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Abstract

Context: Mining software repositories is a popular means to gain insights into
a software project’s evolution, monitor project health, support decisions and
derive best practices. Tools supporting the mining process are commonly ap-
plied by researchers and practitioners, but their limitations and agreement are
often not well understood.

Objective: This study investigates some threats to validity in complex tool
pipelines for evolutionary software analyses and evaluates the tools’ agree-
ment in terms of data, study outcomes and conclusions for the same research
questions.

Method: We conduct a lightweight literature review to select three studies
on collaboration and coordination, software maintenance and software quality
from high-ranked venues, which we formally replicate with four independent,
systematically selected mining tools to quantitatively and qualitatively com-
pare the extracted data, analysis results and conclusions.
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Results: We find that numerous technical details in tool design and imple-
mentation accumulate along the complex mining pipelines and can cause sub-
stantial differences in the extracted baseline data, its derivatives, subsequent
results of statistical analyses and, under specific circumstances, conclusions.

Conclusions: Users must carefully choose tools and evaluate their limitations
to assess the scope of validity in an adequate way. Reusing tools is recom-
mended. Researchers and tool authors can promote reusability and help reduc-
ing uncertainties by reproduction packages and comparative studies following
our approach.

Keywords Mining software repositories - Software analysis - Tools -
Replication - Validity - Conclusion stability

1 Introduction

Software repositories, managed by version-control systems such as Git, record
the entire development history of a software project, making them a highly
relevant data source for empirical studies. Gaining new insights into soft-
ware projects and their development processes by mining software repositories
(MSR) has become a popular field in software engineering. In early years, stud-
ies focused on extracting and representing information from software reposi-
tories, for instance to analyse software defects and their resolution (Sliwerski
et al, 2005) or contributors’ activity and coordination patterns (Dinh-Trong
and Bieman, [2005). Studies quickly became more advanced, constructing de-
veloper networks based on communication (Bird et al, 2006) or technical col-
laboration, analysing and modeling statistical relationships to improve effort
estimation (Fernandez-Ramil et all |2009) or software quality and derive best
practices (Bird et al, [2011]). Nowadays, studies take another step further and
leverage advanced machine learning techniques to build fine-grained models
able to support developers in specific tasks and situations — for instance, gen-
erating code (Ciniselli et al, [2021)) and recommending libraries (He et al,{2021b)
during development or identifying the cause of quality issues in a problematic
software project from a process perspective (Paradis et al, [2024al). With the
growing complexity of research questions, advanced methods are required to
accomplish such tasks.

Manually retrieving and combining all the required information from large
software repositories with sometimes over twenty years of change history is
impractical. Therefore, tools automating data extraction and processing are
essential to enable comprehensive analyses at scale. However, implementing
automated pipelines requires a number of design and implementation decisions
to be made. For instance, there are numerous degrees of freedom in choosing
data sources, APIs, algorithms, data schemes, filters and metrics (Paradis and
Kazman), 2022). During implementation, researchers and practitioners must
carefully evaluate for which decisions they provide configuration options and
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for which ones they implement defaults. Due to the high number of seemingly
minor technical details, lots of these decisions are made implicitly based on
assumptions of the tool author.

Nowadays, a plethora of tools exists to automate different steps of the
analysis pipeline. For instance, tools such as CODEFACE (Joblin et al, |2015)),

GIT2NET ((Gote et al, 2019)), GRIMOIRELAB (Duenas et al, |2021)), Karauru (Par

adis and Kazman| [2022)) and SMARTSHARK (Trautsch et al, |2016) were de-
veloped to extract data from version-control systems (VCS), GitHub, issue
trackers, mailing lists, chats, Q&A platforms, map related contributions, unify
author identities, construct and visualise metrics and graphs, with the goal of
incorporating even more useful information into analyses and models to in-
crease accuracy. Automated retrieval and processing of such large amounts of
diverse data is obviously a complex problem, where validation of correctness
is sometimes not feasible. For instance, we cannot determine if all timestamps
captured in the Git log are correct, or if developers using different aliases in
Git and chats over years really belong to the same person. Due to this lim-
itation, data extracted by tools is often trusted without further verification,
giving the misleading impression of a ground truth for subsequent analyses.

Although several threats in mining pipelines have been studied in previ-
ous research (Bird et all 2009; [Kalliamvakou et al, |2014]) and methods were
proposed to overcome them (Saarimaki et al, |2022)), there may be more un-
certainties introduced by the implicit assumptions inherently made by tool
developers. Ideally, this would not pose a big problem, as robust research
processes, results and conclusions should not depend on the specific imple-
mentation of an extraction and analysis process. Furthermore, tools with a
defined set of extraction and analytical capabilities should ideally allow for
substitution by another similar tool, and thereby overcome problems such as
unavailable artefacts, scripts and dependencies, which researchers often face
during reproduction and replication (Hermann et al, 2020; |Gonzalez-Barahona
and Robles| |2023; |Abualhaija et al, [2024).

In previous work, we found that even for two very similar tools following
the same data extraction and analysis process, small technical differences ac-
cumulate along the pipeline and in sum can have a substantial impact on the
resulting data (Hoess et al, |2025)). However, we did not evaluate the actual im-
pact of the entirety of potential and observed discrepancies along a pipeline on
the high-level conclusions of studies. Although very few other studies address
the stability of analysis results through replication (Eng and Sahar, 2022, an
extensive evaluation of the impact of tool choice on conclusion stability is still
missing. If equally valid fine-grained implementation details and assumptions
can influence the overarching statement made by a study, this would raise se-
rious concerns about the generalisability of many impactful findings and best
practices in the field and thus require significant changes in methodology.

To better understand the significance and consequences of threats found in
software repository mining, we build on our technical comparison and adjust-
ment of the two mining tools CODEFACE and KAIAULU and investigate the
impact of the observed discrepancies on empirical study conclusions from a
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higher level of abstraction by replicating three influential studies from the last
decade with four different tools. The selected studies cover distinct research
topics from collaboration and coordination, software maintenance and soft-
ware quality. Specifically, we focus on studies depending on the evolutionary
characteristics from the history of a software project. This gives us a more in-
formed perspective on uncertainty in evolutionary mining pipelines and helps
us in deriving good practices to improve future methodologies.

The results of this study are two-fold: (1) The high-level conclusions of
two of three studies are stable across four independent mining tools. This is
positive for the community, as it demonstrates that conclusions can be ro-
bust against tool variations if studies make very broad statements. (2) Despite
this positivity, we find threats for practical applicability: In some cases, sig-
nificant differences of individual results exist between tools, indicating that
their interchangeability does not apply without restrictions. This is particu-
larly evident in the third replication targeting a more complex problem with
less clear results. One of the major findings of this study could only be con-
firmed with one out of four mining tools. With uncertainty increasing with
each extraction, processing and analysis step, this demonstrates that minor
technical inconsistencies can have a substantial influence on the conclusions.
With research questions and solution approaches becoming increasingly com-
plex, it is ever more important to validate and document the entire analysis
pipelines in a reproducible manner.

In summary, we make the following contributions:

— We perform a literature review of seven high-ranked venues to identify tools
and popular topics frequently addressed by software repository mining to
evaluate the potential fields affected by discrepancies.

— We compare the analysis pipelines and results of four similar mining tools
and summarise the most relevant causes of discrepancies in the baseline
data.

— We evaluate the impact of such discrepancies on the stability of the actual
study conclusions by replicating the central analyses of three studies from
three different fields with data extracted by the four tools, simulating a
tool switch.

— We summarise lessons learned and recommendations regarding the most
important tool characteristics and technical details to which researchers
must pay particular attention in mining studies.

— We provide a replication package containing all data, code and supplemen-
tary artefacts. As we cannot cover all areas of software repository mining
within the scope of this study, other researchers can use our methods and
the annotated literature material for similar, future investigations.

The study is an extension of our previous work (Hoess et al, 2025). The
major extensions in this paper are as follows:

— We include two additional mining tools — git2net and GrimoireLab — in
our baseline data comparison.
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— We perform the literature review as described above for a more structured
evaluation of the impact of the threats identified in our previous work.

— As a major extension of the baseline data comparison in our previous work,
we now formally replicate three carefully chosen studies heavily relying on
data extracted by mining tools to investigate conclusion stability across
tools. Using four independent mining tools, this results in twelve new repli-
cations.

— We extend our list of lessons learned and recommendations by novel aspects
found in the replication studies.

The rest of this work is structured as follows: Section[2]provides an overview
of related studies exploring the validity of repository mining techniques, repro-
ducibility and replicability. Section [3| describes our study design and research
questions, starting with a literature review of popular mining tools and re-
search topics. This section also gives an overview on the selected study tools,
the setup for the baseline comparison and a summary of the selected original
studies for replication. Section [4] presents the results of the literature review,
the baseline data comparison and each replication study to answer our research
questions. In section 5] we discuss the implications of our findings on research
and practice. We reflect on these findings to provide lessons learned and rec-
ommendations for future studies, before we conclude the paper in section
Section [§] refers to data availability and our reproduction package.

2 Related Work

Threats to validity in software repository mining have been identified and
explored in numerous previous studies. Related studies primarily focused on
the validity of specific analysis steps in the mining pipeline and compared
competing approaches of their implementation. Other threats have been found
in replication studies.

