenarios.

Warm-starting QAOA variants add another classical com-
ponent to the standard QAOA approach by first computing
an initial guess for the solution classically and then running
QAOA to refine this initial solution. We consider two warm-
starting algorithms: WS-Init-QAOA [7], which modifies the
initial state of the circuit, and WSQAOA [6], which addition-
ally modifies the mixer Hamiltonian based on the initial guess.

Finally, we consider Recursive QAOA (RQAOA) [8], [49].
This algorithm uses a classical greedy approach to iteratively
assign QUBO variables, using QAOA as a subroutine to find
the most “conclusive” QUBO term in each iteration.

IV. EXPERIMENTS

We evaluate solution quality and runtime of four hybrid
quantum optimisation algorithms (QAOA, WSQAOA, WS-
Init-QAOA and RQAOA) using ideal and noisy numerical
circuit simulations. We use the Eviden Qaptiva 800 quantum
simulation platform and its proprietary software library QLM
that includes a high-performance, density-matrix-based noisy
circuit simulator. Different numbers of layers (1 < p < 7) are
investigated for each variant. We evaluate the algorithms using
random instances of the five optimisation problems stated
above and using well-known QUBO formulations for these
problems [46], [50]. For MIS and MVC, the constraint and
the objective QUBO are weighted at a ratio of two to one. For
Max-3SAT, we use a QUBO form which requires one qubit per
variable and one qubit per clause [50]. We consider instances
from 5 to 19 qubits. Since noisy simulations are much more
computationally expensive, we limit the number of qubits to
10 and the number of QAOA layers to 4 in the noisy case.
For each problem size (qubit count), we generate 100 random
instances. For Max-Cut, MVC and MIS, random graphs are
considered, which are created by inserting an edge between
every pair of vertices with probability 0.5. Partition instances
are generated by drawing numbers uniformly at random from
the interval [0, 1]. For each Max-3SAT instance, we select the
number of variables uniformly between 1 and one third times
the number of qubits to allow for a range of both easy and
hard SAT instances [51]. For each clause, one of the (2n)3
possible clause configurations (with and without negation) is
chosen uniformly.

For all quantum algorithms, SciPy’s COBYLA optimiser
with a tolerance of 1 % and 150 maximum iterations is used
to optimise the circuit parameters [52], [53]. The number
of circuit measurements per optimiser iteration is fixed at
10000, which is an adequate comprise regarding accuracy and
runtime for the studied size regime. The warm-starting vari-
ants use approximate solutions obtained from the Goemans-
Williamson algorithm for Max-Cut [42], greedy list scheduling
for Partition [54] and a derandomised version of the “coin-flip
algorithm” for Max-3SAT [55]. For MVC, we use the classic

two-approximation algorithm, which is based on a greedy
maximal matching [55]. The same algorithm is also used for
the MIS warm-starting solutions, using the complement of the
solution, since, as stated above, the vertices not part of a vertex
cover form an independent set.

A. Noise Model

To ensure the validity of our evaluation for a wide range of
fault-tolerant and noisy device types, we consider a continuum
of noise levels through density-matrix-based simulations. We
base these simulations of the noise model of Qiskit’s noisy
simulator, which has seen wide adoption in current QC re-
search [35], [36], [56]. It accounts for the dominant sources
of noise in most currently available quantum systems and has
shown good agreement with experiments on actual quantum
hardware [35], [57], [58]. Even though the Qiskit model was
designed to model the behaviour for IBM superconducting
quantum devices, the types of noise it describes generally
apply to a broad class of physical qubit realisations. We
implemented the Qiskit model on top of QLM’s noisy circuit
simulator, but additionally allow for changing the strength of
the individual noise sources cover a wide spectrum of realistic
noise regimes. The noise model considers:

o Gate errors: Gate errors are modelled using depolarising
channels, which with some depolarising probability p
replace the state of the affected qubits by the maximally
mixed state [59].

o Thermal relaxation: Even if the qubit is not involved
in any quantum gates, its state slowly transitions to the
thermal equilibrium state |0) over time, which is mod-
elled as a combination of amplitude and phase damping
noise [59], [60].