Validity and threats The most influential work on pitfalls in software repos-
itory mining has been conducted by Bird et al. (2009), whose study on the
promises and perils of mining git addresses possible traceability issues. Its
findings were later extended by a study evaluating threats caused by pecu-
liar properties of GitHub (Kalliamvakou et all 2014). Further studies explore
threats and their overcoming when mining unstructured data (Bavota, [2016)
or working with time series data (Zheng et al, 2015, Moonen et al, |2018; [F'lint
et al, 2022; [Saarimaki et al, |2022). In addition, the impact of untracked entity
changes was studied in the context of refactoring (Hora et al, |2018]).
Particularly for socio-technical aspects, Zhu et al. (2019)) study the use
of multiple developer identities in open-source projects, emphasising the rele-
vance of identity merging when calculating metrics. Nia et al. (2010) explore
the impact of pitfalls in e-mail network construction, resulting in missing edges
or edges out of temporal order. Their results show that metrics such as node
centrality are stable despite the changes in topology. Other studies explore
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developer perception of collaboration and team structure expressed by such
networks (Meneely and Williams|, [2011} |Joblin et al, 2015)).

Further studies investigate threats in data labeling (Tantithamthavorn|
let al, 2015} [Herbold et al, [2022; [Song et al, 2023} (Guo et al, [2024), often
specific to defect prediction (Chowdhury et all 2024). For empirical studies,
Hartel et al. propose simulation-based testing to evaluate the
validity of statistical methods. Tu et al. investigate data leakage in pre-
dictive models due to time-related problems in issue tracking data and, similar
to our study, show the impact of such threats by reproducing and analysing
three prior studies. Other studies explore popularity bias in recommender sys-
tems (Nguyen et al, 2023)) and methods to detect and handle endogeneity in
statistical methods (Graf-Vlachy and Wagner} 2024). While previous studies
of validity and threats focused on methods for specific analysis steps in isola-
tion, our study focuses on their interaction and propagation along the entire
tool pipeline.

Method and tool comparisons Several studies investigate the interchangeabil-
ity of tools in other fields of empirical software engineering, such as software
composition analysis (Zhao et al, [2023)) and architecture recovery
. Lefever et al. (2021) compare the results obtained by commercial
and open-source tools for technical debt detection, finding that they disagree
even for very common, basic measures such as lines of code (LOC). To the
best of our knowledge, no similar studies exist for tools extracting evolution-
ary aspects such as time series from the version-control history.

However, some studies highlighted differentiating aspects of specific steps
in mining pipelines. For instance, studies propose and compare heuristics for
developer identity matching (Goeminne and Mens| 2013; Amreen et al, [2020)).
Bertoncello et al. find that pull-requests are more accurate for mea-
suring contributions than commits to distinguish core and casual develop-
ers. Joblin et al. investigate differences in collaboration network
construction methods, community detection and core developer classification
metrics and evaluate correspondence with the real perception of developers.
Several authors study the agreement of developer networks
|2014; [Panichella et al, 2014) and communities (Bock et al, |2021b) constructed
from data extracted from different communication and collaboration sources.
Tymchuk et al. find that the combination of these channels is essential
to obtain a comprehensive view of a project.

For studies using machine learning subsequent to mining, comparisons
across different models and data sets are more common. For instance, Ma-
hadi et al. evaluate stability of conclusions from classifiers predicting
whether discussions are design-related on different data sets, finding that con-
clusion stability across domains and data sets is poor and degrees of freedom in
the analysis pipeline are high. This problem is likely to also apply to the data
extraction itself. Therefore, our work contributes an evaluation of conclusion
stability of different tools for this purpose.
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Replication studies Studies missing technical details as described above can
impair both, the possibility of reproduction, referring to the repetition of an
experiment by using the exact same setup, and replication, referring to the in-
dependent repetition of an experiment using a different setup
[2022b}; |Gonzalez-Barahona and Robles| [2023), possibly by the same team (in-
ternal replication) or a different team (external replication) (Shepperd et al,
with operational or conceptual changes (Gémez et al, [2014). As few
replication studies exist in the field of software repository mining, the conse-
quences of deviations in mining setups have not yet been fully evaluated.

The limited availability of replication studies in empirical software engi-
neering is discussed as a threat since decades (Basili et al, [1999; Robles|, [2010).
In general, advances in reproducibility engineering contributed significantly to
the improvement of study reproducibility in the last years (Gonzalez-Barahona
land Robles| 2023). For instance, Gonzalez-Barahone et al. (2012)) propose a
general process with related elements suitable for most mining studies to im-
prove reproducibility. The elements include data sources, their transforma-
tions, any extraction, processing and analysing methodology and study re-
sults. Mauerer et al. present best practices for reproduction packages
built as self-contained docker images, including all technical dependencies and
artefacts and being able to be executed in an automated pipeline, ideally by
a single dispatcher. Other approaches propose dedicated platforms designed
for reproduction purposes (Ghezzi and Gall, 2013} Trautsch et all [2018]). De-
spite these advances, replications of mining studies yet remain challenging, as
artefacts and implementations are often not published at all, only in parts,
or in form of a diverse (Trautsch et al, 2018; [Liang et al, 2024), possibly
unusable (Gonzalez-Barahona and Robles, 2023) or outdated, set of scripts,
libraries and tools. In deep learning, complex training and testing pipelines
add to the difficulty of replication (Liu et al, [2021} |Abualhaija et al, [2024).

Besides evaluating threats, replication studies offer the potential to increase
confidence in findings of previous studies (Shull et al, 2008), extend
[Trong and Bieman|, [2005), complement (Gonzalez-Barahona and Robles,[2012)
or refine (Bock et al, 2021a) their results and increase the impact of the
field (Liang et al, 2024). While replications are more common in areas such as
defect detection (Mahmood et al, 2018; [Di Penta et al, 2020; Niu et al, [2023),
their availability is still limited in the context of developer networks (Herbold,

et all 021).

As part of a mining hackathon at the Mining Software Repositories (MSR)
conference, a study from Eng et al. explored the replacement of a tra-
ditional data processing pipeline for chat message investigation by the mining
tool GRIMOIRELAB. By replicating a prior study, the authors evaluate techni-
cal aspects such as speed and data consistency, and, amongst others, find that
the change in pipeline led to different, but more precise results. Exploring the
impact of a tool adoption, this study is the most similar to ours focusing on
tool interchangeability.




8 Nicole Hoess et al.

3 Methodology

The aim of this study is to understand the impact of threats to validity due
to technical details such as design decisions and limitations in mining tool
pipelines, as motivated by Hoess et al. , on empirically derived results
and conclusions. For this purpose, we quantitatively evaluate the stability of
outcomes of four tools with the similar purpose of analysing software evolution
in terms of contributor activity, collaboration and artefact changes over time
at three levels: baseline and derived data, subsequently calculated metrics and
statistical analysis results and, finally, central implications.

3.1 Overall study design and research questions

The overarching question How does the technical implementation of tools affect
the validity and stability of outcomes in empirical studies? cannot be answered
in general terms for all studies and domains in empirical software engineering.
However, both positive and negative examples for data, results and conclu-
sion stability can be important indicators of the validity and generalisability
of methods and results in our field and give information on possible areas for
improvement. Therefore, to evaluate the agreement of tools in data, empiri-
cal results and conclusions, the study conducts three independent replication
studies, following the three-step approach depicted in Figure [I] and guided by
the following research questions:

@ Select mining tools and studies @ Mine subject repositories from @ Transform and analyse data in
for replication original studies replication studies
v E Data Comparison Replication Replication Replication
6\\\&/ extraction (a) (a) (a)
(a) S =SS S S
' R='=
I o~ (b) nEE [ Metrics | | | [ Metries | | | [ Metrics |
00 nswer udy
selection | RQ1 selection l’
| E S | Analyses | | Analyses | | Analyses |
111 =F
© v v v

| Answer

RQ3a

| Answer

RQ3a

| |
?7\ Answer RQ2 | Ale(fz‘;:r

Fig. 1: Overall study design.

RQ1: Which topics in empirical software engineering are typically driven by
mining software evolution from repositories and could be affected by threats due
to differences in tooling? We address this question by a lightweight literature
review to better understand the relevance and consequences of previous work
studying validity in mining software repositories. Knowing the most relevant
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and potentially vulnerable topics allows for an informed choice of representa-
tive tools and original studies for replication.

RQ2: To what extent can we observe discrepancies in the data obtained from
independent software repository mining tools? Each tool makes assumptions
on how to extract and process data, which can be influenced by configuration
parameters. Implicit assumptions and implementation decisions often remain
hidden from tool users. Building on our previous study, we are interested in
evaluating the existence of such uncertainties for two additional, well-known
mining tools. In this study, this step is important to first understand which
tool-specific preparations are required prior to conduct the replications as part
of RQ3. For instance, data extracted by each tool follows a different schema,
requiring tailored data processing. Knowing the technical reasons for discrep-
ancies in the extracted data also helps to locate where possible deviations in
subsequent analysis results and conclusions of the replications originate. This
allows for later summarising relevant technical factors of the analysis pipeline
that researchers and practitioners should implement and examine particularly
carefully to reduce uncertainties.

RQ3: To what extent are results and conclusions derived in empirical software
engineering research influenced by the observed discrepancies in the mining
tools and their outputs? This question concerns the actual replication of the
empirical studies selected as part of RQ1. After the tool-specific data process-
ing, we apply the same algorithms of the respective studies to all tool data sets
to ensure replication conformance. We quantify differences in metrics relevant
to each study’s outcome and evaluate whether the interpretation and overall
conclusion from these results are stable across tools. For the sake of clarity,
an overview of the replication studies is presented in Section We define a
sub-research question for each individual study to emphasise their relevance
as case studies rather than a means to derive a universal answer to this ques-
tion. This allows for first insights into the criticality of threats introduced by
mining tools in our field. Together with the technical aspects from RQ2, these
lessons can help others to more accurately assess the scope of validity and
generalisability of methods and results.

3.2 Lightweight literature review and study selection

Mining software repositories is a very broad field, making it impossible to com-
pare all studies and tools. We must therefore make restrictions in both tools
and studies, but at the same time select enough to cover a sufficiently broad
range of topics. To identify suitable replication studies and tools for comparison
as part of RQ1, we take inspiration from the guidelines on systematic liter-
ature reviews and mapping studies proposed Kitchenham et al. (2004; 2013))
and Petersen et al. (2015) and the lightweight literature review conducted by



10 Nicole Hoess et al.

Berger et al. (2020) to collect primary studies from the proceedings and ar-
ticles of seven high-ranked conferences and journals, summarised in table [I]
and investigate which research topics are frequently driven by mining tools.

Conference Acronym  Studies
Int. Conf. on Software Engineering ICSE 31
Mining Software Repositories MSR 229
Int. Con. on the Foundations of Software Engineering FSE 108
Int. Conf. on Software Analysis, Evolution and Reengineering SANER 95
IEEE Transactions on Software Engineering TSE 41
ACM Transactions on Software Engineering and Methodology TOSEM 73
Empirical Software Engineering EMSE 264
Total 841

Table 1: Investigated venues and studies matching our keyword search in the
literature review.

In the first phase, we compose a dataset of candidate studies published
between 2015 and 2024 in one of these venues using the query (“empirical
study” OR “data analysis” OR “evolution”) AND (“software repositories”
OR “version control system”). The keywords were selected in line with the
previous study to favour studies that primarily deal with the long-term and
comprehensive analysis of data from software repositories.

To identify domains of mining software repositories in which tools like ours
play a major role, we read each study’s abstract and research questions. If
required, we read the entire methodology and results sections to assign a max-
imum of three primary, secondary and tertiary categories to each study. The
categories are iteratively updated in the course of the literature review. The
resulting, annotated data sets of this phase are available in the supplementary
material.

In the next step, we quantitively evaluate the popularity of each field. The
results of this phase are summarised in Section to answer RQ1. These
findings allow for choosing three diverse, but highly relevant topics for the
replications in the final phase. As explained in Section [.I] studies are of
very diverse nature. Many of them are not suitable for replication with the
tools under study, for instance because they focus on aspects analysed with
other tool capabilities, such as constructing abstract syntax trees (ASTs),
or propose novel algorithms and evaluate their performance. Filtering such
methodological details in advance with an automated approach is not reliably
feasible. Therefore, we qualitatively evaluate the studies manually regarding
several criteria:

Studies we consider as particularly suitable to assess the impact of mining
threats are such that (a) mainly derive conclusions on best practices in software
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engineering based on statistical relationships in tool data and its derivates. We
exclude studies with a very high (b) proportion of qualitative manual and sub-
jective analyses. For instance, some very influential studies collect data from
repositories, but then manually inspect the obtained data to identify patterns
by methods such as card sorting, interviews or developer surveys to draw a
central conclusion. Since we are interested in exploring the effect of threats
introduced by tools, these studies would not address our needs, but instead
compare threats introduced by human processing. Finally, (c¢) tool or script
and data availability is essential for replication, as the absence of any code
would substantially increase the risk of accidentally introducing threats due
to an incorrect implementation of analysis pipelines. In this study, we further
focus on studies that can be reasonably replicated with version-control system
data only, as some of the study tools’ capabilities to mine other sources such as
mailing lists and issue trackers are partially limited due to maintenance issues.

In Section we shortly describe each of the chosen original studies with
the scope of our replication. Due to limited resources, we have to trade-off
depth and breadth of our replications by considering the relevance of indi-
vidual analyses for the overall conclusion and the effort for replication. When
replicating the selected analyses, we aim to minimise operational and concep-
tual changes to the original studies. Nevertheless, some of the original studies
incorporate a very high computational effort or anonymisation in their repli-
cation, which requires us to further limit the scope of our replications. We
clarify such additional limitations for each study in Appendix

Finally, the tools often rely on very specific methods that cannot be repli-
cated with all of the tools under study. In our prior work, we exemplary demon-
strated the process researchers and practitioners may follow to adjust a tool
or pipeline to produce the same results as another one. While we keep the
extensions and adjustments made exemplary for the tool Kaiaulu in our pre-
vious study, we do not adjust the other tools for this replication. Whilst this
may constitute a threat in other replications, we are interested in maintain-
ing exactly these uncertainties to evaluate their impact on the conclusions of
studies in an unbiased manner. However, we summarise significant known tech-
nical differences relevant to each specific study in Appendix[A71] because their
consideration is important for the interpretation of the replication results.

3.3 Tool selection

Our literature review quickly revealed that relevant studies and suitable tools
for replication are closely linked: Studies require specific tool capabilities and
tools are suitable only for a subset of studies, which requires us choose ei-
ther tools or studies in advance. To solve this causality dilemma, we take our
previous study as reference, which analysed the technical causes of discrepan-
cies in the data obtained by the mining tools CODEFACE and KAIAULU and
searched for additional tools providing the same or a subset of the supported
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data extraction and processing capabilities. These capabilities include (1) the
extraction of commits from version-control systems over the entire project
history, (2) the extraction of finer granularity code entities, such as files, func-
tions and interfaces, (3) the possibility to study socio-technical aspects by the
construction of developer networks. As further selection criteria (4), we con-
sider the tools’ active maintenance by the tool authors, as our prior study
showed that extensive discussions may be required to clarify technical details
and ensure the most suitable configuration.

Table [2 summarises candidate open-source tools identified during the lit-
erature review. All tools serve the purpose of evolutionary software analyses,
but pursue different goals and provide different functionalities. These capabil-
ities are determined to the best of the authors’ knowledge based on papers
and repositories. To support future users in tool selection, we added some
additional analyses, which are often used in literature.

Other more advanced analyses such as developer disengagement (Dey and
Woods, |2022)) and defect prediction (Nguyen et al, [2022)) are provided by some
of the tools, but due to resource and space constraints, we cannot address all
of them in our study. To support future studies helping to close this gap, we
provide a list of 111 open-source tools, their primary purpose, repository and, if
applicable, introducing paper in the supplementary material. The list excludes
tools which are closed-source, not (yet) or no longer available and includes
others commonly used but not introduced in the scope of our literature review
to focus on readily evaluable options.

From Table[2] four tools fulfil all of our criteria, namely CODEFACE, GIT2NET,
GRIMOIRELAB and KAIAULU. Three additional tools support all the parsers
and analyses from criteria (1-3), but are not actively maintained. Therefore,
we choose the first four tools and outline their pipelines to illustrate similar-
ities and differences, focusing on analyses relevant to the subsequent baseline
data comparison and replication studies:

Codeface: Starting as an industrial software analysis tool from Siemens AG,
CODEFACE evolved to a research tool for socio-technical aspects in software
development. One of its key features is the efficient mining of Git repositories
for evolutionary analyses. Figure [2| shows the informal components and steps
involved in this process: Codeface supports different analysis modes to build a
MySQL database of commits, persons, mails, and fine-grained changes affect-
ing entities such as files, overarching features or functions. During analysis,
the tool automatically constructs temporal, directed and weighted developer
networks from jointly edited entities and detects communities (Joblin et al,
2015). CODEFACE also offers a code complexity model for effort estimation.
Built for industrial scales, CODEFACE implements parallelisation at multiple
levels and provides a dashboard designed for managers. The tool sets meaning-
ful defaults for aspects such as file filtering, entity parsing, identity matching
and network construction and hides its complexity in a simple command-line
interface (CLI). However, configuration files enable users to modify few parts
of the pipeline, for instance the time interval length or entity granularity for
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analysis. In the database, all information is related to one of the release ranges
resulting from the time intervals. For reproducibility, CODEFACE provides a

Docker image with all dependencies.

Tool VCS  Entity Mail Issue Net. Comp. AST Active

CODEFACE! X X X X X X = 2010—now
CROSSMINER? X X X x X X - 2013-2019
Dicarr? X x - - - x - 2014-2021
DoMiNOEs? X x X x X - x 2014-2020
GIT2NET® b'q b'q = = b'q X = 2019-—now
GHTORRENT® x - - - - - - 2013-2019
GRIMOIRELAB” X X X X X - 2015-now
KAIAULU® b'q X X X = = 2020-now
LAGooN? X x X - X - - 2021-2022
LiBVCS4s10 x - - x - x - 2018-2024
Lisall X - - - - - x 20162019
PANDORA!2 x - - x - - - 20202021
PYDRILLER!3 x x - - - x - 2018-now
SMARTSHARK!  x X X X - X X 2015-now
TopPLEET!® X - - x - x - 2019-2021

Table 2: Tools for mining software repository evolution with similar capabil-
ities: parsing of commits (VCS), finer-grained code entities (Entity), mailing
lists (Mail), issues from bug trackers and advanced analyses including de-
veloper network construction (Net.), code complexity analysis (Comp.) and
construction of abstract syntax trees (AST).
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Fig. 2: Informal overview of structural components of the mining tools CODE-
FACE, GIT2NET, GRIMOIRELAB and KAIAULU. White boxes indicate fixed
parts of the data extraction pipeline, while coloured boxes visualise config-
urable steps. Although all tools perform the same analysis steps, their inter-
action and data structure differ.