The model is parametrised by (a) longitudinal (77) and trans-
verse (15) relaxation time, (b) gate error and duration for each
gate type (e.g., Rz or C=X), (c) noise level [. As a simplifying
assumption, we assume all qubits share identical imperfection
characteristics. For a detailed description of our noise model
implementation, we refer to our previous work [61].

We transpile from logical gates to the native gate set
{RZ7 VX, C-X }, as it is supported by many transmon de-
vices. While not all qubit realisations support C=X gates
natively, equivalents (up to single-qubit rotations) exist on
all architectures. Since two-qubit gate imperfections usually
exceeds single-qubit gate imperfections, any additional single-
qubit gates that arise from substituting C=X gates should not
meaningfully affect our results.

1-Qubit  2-Qubit Ty T
Gate Error 0.03 % 1%
(Gate) Time 35ns 400ns 100pus 85us

TABLE I: Baseline noise parameters.

Table I shows baseline noise parameters. They represent
conservative estimates of current transmonic devices. To study
algorithm behaviour on a continuum of noise regimes of
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Fig. 1: Runtime versus approximation quality for ideal and noisy simulations. Each point represents an average over 100
instances for a given number of qubits; point size increases with instance size respectively qubit count (five to ten).

today’s and future hardware, the parameter [ changes the
noise level, with [ = 0 corresponding to noiseless circuits
and ! = 1 corresponding to the baseline parameters shown
above. Specifically, [ scales both the error probability p of the
depolarising channels and the gate durations. While our model
can easily handle separate noise levels for gate and thermal
relaxation noise, our previous work [61] has shown that these
noise sources have a similar effect on circuit fidelity and thus
solution quality. We therefore limit our discussion to only a
single dimension covering both noise types.

B. Solution Quality and Runtime Estimation

Our analysis requires comparable quantities to describe
solution quality. The subject problems include minimisation
and maximisation problems, as well as unconstrained and
constrained problems (i.e., problems where some solutions are
invalid). To better compare results across problems, we treat
them as unconstrained maximisation problems when assigning
a value to a solution. For Max-Cut, MIS and Max-3SAT, the
objectives are to maximise cut size, size of the independent
set and number of satisfied clauses. We view Partition as the
problem of maximising the size of the smaller set and MVC as
the problem of maximizing the reciprocal of the vertex cover
size. For MIS and MVC, we define the value of an invalid
solution as the value of the worst-possible solution (one vertex
for MIS, all vertices for MVC). We execute the algorithms
using the original QUBO formulations. Solution quality of an
algorithm for an instance is then computed from the circuit’s
output state, averaged over multiple runs.

Algorithm runtime includes circuit execution, classical pa-
rameter optimisation, circuit transpilation and finding initial

solution guesses for the warm-starting variants. To estimate
circuit execution time, we use gate durations given in Table I,
and a measurement time of 4pus. For classical runtimes,
measurements are performed on the simulation hardware.

C. Evaluation Results

Figure 1 compares solution quality and runtime for ideal
simulations and simulations at baseline noise levels (I = 1).
Each data point represents average approximation quality, that
is achieved solution quality divided by the value of the optimal
solution, and runtime of an algorithm (QAOA variant and
number of layers) for 100 problem instances with the same
number of qubits, where we consider instances with 5 to 10
qubits. We observe that there are clear differences in solution
quality and runtime between the studied algorithms. RQAOA
consistently performs best in terms of solution quality, albeit
at the expense of runtime, since it executes QAOA multiple
times. As expected, under ideal conditions, both solution
quality and runtime increase with increasing number of circuit
layers, while under noise there exists a turning point, where
the computational power of the added layer does not outweigh
the additional noise it introduces. Solution quality changes at
markedly different rates depending on the subject problem,
and specific to each algorithm. However, for each algorithm-
problem combination, both solution quality and runtime seem
to follow clear and predictable trends.