Codeface has been widely used to explore organisational structures
such as hierarchy (Joblin et al, [2023), developer roles such as
core and peripheral (Joblin et al, [2017a; Bock et al, 2023) or software ar-
chitects (Picha et al, 2017), community structures and their evolution
2021Db)). CODEFACE4SMELLS (Tamburri et al, [2021)) is an expansion tool
to detect community smells as sub-optimal patterns of social organisation. The
prevalence, prediction (Palomba and Tamburri, 2021} [Almarimi et al, 2020)
and potential causes including gender (Catolino et al, [2019)), cultural and geo-
graphical diversity (Lambiase et all [2022)) of these smells have been intensively
studied along with their impact (Tamburri et al, [2021; De Stefano et al, 2020)
on aspects such as software quality (Palomba et al, [2021} [Eken et all 2021) and
maintainability (Stefano et al, 2022)). Other studies use CODEFACE to track
development process conformance (Hunsen et al, 2020} [Bock et al, [2021a)), de-
sign community-aware software forges (Tamburri et all 2020; Tamburri and
Palomba|7 , analyse characteristics for successful projects (Joblin and
@ and evaluate the impact of socio-technical congruence on soft-
ware quality (Mauerer et al, [2022a)).

git2net: GIT2NET was specifically designed for developer network construction
at line granularity. GIT2NET detects changes in exact line ownerships and uses
text mining to extract textual information from files. To mine the baseline
data for network construction from Git repositories, GIT2NET relies on the
mining tool PYDRILLER and stores all information related to commits, code
editing operations and persons in its SQLite database (Gote et al, 2019, [2021)),
as shown in figure [2} Besides the construction of directed co-editing networks
for user-defined or automatically determined time windows, GIT2NET also sup-
ports bipartite graphs and projections connecting developers who contributed
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to the same files and code editing paths (Gote et al, 2019, [2021). For identity
matching, GIT2NET integrates GAMBIT (Gote and Zingg) [2021)), a tool disam-
biguating developers based on their name and e-mail address similarity. To
measure code complexity, GIT2NET relies on the external tool LIZARD
. Built for large-scale mining, GIT2NET internally implements paral-
lelisation. The tool provides a CLI for standard analyses and an API for more
advanced, user-defined pipelines (Gote et al, 2019} [2021} |Gote|, |20224). In this
study, we use the API for increased flexibility and replication conformance.

In previous work, GIT2NET was used to detect and optimise interactions of
team member roles (Zingg et al, 2023) and to analyse the impact of overhead to
coordinate with other developers on individual developers’ productivity
2021)), illustrating the validity of Brooks’ law (Gote et al, [2022). In
the context of development operations, future work will employ GIT2NET to
explore the effect of specific GitHub actions such as code review bots on team
collaboration structures (Roseler et al, 2023).

GrimoireLab: Introduced by the company Bitergia, GRIMOIRELAB was de-
signed for the free, open source software (FOSS) community to meet indus-
trial requirements in aspects such as automation, configurability and diver-
sity of metrics (Duenas et al, [2021; |Gonzalez-Barahona et al| [2022). PERCE-
VAL (Duenas et all [2018) is GRIMOIRELAB’s unified API which extracts data
from diverse sources such as git repositories, code reviews, mailing lists, issue
trackers, project wikis and chats with actually non-uniform access to a stan-
dard format. GRAAL (Cosentino et al, [2018) enriches the data from Perceval
and allows for additional analyses such as evaluating source code complexity,
also measured by lizard. In GRIMOIRELAB, output of all analyses is stored in
an ElasticSearch database. Analyses focusing on specific information such as
commit activity or file changes are isolated in different indexes for efficient
querying. Users can specify the desired analyses in configuration files. After
analysis, results can be inspected on a Kibana dashboard, where users can
visualise bipartite networks and projections from diverse information in the
ElasticSearch backend, such as developers, files or entire repositories, as il-
lustrated in Figure 2] While GRIMOIRELAB, contrary to other tools, is able
to merge information across projects (Duenas et al, 2021; |Gonzalez-Barahona
, for instance by matching developer identities with the SORT-
INGHAT component (Moreno et all 2019)), users can also apply filters in the
frontend for diverse interests. GRIMOIRELAB optimises computational efforts
by means of parallelisation with components such as MORDRED and minimal
interactions with data sources, for instance in case of processing only new
items when refreshing data. To promote reproducibility, GRIMOIRELAB pro-
vides multiple docker images for its components (Duenas et al, 2021; Gonzalez-|
[Barahona et al, [2022).

Research based on GRIMOIRELAB designed and developed tool extensions,
for instance a community dashboard to overview team diversity and devel-

oper turnover (Guizani et al, [2023), commit activity forecasting (Decan et al
2020) and bot detection (Chidambaram and Mazrae) 2022). Besides tailored
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analyses implemented with the Bitergia analytics platform for customers in-
cluding the Apache Software Foundation, GitLab, Google, WikiMedia, and
others, GRIMOIRELAB has been widely adopted to optimise software develop-
ment processes. For instance, data and visualisations gathered by GRIMOIRE-
LAB and its predecessors were used to monitor project health (Goggins et al
2021)), improve code review processes (Izquierdo et all [2019; [Tecimer et al
2021), automate security analyses for sensitive software applications (Son-|
nekalb et all 2020)), facilitate effort estimation in open-source projects (Robles
et al, |2014) and study the impact of and best practices for continuous integra-
tion (CI) (Zhao et al, [2017). The tool was further used to gain insights into
challenges of reusing pre-trained deep learning models (Taraghi et al, [2024)).
In socio-technical research, GRIMOIRELAB was used for analyses of devel-
oper emotions and affective states (Claes et all 2018a; Kuutila et al, [2018), to
study contributors’ behavioural patterns outside regular working hours
2017), identify paid developers (Claes et al, [2018D)), explore the effect
of stronger formality on development-related risks (Gaughan et al, |2024) and
study engagement of and collaboration across different teams and organisa-
tions in open- (Newton and Fiore, 2023; Robles et al, [2024) and inner-source
projects (Izquierdo-Cortazar et all 2022). Other studies analysed developer
onboarding (Foundjem et al, 2021alb) and factors influencing community sus-
tainability together with its effect on other aspects such as productivity and
quality (Alami et al, 2024, [2025). GRIMOIRELAB was also used in studies
targeting code contributors and users, for example ranking open-source repos-

itories based on quality, popularity and maintainability (Hasabnis| 2022).

Kataulu: |Paradis and Kazman| (2022) built KKAIAULU as a tool for empirical
software engineering research, following capabilities and design principles ob-
served in other, often retired, mining tools and focusing on understandability
and ease of use (Paradis et al, 2024b). As shown in Figure [2| the analysis
pipelines starts with commit parsing, where users must specify several con-
figuration options regarding file filtering. Contrary to the other mining tools,
KAIAULU stores data in CSV files instead of a database. Additional analy-
ses such as the detection of functions and classes are performed on demand
with user-provided settings. Identity matching in KAIAULU is optional and by
default only performed within a single column of a single table. In our replica-
tions, we use the scripts from our previous study to perform identity matching
in both author and committer columns across all tables, as this behaviour is
more similar to the original studies. Subsequent network construction supports
multiple modes, for instance connecting developers to commonly edited files or
entities by bipartite graphs and to each other by bipartite projections. Alter-
natively, temporal networks connect developers in the order of contributions
to the respective artefacts. Edge weights in KAIAULU’s graphs are aggregated
by weight schemes chosen by the user. To support different needs, KAIAULU
provides both, a CLI and an API (Paradis and Kazman| [2022). In our work,
we rely on the API to leverage and enhance KA1AULU’s flexibility for higher
replication conformance.
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In practice, KATIAULU has been used to measure process compliance with
requirements at NASA (Paradis et all [2023). Research studies extended KA-
IAULU to detect social smells (Paradis et al, 2024b]), which were later examined
in relationship with design smells (Mumtaz et al, |2022b)) and to evaluate the
usage and impact of GitHub features on socio-technical aspects of software
projects (Mumtaz et al, [2022a)).

As illustrated in Figure 2] all tools perform similar analysis steps, but
the order and configurability differ. From a higher level of abstraction, the
implementations of individual steps are also similar. For example, CODEFACE,
GIT2NET and KAIAULU all use the git blame to identify code entities. Tool
users may therefore expect very similar results across tools and assume that
switching tools is possible without negative consequences.

3.4 Baseline data comparison

Evaluating differences in the baseline data extracted by the four mining tools
gives us a first impression of uncertainties potentially influencing the results of
a study. For the comparison to answer RQ2, we analyse established software
projects with the most similar configurations of the tools. Due to the large
number of possible parameter combinations, we focus on combinations used in
the selected original studies for replication, which we introduce in Section 3.5
From all software repositories analysed in this work, we select a set of diverse
subject projects with different characteristics regarding application domain,
programming languages, age of the project and team size.