V. SOLUTION QUALITY MODELS

We compare multiple approaches to model solution quality,
described in detail in the following subsections. To implement
unified models which describe subject problems whose objec-
tive functions have vastly different co-domains, our models



require two functions UBp(z) and LBp(z) for each optimi-
sation problem P that map a problem instance to an upper and
a lower bound such that the solution quality achieved by an
algorithm lies between these two bounds. As the lower bound,
we use the expected value of a solution selected uniformly at
random, which any practically-relevant algorithm should be
able to beat. For Max-Cut and Max-3SAT, the expected value
of a random solution can be computed analytically. For other
problems where this analytic approach is not feasible, we can
approximate the lower bound with good accuracy by randomly
sampling the solution space.

For the upper bound, the value of the optimal solution would
be a good choice. However, for the five tested (NP-complete)
optimisation problems, computing the optimal value in general
is infeasible unless P = NP. Instead, we will use problem-
specific quantities that are at least as large as the optimal value,
but easy to calculate classically, and ideally relatively close
to the optimum. For Max-Cut, Max-3SAT and Partition, we
use the trivial upper bounds (cutting all edges, satisfying every
clause, distributing the numbers equally). For MIS, we use the
combinatorial upper bound /2 + /1/4 +n% —n — 2m [62]
where n is the number of vertices and m is the number of
edges. Due to the relationship of MIS and MVC stated above,
n minus the MIS bound serves as a bound for MVC.

A. Beta Regression

For our first approach, we use a Beta regression model [63],
which is a standard technique to describe continuous response
variables lying in a specific interval. Further, it naturally allows
for heteroscedasticity in the response variable, which is present
in our data. We normalize the output variable, namely the
expected solution quality f(x), according to

_ _f(z) - LB(x)
Y= UB(x) — LB(x)

with Y € [0,1]. To account for algorithmic and problem-
specific effects, we fit a separate model for each algorithm-
problem combination. Assuming that Y is beta-distributed,
using the logit function as the link function and using the
problem size (number of qubits) n and the number of QAOA
layers d as independent variables, we model ¥V as YV =~
o (a + Bn + ~d). Here, o is the inverse of the logit function:
o(x) = 1/(1 + exp(—x)). We also considered a version
of this model where we apply a Box-Cox transform to the
independent variables n and d [64]. However, as it achieves
similar test errors, we only consider the simpler model without
the variable transformation in our evaluation.

6]

B. Power Law Decay

Our second model is based on the assumption that, for a
fixed QAOA variant and a fixed number of layers, normalized
solution quality Y decreases with increasing problem size
according to a power law. This model is motivated by visual
observation of the behaviour of the QAOA variants as well
as the fact that the solution space grows exponentially with
the problem size. To predict solution quality for some QAOA

variant with some number of layers for large-scale problem
instances, the solution quality for the same variant and the
same number must be known for a pool of low-qubit instances.
Let Y(b) be the average normalized solution quality of some
d g q y

QAOA variant with d layers, according to (1), for a pool of
instances with b qubits. Then the power law model describes
Y aa Y = ?&b)(l + a(n — b))? where n denotes the
number of qubits. We find « and [ using non-linear least
squares. As a variant we also considered an exponential decay
model Y, ~ ?Sb) exp(—y(n — b)), where we obtain ~ using
exponential regression. This, however, achieves sub-par results
and is therefore excluded from the analysis.

C. Quality Degradation Model

The Beta Regression and the Power Law Models can be
used to predict the behaviour of the tested quantum algorithms
on both ideal and noisy hardware. This, however, requires
fitting separate models for each noise regime in which the
algorithm might be performed. In heterogenous HPC environ-
ments with multiple integrated quantum units with possibly
different noise characteristics, one would need to obtain suf-
ficient data on every integrated QPU for each problem and
each algorithm to be able to make accurate predictions. The
Quality Degradation Model aims to predict how much solution
quality degrades, compared to the results on an ideal system,
depending on the noise level of the system.