Project Domain Language  Commits Team LOC[k] t[m]
BIrT Data visualisation Java 32,303 236 2,538 9
CONDUCTOR Orchestration Java 2,141 344 149 9
Dianco Web framework Python 21,786 3,121 513 3
FLINK Stream processing Java, Scala 22,567 1,958 1,597 9
POSTGRESQL DBMS C 39,375 60 1,111 3
QEMU Hardware virtualiser C 41,947 2,707 1,000 3
U-Boor Boot loader C 33,496 3,089 1,261 3
WINE Compatibility layer C 108,690 1,854 3,334 3

Table 3: Descriptive statistics of subject projects considered in the baseline
data comparison. Depending on the replication study a project was selected
from, configuration parameters such as the time window size ¢ in months differ.
The statistics refer to the state checked-out in the original studies.

Table [3| provides an overview of the subject characteristics. The primary
language and LOC are determined via croc (Danial, 2025). Projects with
primary languages not yet supported by KAIAULU were excluded from the
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set of projects, because the comparison of entities and developer networks
would be misleading. Usually, the quantitative measures such as the number
of developers are reported by tool-specific measurements in empirical studies.
Since evaluating discrepancies in these metrics across tools is part of this study,
we instead report commits and developers extracted directly via git, without
additional processing such as identity matching, to avoid bias.

After data extraction with the mining tools, we calculate a set of very
fundamental measures which are often the basis for more complex metrics in
literature. These measures include the number of commits, files, code enti-
ties and developers. We compare the metrics quantitatively and visualise the
results as time series. In our previous study, we focused on a technical in-
depth comparison and adjustment of two tools. In this study, we only evaluate
whether discrepancies in baseline data also exist for other tools and focus on
studying the actual stability of results and conclusions across tools in subse-
quently conducted empirical studies.

3.5 Original studies and scope of replication

To measure the impact of discrepancies in tools and their extracted data on em-
pirical results and conclusions, we replicate three representative studies from
the literature review motivated in Section [3.2] This section briefly summarises
the intention and key findings of the studies to derive a relevant research ques-
tion for each study, which we answer with the help of data from the four mining
tools to evaluate conclusion stability across tools. More detailed descriptions
of the studies and limitations in the scope of our replications can be found in

Appendix [A7T]

— The first study “Classifying Developers into Core and Peripheral: An Em-
pirical Study on Count and Network Metrics” from Joblin et al. (2017al)
addresses the field of collaboration and coordination, focusing on organisa-
tional roles in open-source software projects. The authors evaluate the va-
lidity and agreement of established count-based metrics and novel metrics
based on the structure of developer networks to classify contributors into
core developers, responsible for coordination and major workload, and pe-
ripheral developers as casual contributors. Their quantitative and qualita-
tive evaluations indicate that the level of agreement always exceeds random
agreement, leading the authors to conclude that all proposed metrics are
overall consistent and agree with actual developer perception. In addition,
they find that core and peripheral developers exhibit different hierarchical
positions in the network structure, which are consistent over time. From
this study, we replicate two central analyses to answer RQ3a: Is the level
of agreement of core and peripheral developer operationalisations based on
count and structural metrics and the hierarchical embedding of developer
roles consistent across tools?

— The second study “Big Data = Big Insights? Operationalising Brooks’
Law in a Massive GitHub Data Set” from Gote et al. (2022)) represents
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the field of software maintenance, addressing developer productivity. In
software engineering, Brooks’ law states that adding manpower to a late
software project makes it later, which is similar to the Ringelmann effect in
psychology describing the phenomenon of productivity linearly decreasing
with team size. As different empirical software engineering studies report
conflicting results, the authors aim to examine threats and causes through
a large-scale mining study exploring the relationship between numerous
productivity and collaboration metrics through correlation analysis and
regression modeling. The results confirm a negative relationship between
team size and productivity in all cases and additionally indicate an optimal
team size of 7 to 19 members. This leads the authors to conclude that the
Ringelmann effect also applies to software engineering, confirming Brooks’
law. We adopt the central analyses from this study to answer RQ3b: Is the
relationship between team size and productivity consistently negative across
all tools, corresponding to Brooks’ law?

— The third study “Impact of Developer Turnover on Quality in Open-Source
Software” from Foucault et al. (2015) addresses software quality, in particu-
lar patterns of software defects. The authors investigate the relationship be-
tween software quality and developer turnover, describing the phenomenon
of new developers joining and established developers leaving a development
project in the context of open-source software. Previous studies in industry
suggested a negative correlation. The authors modularise the source code,
calculate multiple turnover rates and finally correlate it to the bug density
per module. The results indicate that the role of turnover as a common
phenomenon in open-source software projects differs from the one in indus-
trial settings. Based on the correlations, the authors conclude that external
turnover at project level negatively impacts software quality in open-source
settings, while internal turnover is not problematic. With this being one of
the central findings, we replicate the required analyses to answer RQ3c:
Is the relationship of internal and external turnover and software quality
consistent across all tools, indicating that external newcomer activity neg-
atively tmpacts module quality?

4 Results

In the following, we describe the main results from the study phases shown in
Figure [T} the literature review, the baseline data comparison and, finally, the
three replication studies exploring the actual impact of differences between
tools on empirical study results and conclusions. Details on the methodology
of each study can be found in Appendix For better understandability, we
limit metrics, tables and visualisations to the most meaningful examples. The
full data are available on our supplementary website!S.

16 Supplementary website: [https://Ifd.github.io/emse2025.github.io/


https://lfd.github.io/emse2025.github.io/

20 Nicole Hoess et al.

4.1 Lightweight literature review

As the first step of our study, the literature review shows that many of the
central issues in software engineering are driven by mining software repositories
with appropriate tools. Figure [3] illustrates the popularity of each primary,
secondary and tertiary field. Out of all considered studies, 148 (18%) introduce
new tools, which emphasises their essential role in the field.

In the context of our replications, we focus on the most active primary
research areas, which include software maintenance, software quality, MSR
techniques, development support and automation and collaboration and coor-
dination in descending order. MSR techniques mainly comprises studies tar-
geting the development of tools for specific purposes, such as software package
analysis in containers (Zerouali et al, 2019)), the creation of data sets, for in-
stance from issue trackers (Montgomery et al, |2022)), or the analysis of threats
to validity, for example in identity matching (Zhu and Wei, 2019). As these
studies do not derive conclusions or best practices, we exclude them from
our replications. Similarly, development support and automation targets the
implementation of novel, often machine-learning-based algorithms to help de-
velopers in their daily work by generating code (Ciniselli et al, 2021), commit
messages (Zhang et al, 2024), reviews (Fan et al, 2025), release notes
20244) and other documentation (Gao et al, |2023)), providing access
to enriched knowledge 2019), or recommending libraries
and artefact changes (Rolfsnes et al, [2018), which requires different
capabilities than provided by the tools under study. Therefore, we focus on
the remaining most popular topics:

Collaboration and coordination Coordination is essential in global open-source
projects, which are a primary subject in empirical studies. Popular issues com-
prise the detection of organisational structures including developer roles (Pinto
let all |2016} Milewicz et all 2019; [Jiang et al, [2024)), hierarchical and non-
hierarchical structures (Joblin et al, |2023), developer reputation @
et al, [2019)), developer communities (Kannee et al, 2023)), their stability (Sharif
et all 2016) and future evolution (Wang et al, [2022; Zhang et al, [2025)). Often,
analyses are driven by the construction of developer networks at different levels
of granularity, for instance representing collaborations across projects in entire
software ecosystems (Lamba et all 2020; [Zhang et al, [2020]) or across artefacts,
communication and code entities within an individual software project
let al, 2020; Maddila et al, 2022; Bock et al, [2021D).

Communication between developers can provide advanced insights into
technical issues (Croft et al, [2021)) or social sentiments (Calefato et al, 2018)
and thus allows for identifying areas for improvement at the technical and
process level. The analysed means of communication range from mailing lists
to chats (Alkadhi et al, [2017; Mezouar et al, |2022), GitHub issues and pull
requests (Brisson et al, 2020). A special interest is in mining and modeling
discussion topics from Q&A websites (Kamienski and Bezemer] 2021)) such
as Stack Overflow (Beyer and Pinzger, 2016; Uddin et al, 2021). Earlier, pull-
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requests were also studied as a mechanism supporting collaboration (Zhu et al
2016)), similar to other means such as pull requests’ reactions (Batoun et al
2023) or tags for social coding (Foundjem et al, [2022]).

Other studies analysed and modelled developer expertise, for instance to
support task assignment (da Silva et al, 2015; [Milano and Cafeol 2024) or the
matching of competencies and projects (Fang et al, 2023)). Similarly, studies
derived best practices for onboarding by identifying factors attracting new
developers (Gautam et al, [2017)), studying how to mentor and motivate them
to stay in projects in the long-term (Norikane et al, 2017) and identifying
suitable tasks for newcomers (Rehman et al, [2022; |Santos et al, [2023)).

Studies also investigated the compliance with human values, for instance
regarding privacy and inclusiveness of software products (Nurwidyantoro et al,
[2023; [Khalajzadeh et al, |2023)), team diversity (Rossi and Zacchiroli, 2022),
measures to promote ethical behaviour of developers (Tourani et al, [2017; Win|
and bias in large language models (Treude and Hatal, [2023). In
addition, human factors such as individuals’ coding habits were studied in the
context of software development (Avgustinov et all 2015).

Software maintenance Research on software maintenance focuses on diverse
subdomains reaching from overall process monitoring to technical topics such
as change impact analysis. The largest sub-area focuses on change patterns
and evolution, studying the representation of code changes
[2021} [Lin et al, 2023), grouping related (Jiang et al, 2015) and classifying
frequent types of changes (Kiehn et all 2019; |Zeng et al, 2024]), analysing
maintenance efforts of specific programming constructs (Zampetti et al, [2024)),
code clones (Mondal et all [2018]) and across components and projects (Arabat
land Sayaghl [2024) to derive best practices and support developers in their
daily work, for instance by untangling tangled commits .

Estimating maintenance and integration efforts is a challenging undertak-
ing in continuously evolving software systems. Therefore, studies analyse pat-
terns in the context of open-source projects (Jiang, 2015; Robles et al, [2022)
and company settings to build models supporting teams in this task (Dehghan
2017). Both open and closed source projects depend on the activity and
productivity of their developers. Several studies analyse activity patterns of
developers (Calefato et al, 2022) and companies (Zhang et al, 2021)), promot-
ing and hindering factors (Scholtes et al, |2016; Wessel et al, 2023) as well as
measures (Oliveira et al, |2020) and models for team (Wang et al, 2022) and
individual productivity (Kuutila et al, 2021 to optimise development efforts.
Especially for complex maintenance activities, collaboration of developers is
often a crucial factor (Zhou et al, [2017; |Arabat and Sayaghl 2024).

Another field related to evolutionary analyses is software change impact
analysis (CIA), which allows for identifying ripple effects during maintenance.
Studies investigated the relationship between logical and semantic coupling
with co-change (Rolfsnes et al, 2016; |Ajienka et al, [2018) to identify artefacts
affected by a specific change (Nejati et al|2016; Borg et al, [2017)). Evolutionary
couplings were further used to recommend changes (Rolfsnes et al, [2018).
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Similarly, studies predicted likely future changes, for instance transformations
at code-level such as repair and refactoring or at commit-level for predicting

whether a commit is prone to reversal (Yan et al, [2019)) or conflicts (Accioly
2018)). Merge conflicts and their resolution were also explored by other

studies investigating the frequency of merges and proposing
advanced merge strategies (Seibt et all |2022)), with some studies focusing on
the interaction with refactorings (Mahmoudi et al, 2019; Ellis et all 2023).

In many of these analyses, sequences of code changes are represented by
ASTs (Stevens et al, |2019; Tsantalis et al, |2022) and more coarse-grained
code structure trees (CSTs) (Silva et al, 2021)), which are also an important
means in detecting and analysing refactoring practices (Muse et al, [2023).
For instance, studies analysed reasons for refactoring, which include increased
reusability of code (Silva et all [2016). Others proposed tools to automate
and support refactoring-related operations by recommending refactorings for
feature requests (Nyamawe et al, 2020) and removing obsolete comments
. At the process level, studies investigated the frequency and tactics
of refactoring 2023)).

Refactoring is often applied to reduce technical debt, which can threaten
maintainability. A popular factor contributing to technical debt are code smells NTu—
, which are characterised as poor implementation choices and
for instance introduced by code cloning (Wagner et al, 2016; |[Wu et al, 2024b)).
Besides their analysis in diverse contexts such as software architecture, de-
sign (Oliveira et al, [2023) and quality (Wang et al, [2020; |Oishwee et all, [2022)),
studies also introduced novel types of smells, for instance specific to Docker-
files or tests (Peruma et al, 2020). Another field of interest is
the detection and categorisation of self-admitted technical debt in code com-
ments (Huang et all |2018} |OBrien et al, 2022]).

Besides technical debt, code reuse and its maintenance practices have been
studied in the context of software families with divergent forks of the same
code base (Businge et al, 2022; [Michelon et al, 2022) and shared commits
across repositories (Mockus et al, 2020). For instance, studies investigated the
impact of forking on community participation (Rastogi and Nagappan, 2016)
and forking-related challenges such as keeping reused code up-to-date
. Updating software is a common issue also researched in other
contexts such as deprecation detection in documentation
or Android apps (Li et al, 2020; Wen et al, [2024). Related studies explored
best practices to migrate libraries in case of outdated dependencies
let all 2018; [He et all 2021a) and in terms of frequencies of upgrades and
downgrades, for instance in case of machine learning libraries (Dilhara et al
2021)). Other studies in the field of dependency management explored methods
to support developers by detecting API breaking changes (Brito et al, 2018)
and incompatibilities (Claes et al, [2015), comparing libraries (El-Hajj and
or recommending suitable library alternatives .

Software dependencies also play a crucial role in correct builds during
software integration, where methods were proposed to detect unspecified de-
pendencies (Bezemer et al 2017). With software builds as a central part
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of development operations, related research interests are in optimising build
times (Ghaleb et al, [2019; |Gallaba et al, 2022)), detecting build changes (Macho
et al,|2017) and understanding (Zolfagharinia et al, 2019), predicting (Santolu-
cito et al, [2022)) and resolving build failures (Vassallo et al, 2020). To further
improve continuous integration (CI) and deployment activities, studies also
explored common patterns in CI specifications (Sidhu et al| 2019} |Gallaba and)
2020) and the evolution (Golzadeh et al, 2022) and impact of CI
practices (Rahman et al, 2018; Bernardo et al, 2023) in large-scale mining
studies. With increasing popularity of software with machine learning com-
ponents, another sub-field focuses on machine learning operations, analysing
its characteristics (Bernardo et al, 2024) to improve current practices
with a special focus on companies (Bendimerad et al, 2023). As
software bugs are inevitably, another field of research focuses on best practices
and supporting tools (Guo, [2016; Hashimoto et al, 2018) for debugging and
logging (Chen and | |Jack; [Li et al, |2018). Automating software engineering

tasks (Erlenhov et al, |2020]) such as dependency management (Rombaut et al
2023) with bots is another field of interest. Detecting such bots is also an

important step in many mining pipelines (Ma et al, [2021]).

Software quality Ensuring and improving software quality is a central field of
software engineering. A major interest in mining software repositories is in
novel methods for identifying and localising software defects, ideally just-in-
time when a change is performed and generalisable across
projects (Zhou et al, |2018)). Approaches incorporate historical commit infor-
mation to improve localisation performance (Wen et al, |2021)). As a funda-
mental method for defect-related research at commit level, studies proposed
and evaluated variants and extensions (Bludau and Pretschner, [2022)) of the
SZZ algorithm first proposed by (Sliwerski et al, |2005) for the identification
of bug-introducing commits (Fan et al, |2021) and their mapping to bug-fixing
commits .

In addition, predictive models were developed to classify bug-prone code
components (Palomba et al, 2019). Studies often rely on supervised machine
learning (Pornprasit and Tantithamthavorn, 2021} INi et al, [2022)) and eval-
uate different sets of features, which can include code metrics, for instance
measuring cognitive complexity (Alqadi and Maletid, 2020)), or socio-technical
information on developer-specific editing patterns (Di Nucci et al, 2018) and
communication metrics (Tourani and Adams| [2016]). As defect prediction re-
mains a challenging task, studies also investigate factors contributing to the
complexity of this problem and indicate research directions
for future approaches. To reduce the problem, studies also investigated defect
prediction models for specific types of bugs (Sellik et al, 2021) and investigate
patterns of defects in specific application domains (Wan et al, |2017; Rahman
and their co-occurrence with other factors (Foucault et al, 2015)).
For instance, socio-technical information on developer collaboration and com-
munication was found helpful in the identification of buggy commits
and static analysis (Sattler et al, [2023). Automatically ensuring
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good coding practices and fixing introduced defects is another goal of research.
For this purpose, studies explored actions to correct violations
or fix bugs (Robati Shirzad and Lam), [2024) and proposed and evalu-
ated techniques for automatic program repair (Durieux et al, 2019; Huang|

et al 2021).

As a special type of software defects, other studies detected (Ponta et al
2020)), categorised (Mazuera-Rozo et al, [2019; Rahman et all [2023) and pre-

dicted software vulnerabilities. The automatic detection of vulnerability patch-
ing commits is another field of research aiming to improve timely updates and
security in the software supply chain (Sawadogo et al, 2022; Hommersom et al,
. Studies also explored reasons for practices of developers introducing
security risks (Rahman et all |2022; Tannone et all [2023) and patterns of vul-
nerability prevalence (Verdi et all 2022 |Almanee et all [2021)), their life cycle
and propagation (Alfadel et al, [2023). Other studies used mining techniques to
analyse the impact of specific cyber attacks (Davis et al, 2018)) and proposed
best practices for developers to counterfeit them (Santos et al, [2022)). To eval-
uate security in open-source projects, studies also explored the suitability of
possible metrics 2020)).

Besides defect detection techniques, code reviews are another common
means of quality assurance in software development processes
2015)). Several studies investigated common practices in this process, for
instance regarding review coverage, participation and reviewer expertise
. To provide guidance for contributors and optimise processes,
other researchers investigated factors leading to patch acceptance (Baysal et al
or reviewer participation, for instance finding that human factors play
an important role (Ruangwan et al, 2019). To assist developers during review
processes, studies identified best practices to write useful reviews
2015)) and proposed automated methods for review comment generation
ley and Jones, 2018), recommending suitable reviewers (Zanjani, [2016)), and
linking interdependent reviews of competing solution approaches (Hirao et al,
. To ascertain process conformance, studies also developed methods to
track the evolution of code changes with their corresponding review com-
ments (Ramsauer et al, [2019).