As described in [37], [38], when considering a simplified
noise model, which applies one layer of noise after every
QAOA layer, solution quality can be approximated as

Froisy () & @+ (fuea(w) —0) 1= pB)"™. @)

Here, fnoisy and figear denote noisy and ideal QAOA perfor-
mance, p denotes the error probability, n denotes the number
of qubits and d denotes the circuit depth (in the number of
QAOA layers); « and 3 are model parameters. We adapt (2)
as follows: It is reasonable to assume that, with increasing
circuit depth, the circuit output state approaches the maximally
mixed state /2", which is equivalent to randomly guessing
a solution, implying that @ = LB(x). We assume that
the noise level [ in our model is proportional to the error
probability: [ o p. This is indeed the case for depolarising
noise and also approximately for thermal relaxation noise at
small noise levels [61]. We replace p with [ by absorbing
the proportionality coefficient into 5. In (2), nd denotes the
number of noise channels (one per qubit per layer), which
we adapt to our more realistic noise model, which includes
noise channels after each gate. To simplify the model and
to increase hardware independence due to gate set specifics,
we ignore single-qubit gates and focus on the generally much
more error-prone C—X operations. In particular, we will use
the following degradation model:

fnoisy(x) ~ LB(.’E) + (fideal - LB(I’))(l - lﬂ)ndGX (1 - l’y)nGX .

Here, dc_x is the circuit depth in terms of C=X gates and
nc—x 1is the number of C-X gates in the circuit; 8 and -y
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Fig. 2: Test residuals for models predicting algorithm solution quality on ideal hardware. Possible solution values are mapped
into [0, 1] for better comparison between problems. Training instances range from five to eleven qubits (left of dashed grey
line). Errors to the right of the line shows extrapolation capabilities of the model.

are model parameters, which we find using non-linear least
squares. The exponent ndc_x corresponds to the number of
thermal relaxation noise channels due to C=X circuit depth,
while nc_y corresponds to the number of gate error channels.

D. Model Evaluation

To increase generalisability and reduce training time in
deployment, we want our models to learn algorithm behaviour
using relatively small problem instances, while still making
good decisions on larger, practically relevant instances. To
evaluate the models’ extrapolation ability, we reserve the larger
half both our noisy and ideal data points in terms of the
number of qubits (the extrapolation set) for testing. In the
smaller halves (in terms of qubit count), for each optimisation
problem and each problem size, we pick 20 of our 100 random
instances, which form the baseline test set. The remaining
instances are used as training data.

Figure 2 visualises test data residuals for normalised so-
Iution quality Y on ideal hardware as a box plot. A small
spread around y = 0 indicates accurate predictions. The
vertical dashed line separates the baseline and extrapolation
test sets. For space and visual clarity, we show only the
results for Max-Cut and MIS; the other results are similar
and are included in our reproduction package. For all tested
problem-algorithm combinations, both models achieve a root
mean square error below 0.09 on the baseline test set and
below 0.07 on the extrapolation set. In fact, in most cases, the
models become more accurate with larger qubit counts. This
effect can be partially attributed to the increasing similarity
between instances as the qubit count grows, a consequence of

the random instance generation. In the extrapolation regime,
for four of the five tested optimisation problems, one of the
two models consistently achieves higher accuracy across all
algorithms: Beta regression yields better results for MVC and
Partition; the Power Law Model performs better for Max-Cut
and Max-3SAT. The Power Law Model also achieves slightly
lower error rates for MIS. In general, prediction errors are
highest for RQAOA.

In the noisy regime, we can either predict solution quality
directly or use the Quality Degradation Model to predict how
much solution quality decreases, compared to fault-tolerant
hardware. Figure 3 compares the root mean square error
of both approaches for noise levels | € {0.25,0.5,1,2,4}.
Point colour visualises mean residuals, where yellow indicates
principal quality underestimation and black indicates overesti-
mation. Again, for visual clarity, we show only the results for
Max-Cut and MIS, as the the other results are similar. For the
Quality Degradation Model, we consider the case where ideal
solution quality is known and the case where ideal quality is
predicted using one of the other models. For the latter case, we
use the better model for the corresponding problem, according
to the data from Figure 2. All tested approaches show good
model accuracy for the studied problems, algorithms and noise
levels. Among the direct models, the model achieving better
results in the ideal case also mostly performs better in the
noisy case. Predicting noisy solution quality from known ideal
quality achieves the lowest errors in many cases. Predicting
noisy solution quality by first predicting ideal quality and
then predicting quality degradation achieves similar errors
compared to predicting noisy quality directly. This is notable
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current superconducting systems). Models were evaluated with instances of the same size as the training instances (5 to 7
qubits) and with larger instances (8 to 10 qubits). Yellow points indicate that the model generally underestimates solution
quality, black points indicate overestimation. Green points indicate no structural over- or underestimation.