To measure and monitor different aspects of code quality, studies proposed
and evaluated metrics to measure readability (Piantadosi et al, 2020), regu-
larity (Gil and Lalouche, 2017), complexity (Meijer et al, 2022; Alqadi and
Maleticl 2020)), and artefact-based change metrics (Reck et al, [2023)), function
usage (Grotov et al, 2022) and smells (Jebnoun et all |2020) in various fields of
application, for example in quality assessment of generated code
2022). Other structural code metrics were found helpful in identifying
candidate classes for refactoring (Nikolaidis et al, [2023)). Studies also explore
the validity of code metrics, for instance regarding their agreement (O Cinnéide
et al, 2017) or correlation with other metrics such as size (Gil and Lalouche)
2017; |Chowdhury et all 2022)) and social factors including team size (Youssef
and Capiluppi, 2015). Other studies used statistical tests, for example to mea-
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sure the impact of code metrics on bug density (Reck et al, [2023)), which could
help in identifying bug-prone code areas.

Software tests are another important means in quality assurance. To sup-
port testing practices, researchers explored the benefits of integrating historic
code changes in regression test selection (Soetens et al, 2016} [Kauhanen et al,
2021) and proposed novel methods to detect flaky tests (Parry et al, |2023)).
Other work explored patterns in CI test failures (Chen et al, [2023) and in
the co-evolution of production and test code (Wang et al, [2021)), including
the development of tools for their automated linkage (White and Krinke,
2022). Studies also use software repositories as subjects during evaluation of
test suites, for instance for performance assessment. Other approaches aim to
improve performance of software systems by automatically identifying code
changes responsible for performance regressions (Luo et al, |2016) and learning
and predicting software performance using machine learning (Gong and Chen),
2022). Related studies explored efficient and inefficient programming patterns
to increase performance and energy efficiency (Rua and Saraiva, [2023)).

Answer to RQ1 Which topics in empirical software engineering are typ-
ically driven by mining software evolution from repositories and could be
affected by threats due to differences in tooling?): Besides the development
of automation and mining techniques, most tool-driven insights are gained
in the fields of software maintenance, software quality and collaboration
and coordination. Other, slightly less popular fields include software archi-
tecture and design, software usage and software governance, respectively.
All of these fields can potentially be affected by threats in mining tools, as
they rely on complex, very specific analytical capabilities, which inherently
require numerous implementation decisions.

4.2 Comparison of baseline and derived data

In previous work, we compared the baseline data of two mining tools—CODEFACE
and KAIAULU—and examined some of the factors which are responsible for dis-
crepancies in technical detail. Based on these results, we evaluated the effort
required to adjust one of the tools to match the results of the other. This
section summarises the most important findings from this initial study and
demonstrates the generalisability of the observed threats to validity for two
additional mining tools—GIT2NET and GRIMOIRELAB.

A fundamental task of mining tools that capture evolutionary software
development processes is the consistent extraction of commits and related
information such as edited files and developers. The simple counts of these
units often form the basis for more complex metrics in the course of a study
and should therefore not differ between tools. In figure[d] however, we illustrate
that, even with similar tool configurations, the time series for basic metrics
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such as the number of commits, developers, edited files and edited entity blocks
can vary significantly across four well-known mining tools.

As in our previous study, we find that the differences between tools vary
depending on project characteristics. In addition, the plot reveals differences
due to the analysis setup. As explained in section [3.4] we choose projects from
the replication studies and analyse them in different time windows according
to the respective original setup: From the study of Gote et al. 2022, we chose
the subject projects Birt, Conductor and Flink and analysed them according
to the original work in nine month time intervals, while the remaining projects
as part of the study of Joblin et al. (2017a) were analysed in ranges of three
months. This allows for evaluating two different time window sizes in the
comparison. We note that the aggregation using larger time windows makes
differences in the baseline data appear more pronounced.

The commit time series as a basis for all other metrics are often signifi-
cantly higher for GRIMOIRELAB compared to the other tools. GRIMOIRELAB
collects commits from all branches in a GitHub repository, while the other
tools analyse a single locally checked-out branch of a Git project. This has sig-
nificant impact in subject project PostgreSQL, where commit activity reaches
a maximum in most recent time windows, while the other tools indicate an
overall decrease. In our previous study, we identified the order of filtering op-
erations, commit parsing and commit storage as further factors for variations.
The file time series further emphasise the effect of file filtering. For instance,
GRIMOIRELAB identifies more than twice as many files as CODEFACE in sub-
ject project Conductor, because CODEFACE ignores changes in documentation
or lock files and only stores file information if a code entity in the respective
file has been changed. KAIAULU provides configuration options to filter file
endings relevant to the user. GIT2NET ignores binary file changes. Developer
identities usually appear consistent across tools. One of the outliers is subject
project Birt, where GRIMOIRELAB’s identity matching algorithm assigns mul-
tiple identities to developers sharing the same full name, which are merged by
the other tools.

Finer granularity analyses detecting related code entities are only sup-
ported by CODEFACE, GIT2NET and KAIAULU. In the previous study, we fo-
cused on the set of uniquely identified named entities. As GIT2NET does not
capture the name of a function and splits entities into blocks in its database
schema, we present the total number of identified blocks, including potential
duplicates, in this study. The time series indicate that in almost all cases, the
number of blocks identified by GIT2NET is orders of magnitude higher than
for the other tools. For instance, in subject project Django, the highest value
for changed blocks is 68,952 in range 24 according to GIT2NET, while for the
same time interval, the number is only 2,038 according to CODEFACE and
1,070 according to KAIAULU. CODEFACE summarises the changed blocks per
named entity and commit, while KAIAULU distinguishes different blocks like
GIT2NET. Despite KAIAULU being more similar to GIT2NET in this aspect from
a technical implementation perspective, CODEFACE’S outcomes are more sim-
ilar to those of GIT2NET, as other factors interfere. As we found in previous
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Fig. 4: Time series of simple count-based metrics (number of commits, files,
developers and finer-grained code entity blocks) calculated based on the git
log extracted by CODEFACE, GIT2NET, GRIMOIRELAB and KAIAULU with the
most similar configurations for the respective replication. Lines are plotted
with a small offset to visualise overlapping lines.
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work, the definition and parsing of entities also differs across tools: GIT2NET
counsiders entities to be blocks of code lines in local proximity |Gote et al| (2021)).
Although CODEFACE and KAIAULU follow a similar approach, they incorpo-
rate additional information on defined structures such as functions, interfaces,
classes, enumerations, and namespaces from external parsers. CODEFACE ex-
tracts the internally defined set of entities via Doxygen, C-Tags and a custom
SQL parser for the also internally defined set of programming languages. KA-
IAULU provides configuration options allowing the user to choose from specific
C-Tags. However, KATAULU does not yet support C-Tags for all programming
languages, limiting entity analyses to C, C4++, Java, Python and R.

In subsequent, more complex data processing steps, such as the construc-
tion of developer networks, results can diverge even further. For instance,
figure [b] demonstrates the effect of different network construction methods on
the resulting developer collaboration graph. The same network is constructed
by the four tools for the same time interval in the history of subject project
Flink. Nodes represent developers and edges indicate collaborations.

The overall network structure shows that there are significant differences
between tools. The number of nodes is much higher in the network constructed
by GIT2NET compared to all other tools. In addition, the edge density and
weights differ across tools. This phenomenon can be mostly explained by the
interpretation of collaboration: CODEFACE and KAIAULU construct the net-
work based on code entities jointly edited by developers. Here, the directed
edge represents contributions from developer d; to code previously contributed
by developer ds. To further indicate the strength of this collaboration, both
tools assign weights to the edges, which aggregate the lines of code contributed
to the other developer. However, as we showed in previous work, this aggrega-
tion differs as well. For instance, the number of code lines can incorporate lines
contributed by d; once (KAIAULU) or multiple times (CODEFACE). Another ap-
proach is pursued by GIT2NET. Here, results are based on the line-granularity
analysis mode, as the block-granularity mode used for the entity time series
comparison above is not yet supported for network construction. Contrary
to CODEFACE and KAIAULU, edges in GIT2NET’s network graphs indicate a
change in code line ownership from d; to dz. The changes in code ownership
are not aggregated by default, but the graph contains multiple edges (Gote
et al, |2022). GRIMOIRELAB supports the construction of bipartite graphs for
any two fields in its database. While the first node type can be developer iden-
tities, GRIMOIRELAB does not support functions or similar code entities as the
second node type. This would actually be required to correspond to network
construction in CODEFACE, GIT2NET and KAIAULU. However, from all the sec-
ond node types we can choose, such as project or organisation names, file paths
are the most fine-grained code-related option and therefore serve as a substi-
tute for entities in our replications. When calculating the bipartite projection
of this graph, GRIMOIRELAB allows for defining a weight function, which we
configure to the number of jointly edited files, weighted by the number of
changes made by the respective developer. As explained by Joblin et al. (2015)
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Fig. 5: Developer networks constructed by CODEFACE, GIT2NET, GRIMOIRE-
LAB and KAIAULU for the same time interval of subject project Flink with
the most similar configurations to replicate (Gote et al (2022).

and Gote et al. , networks constructed at file-granularity detect more
edges in general, but only a small percentage are actually meaningful. In addi-
tion to the network construction, the differences in the baseline data described
above impact the network structure. For instance, by default, GIT2NET uses a
different identity matching technique from the tool Gambit
, which rates similarity of developer names and e-mails using Levenshtein
distance. Compared to the exact partial string matching supported by CODE-
FACE, GRIMOIRELAB and KAIAULU, this technique accepts greater deviations
between identities. However, this tolerance can lead to higher false positives.
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For instance, GIT2NET matches the identity of developer Daniel Warneke with
WangTaoTheTonic, causing the latter to appear in the network graph despite
not contributing any commits in the considered time window. Conversely, due
to the exact partial string matching, the networks constructed by CODEFACE,
GRIMOIRELAB and KAIAULU show several duplicate nodes in cases where
identity matching was not tolerant enough.