— Beta Regression Degrade from ideal (Beta)

Power Law Decay —— Degrade from ideal (Power Law)

QAOA WSQAOA | | WS-Init-QAOA RQAOA

-
D 14-
g 0s
< 1.3- —
el . o
= 127 \ g
2 11 N
S 0S— - S B
5)
5 144
5 12-| ‘
~ 12- \ Z
= <
g 1.1 - uRENEE
m 107 T T T T T T T T T T T T S

1000 5000 10000 1000 5000 10000 1000 5000 10000 1000 5000 10000

# data points

Fig. 4: Solution quality model error convergence with increas-
ing training set size. Root mean square error (extrapolation
regime) for partial data set (baseline regime) divided by error
for complete baseline set.

since the direct models need to be trained specifically for each
noise level, while the Quality Degradation Model works for
any noise level by including noise as a co-variable.

Using statistical models to select the best algorithm is only
feasible if the number of training problem instances required
for good model accuracy is not too large. We therefore com-
pare extrapolation test error for training sets of different sizes,
which we obtain by sampling from the baseline instances.
Figure 4 shows the average error of models trained on a

subset of the baseline instances, divided by the error achieved
after being trained on the entire baseline set. As the number
of instances and thus the number of data points increases,
the error approaches the optimal error achieved with the full
data sets, which include 14 000 data points (ideal) and 30 000
data points (noisy) respectively. For all algorithm-problem
combinations and in both ideal and noisy regimes, 3000 data
points or less than 100 instances per problem suffice to be
10% off the optimal error. This indicates that results for a
relatively small pool of sufficiently diverse baseline instances
can be enough to make well-founded automatic algorithm
selections, assuming that the behaviour of algorithms does not
fundamentally change for larger instances.

VI. RUNTIME MODEL

The runtime of an algorithm depends on factors such as
circuit depth, number of shots, number of parameter optimiser
iterations (for variational algorithms), transpilation times or
communication latencies. Many factors have a linear effect on
algorithm runtime, making it generally easier to model runtime
than solution quality. In our simulations, circuit execution was
by far the most runtime-intensive part. As C=X gates generally
take much longer to execute than single-qubit gates, the circuit
execution time approximately linearly depends on C=X circuit
depth. For the tested algorithms, runtime is not necessarily
linear in circuit depth as it also depends on the optimiser
iteration count (which is not fixed). RQAOA additionally
performs multiple QAOA runs on circuits, which are not
known a-priori as they depend on intermediate results. For our
framework, we use a relatively simple but flexible approach
where we model the runtime T'(x) as T(x) = adg,x. Here,
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TABLE II: Variables supported by the algorithm selection
framework to specify selection constraints and preferences.

Variable Semantics
RUNTIME T(x)
SOLUTION_QUALITY f(x)
RELATIVE_SOLUTION_QUALITY f(m)/UB(w)
SOLUTION_QUALITY_PER_RUNTIME f(I)/T(l-)
RELATIVE_SOLUTION_QUALITY_PER_RUNTIME f(x)/(UB(x)T(ac))
RUNTIME_PER_SOLUTION_QUALITY T(I)/f(x)
RUNTIME_PER_RELATIVE_SOLUTION_QUALITY T(l‘)/(UB(z)f(z))

dc—x is the circuit depth of the QAOA circuit (the first circuit
in the case of RQAOA) in C—=X gates. We fit the model using
linear least squares after applying a log-transformation. The fit
of the first model for results at noise level [ = 1 is visualised
in Figure 5. The data for other noise levels and the ideal
simulations are similar. By incorporating more model variables
besides circuit depth and by specifically tailoring the model
to the specific scaling behaviour of the quantum algorithm,
a more accurate model can be achieved. However, since we
already achieve good accuracy with such a simple model, we
stay with it for the purposes of our framework in order to
increase the generalisability of our approach.

VII. SOFTWARE FRAMEWORK

As demonstrated above, in many cases, solution quality
and runtime of the algorithms can be predicted using easy
to compute quantities such as circuit depth or the expected
quality of a random solution. In order to help engineers
integrate quantum algorithms into HPC environments as ef-
ficiently as possible, we propose a software framework, based
on these results, that can automatically select the optimal
algorithm for a given problem instance based on multiple
constraints. The proposed framework uses Python context
managers to provide an intuitive but flexible interface through
Python’s with blocks that can be integrated easily into typical
controls structures such as loops without needing to change
the specification of the language. We used Python since it is

the most widely used programming language for QC, largely
due to the popularity of the Qiskit software framework. In the
context of HPC, compiled languages with manual memory
management like C++ are of course much more prevalent
as they provide significant performance advantages. Similar
syntax constructs to the ones we propose can be realised in
C++ by using #pragma directives.

The provided framework serves as a proof-of-concept to
demonstrate that the integration of quantum algorithm selec-
tion into existing software stacks is achievable in practice.
Figure 6 visualises the main structure of the framework. The
user passes the problem instance they want to solve to the
framework via a function call. The framework maintains a
database which stores solution quality and runtime achieved by
the available algorithms for the previously submitted problem
instances. It also stores runtime and solution quality models for
each algorithm, which it regularly updates based on recently
obtained instance-algorithm pairs. Based on our model results,
the framework uses the model with the lowest error for a given
problem. The user describes application requirements by spec-
ifying multiple constraints and whether the framework should
prioritise runtime, quality or a combination of the two when
selecting the appropriate algorithm. Constraints and selection
objectives include variables such as runtime, solution quality
or “quality efficiency”, that is solution quality per runtime
(cf. Table II). For each instance submitted, the framework
finds the algorithm that maximises or minimises one of these
variables (or a linear combination of several variables) under
linear constraints, also defined in terms of these variables.
This allows the user to express nuanced requirements such as
“Maximise solution quality but only if the increased quality is
worth the extra computational effort”, while keeping the inter-
face intuitive and easy to understand. Selection objectives and
constraints are specified in code using Python with statements,
leading to concise and legible code. It also allows the user to
provide constraints and objectives to multiple quantum calls
using the scope of the with block. Examples of the proposed
syntax and three possible application scenarios are shown in
Figure 7. The code and further examples are provided as part
of the reproduction package.

VIII. USE CASE ILLUSTRATION:
HAMILTONIAN SIMULATION

We demonstrated how QC-HPC integration can be sim-
plified by automating algorithm selection, based on non-
functional requirements, specified via suitable code abstrac-
tion and annotation mechanisms. Although we focused on
combinatorial optimisation problems, we believe that the main
insights of our study to extend far beyond the current NISQ
(noisy intermediate-scale quantum) era and are applicable to
a wider class of problems on both noisy and fault-tolerant
hardware. To demonstrate the generalisability of our frame-
work, we discuss Hamiltonian simulation as an additional
use case. Hamiltonian simulation has broad applications in
physics and chemistry and is likely to be one of the first
practical use cases of QC [65]. Given a Hamiltonian of a
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RUNTIME < 100 * MILLI_SECONDS &
RELATIVE_SOLUTION_QUALITY = 0.8

solution = quantum_solve(problem_instance)
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Fig. 6: Outline of the structure of the proposed software framework. Given a problem instance, solution quality and runtime are
predicted using regression models. Depending on application requirements specified via code annotations, the best algorithm
is selected and executed. Runtime and solution quality achieved by the algorithm is used to update the models.

from quantum_framework import =*
import networkx as nx

# load benchmark instances, train model
framework = AlgorithmSelectionFramework ()
framework.add_results (load_results())

instance = MaxCut (nx.erdos_renyi_graph(n = 30, p = 0.5))
# find sufficiently large cuts quickly

with minimize (RUNTIME) :
with RELATIVE_SOLUTION_QUALITY >= 0.75:

result = framework.quantum_solve (instance)
with SOLUTION_QUALITY >= 200:
result = framework.quantum_solve (instance)

# favor quality over runtime (ratio 2:1)
with maximize (2/3 * SOLUTION_QUALITY - 1/3 % RUNTIME) :
result = framework.quantum_solve (instance)

# find best solution in 10s,
# improvement per second
with maximize (SOLUTION_QUALITY), (
(RUNTIME <= 10 % SECONDS) &
(RELATIVE_SOLUTION_QUALITY PER_RUNTIME >= 0.1)

given there is a 10%

result = framework.quantum_solve (instance)

Fig. 7: Code example showcasing our framework from the user
perspective; algorithm selection considers requirements and
preferences regarding the runtime-quality trade-off, specified
using with blocks.

physical system H, the goal is to simulate a unitary U, which
approximates the time evolution e Ht for a given time ¢, that
is, ||U — e~H#t|| < ¢ with approximation quality e. Similar to
combinatorial optimisation, many algorithmic approaches with
different parametrisations exist to tackle this problem [65],
with different approaches showing different scaling behaviour
regarding approximation quality and runtime, depending on ¢
and properties of H.

For our discussion, we consider two scenarios where the
framework proposed in this work could aid in choosing

with maximize (INV_SIMULATION_ERROR_PER_RUNTIME), (
SIMULATION_ERROR <= 0.001
)8

hamiltonian = Hamiltonain(...)

result = framework.evolve_hamiltonian (
hamiltonian,
psi_0 = "O0" % n, observable="Z" % n,

Fig. 8: Code example demonstrating how the proposed frame-
work can be extended support the additional use case of
Hamiltonian simulation (opposed to quantum optimisation).

the optimal algorithm and parametrisation: For the Trotter-
Suzuki algorithm [1], H is decomposed into a sum of terms
H = > H; such that the time evolution of each H; can
be efficiently simulated on a (gate-based) quantum com-
puter. The time evolution of H can then be approximated
as ([], e *#it/4)d, This method experiences a similar time-
quality trade-off to the tested QAOA variants (approximation
quality and runtime increases layer count d). In fact, QAOA
can be interpreted as the Trotterised time evolution of the time-
dependent Hamiltonian H (t) = (1 —¢)Hy +tHp, so it seems
very likely that statistical approaches like the one proposed
in this work can lead to accurate predictions for the Trotter-
Suzuki algorithm for both fault-tolerant and noisy regimes.

For the second scenario, we consider analogue QC, which
has shown great potential in quantum simulation tasks [66],
[67]. Hamiltonians with specific properties can be decomposed
into their core building blocks such that each component has a
direct counterpart on the analogue quantum system, allowing
for a very direct simulation of the quantum system of interest.
Assuming the existence of fault-tolerant quantum hardware,
the Trotter-Suzuki algorithm provides a flexible procedure to
simulate a wider class of Hamiltonians with the ability to
precisely control the time-quality trade-off, at the expense of



runtime due to error correction overheads. Hybrid approaches
also exist that combine both analogue and digital or gate-based
techniques [68]. Choosing the right algorithm or combination
of algorithms again is a highly non-trivial problem as it
depends on the properties of the system, the tolerated error
and possible runtime constraints. This task should ideally be
abstracted away and performed automatically by the toolchain
or software stack. Figure 8 shows how this automatic selection
could look like in our proposed software framework.

IX. THREATS TO VALIDITY
A. Circuit Connectivity

To simplify our analysis, we assumed that 2-qubit gates
can be applied to any pair of qubits, ignoring connectivity
constraints present in many hardware realisations. Qubit rout-
ing techniques to handle limited connectivity increase circuit
runtime and, on noisy hardware, decrease solution quality
due to additional gate errors. Optimal qubit routing is a hard
problem and an active topic of research [69]-[71]. However,
worst case bounds are known for some classes of problems
[72], [73]. Recent results also show that the number of required
swap gates follows predictable trends and decreases rapidly
with growing qubit connectivity [22]. Since our models work
well for larger noise levels due to additional swap gates
(cf. Figure 3), we believe that our approach can be extended
to account for settings with limited connectivity.

B. Problem Instance Selection

We only considered random problem instances in our
evaluation. Since our models achieve good accuracy for a
diverse set of problems, we believe our approach to apply
to other classes of instances. However, unevenly distributed
instances could impair model accuracy. This could be handled
by identifying other instance properties with a strong effect
on solution quality and runtime. As solution quality correlates
with problem hardness in our experiments (e.g., Max-Cut is
easier than MIS for both classical and quantum techniques),
indicators for classically hard instances [51], [74], [75] could
also predict quantum solution quality. Although we specifically
evaluated the ability of the models to generalise to larger qubit
counts, we only considered instances with up to 19 qubits. It
is reasonable to hypothesise that the general trends observed
persist in practically relevant size regimes, although this, of
course, cannot be guaranteed with current hardware [76].

C. Completeness and Confounders

In our evaluation, we focused on algorithm variant, circuit
depth, gate count, qubit count as the main co-factors of our
models. While other factors (like number of measurements,
choice of optimiser, number of optimiser iterations, ...) can
also lead to quality-runtime trade-offs, we used universally
accepted default choices (10 000 measurement shots for each
configuration; COBYLA with tolerance 102 and at most
150 maximum). We varied these factors on a subset of our
experimental setup (see the reproduction package for detailled
results), and found that while there is limited impact on

solution quality and runtime, any general trends that we
have identified for the standard co-variables appear to stay
consistent. Yet, we did not perform a complete statistical a-
priori analysis to systematically identify and quantify possi-
ble confounding factors, or interaction effects between co-
variables. A substantially more complete statistical approach
would be required, which goes beyond the scope of this paper.

X. DISCUSSION & CONCLUSION

We presented a novel approach for automatically selecting
quantum algorithms based on systematically and quantitatively
specified application requirements using statistical models. We
validated the effectiveness of our ideas using hybrid algorithms
for solving hard optimisation problems as a potential use
case. Our results show that problem-specific and algorithm-
specific factors have predictable effects on solution quality
and runtime. In our experiments, these trends continue for
instances with up to 75 % higher qubit counts as were used
to train the predictors, allowing our models to achieve good
prediction accuracy from just one hundred baseline instances.
We introduced a reproducible software framework to select
the best algorithm for given desiderata, and discussed how
our approach can be applied to other problem domains such
as Hamiltonian simulation.

Given the numerous limitations of quantum hardware and
software, realistic estimates of what kinds of results end
users can expect from existing algorithms when executed on
available quantum hardware are essential for the successful
integration QC into HPC applications. Our results indicate that
in many scenarios, relatively few baseline instances suffice to
make reliable estimates on runtime and solution quality for
previously unseen instances. Regarding solution quality, we
have demonstrated that it is possible to successfully separate
algorithm-specific from hardware-specific effects by showing
that a unified model predicting solution quality degradation
due to hardware failures leads to similar prediction errors as
using models specifically trained for a particular noise regime.
Nonetheless, further work is required to model additional
relevant influence factors, and to confirm the applicability of
our approach in additional scenarios and problem domains.

Our findings may be particularly useful in the context of
rapidly advancing quantum hardware, as they may allow for
predictions to be made about how much improvements one
can expect from hardware with higher error resistance.

Our work contributes to a vision where compilers or runtime
systems can select the most appropriate algorithm based on
user-specified requirements, which can significantly reduce
efforts and expertise required to solve complex problems
using QC, enabling widespread adoption in various fields.
We believe that a wide range of design decisions can be
automated using our approach, both within and beyond the

field of combinatorial optimisation.
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