Answer to RQ2 (To what extent can we observe discrepancies in the
data obtained from independent software repository mining tools?): In a
sample of eight subject projects with different characteristics and analysis
parameters, we find mostly similar evolutionary trends in high-level met-
rics such as the number of commits, developers and files. However, the
more fine-grained and downstream in the pipeline a data preparation step
is, the higher seems the inherent uncertainty. For instance, significant dif-
ferences exist in code entity parsing and developer network construction.
This indicates that despite offering similar analyses, the tools under study
cannot be considered readily interchangeable.

4.3 First replication: collaboration and coordination

So far, we completed step 2 depicted in figure|l|and analysed differences in the
data extracted from four popular mining tools. Although discrepancies exist,
we do not know yet whether these have an impact on the actual outcome of an
overarching question in studies. To address this open question, the following
sections focus on the results of the replication studies independently performed
with the four tools as the final step of our study.

This section describes the results of the selected analyses from |Joblin et al
(2017a)) to answer sub-research question RQ3a, investigating the level of agree-
ment of core and peripheral developer operationalisations across tools.

Agreement of count- and network-based operationalisations: The first repli-
cated analysis studies the agreement of core developer metrics measured on
version-control system data. The count-based metrics, number of LOC and
commits, are aggregated based on the information captured by each tool in
its database. Intuitively, core developers are expected to have a higher level of
activity, which is reflected in more contributions. We calculate network-based
metrics based on the adjacency matrices exported for each tool in a unified
format. The node degree denotes the number of links to other developers in
the temporal network. Core developers are expected to coordinate with more
developers than peripheral developers. Eigenvector centrality determines the
centrality of a developer in the network depending on the centrality of its
neighbourhood. Core developers are expected to have higher centrality and
coordinate with other developers with higher centrality. Hierarchy centrality
is determined by node degree and clustering coefficient, with clustering co-
efficient denoting the ratio of existing to all possible links in a developer’s
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neighbourhood. Core developers are expected to have a higher hierarchy cen-
trality.
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Fig. 6: Time-averaged agreement in terms of Cohen’s kappa for QEMU and
PostgreSQL. The pairwise agreement is shown for the count-based metrics lines
of code (LOC), number of commits and the network-based operationalisations
node degree, eigenvector centrality and hierarchy centrality. The left column
shows the agreement measured in the original study. The right column displays
the agreement measured in the four replications using CODEFACE (yellow),
GIT2NET (green), GRIMOIRELAB (lilac) and KAIAULU (blue).

The level of agreement between metrics is measured pairwise by Cohen’s
kappa. We calculate this measure separately for each project, tool and year of
development. [Joblin et all (2017a)) interpret the strength of agreement repre-
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sented by Cohen’s kappa as follows: 0.81-1.00 almost perfect, 0.61-0.80 sub-
stantial, 0.41-0.6 moderate, 0.21-0.40 fair, 0.00-0.20 slight, and < 0:00 poor.

Joblin et al (2017a) present the level of agreement between count- and
network-based metrics averaged over one year of development. However, it is
unknown which year of development is presented in the paper and supplemen-
tary material. As other analyses in the paper refer to the most recent year
of studied development time, we present replication results obtained and av-
eraged over the same time interval. The results for all other individual time
ranges and the level of agreement averaged over the entire studied development
time are available on the supplementary website. Figure [f] shows the results
for the exemplary subject projects QEMU and PostgreSQL.

The left graph shows the metrics agreement observed in the original study.
The right graph shows the replicated metrics agreement for all tools. Since the
original study was conducted with CODEFACE, we would expect our replica-
tion with the same tool to yield very similar results. Ideally, we would observe
the exact same metric values. However, as we use non-overlapping time win-
dows in our replication for reasons outlined in Appendix we accept a
small tolerance and consider the same strength of agreement as above suffi-
cient. However, discrepancies exist for example in the agreement of eigenvector
centrality with node degree, LOC and number of commits in projects QEMU
and PostgreSQL. The original study measures a fair to moderate agreement,
while our replication with CODEFACE finds a higher moderate and in case
of the node degree even almost perfect agreement. Conversely, the strength
of agreement between, for instance, hierarchy centrality and number of com-
mits is higher in the original study than in our replication with CODEFACE.
While this could partially be attributed to our change in time window aggre-
gation, tool-specific updates since the original study could have also caused
these deviations. For instance, time window splitting and commit parsing in
CODEFACE were updated multiple times and also dependencies, such as the
IGRAPH library, have been updated and may have changed behaviour since
the original study was performed. As we did not know the code and library
versions used in the original study, we could not explore this phenomenon in
more detail. However, as the replicated agreement is still in the next higher
or lower agreement class, we accept this tolerance and apply the same metrics
calculation pipeline to the baseline data extracted by the other tools.

With GIT2NET, the strength of agreement between metrics is consistent
with the respective, next higher or lower agreement class observed by CODE-
FACE in the replication. An outlier is the agreement between hierarchy cen-
trality and commits in project PostgreSQL, where we measure a moderate
agreement with CODEFACE and an almost perfect agreement with GIT2NET.
With GRIMOIRELAB, we observe similarly close agreement levels. Similar to
GIT2NET, outliers exist for instance in case of hierarchy centrality, for which
GRIMOIRELAB measures a two classes higher agreement with eigenvector cen-
trality and node degree than CODEFACE. With KAIAULU and subject project
QEMU, the strength of agreement is always in the same class as found by
CODEFACE. For PostgreSQL, we again observe a maximum difference of one
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class compared to CODEFACE, for instance for the agreement between hierar-
chy centrality with LOC and commits.

The maximum difference of two agreement levels is surprising for the
network-based metrics, considering that the tools follow significantly differ-
ent approaches for network construction: CODEFACE and KAIAULU construct
temporal networks at function-granularity, while GIT2NET constructs them at
line-granularity. In GRIMOIRELAB, networks are bipartite projections of bi-
partite networks connecting developers and files. All tools therefore indicate
the validity of network-based operationalisations of developer roles. The re-
sults obtained for GRIMOIRELAB suggest that the operationalisations can also
be applied to more coarse-grained file-level networks, demonstrating general-
isability.

The agreement of count- and network-based metrics also matches the level
observed by [Joblin et al (2017a) in all tool-specific replications. PostgreSQL
represents a project with one of the lowest measured agreements across all
studied subject projects. In particular, the level of agreement between hierar-
chy centrality, LOC and commit count is only fair (0.27) in the replication with
KAIAULU, while the other tools measure a moderate to almost perfect agree-
ment (0.47-0.82). We hypothesise that the reason for this maximum difference
of 0.55 between tools is the programming language support. PostgreSQL con-
tains several SQL files, which are not supported and parsed yet by KAIAULU,
while other tools such as CODEFACE implement custom parsers for their analy-
sis. Nevertheless, the differences in Cohen’s kappa coefficient are all within the
tolerated deviations for drawing conclusions in the original study. While the
level of agreement exceeds 0 in all recent development years of all subject
projects, we measure some negative values indicating poor agreement worse
than randomness between individual count- and network-based metrics in the
very early years of development in subject projects including Django, GCC,
LLVM, QEMU and U-Boot. This could be an effect of using non-overlapping
time windows in our replication. Another potential explanation could be that
developer networks are usually small in size at the beginning of a project,
meaning that differences in network metrics between individual developers
are less pronounced in general. Since the identification of core developers is
generally less relevant in practice for very small networks, we disregard these
outliers in the overall conclusion that count- and network-based metrics agree
consistently at least at a fair level. Between the count-based metrics, we ob-
serve a fair to almost perfect (0.40-0.83), typically substantial agreement in
the most recent studied year of all projects. This corresponds to the findings
in the original study.

Hierarchical embedding: The second replicated analysis from|Joblin et al (2017a))
studies the manifestation of relational differences between developers in the
network hierarchy. Core developers are expected to take higher positions in
hierarchy, while peripheral developers are expected at lower positions. The
presence of such hierarchy in social networks is evident from a mutual depen-
dence between node degree and clustering coefficient. Again, we evaluate this
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dependence for each year of development as done by [Joblin et al| (2017a) and
present the results for the most recent studied year exemplary for the subject
projects QEMU and GCC in figure [7] As we do not know the the raw values
observed in the original study and since time window splitting in CODEFACE
slightly changed since the original study was conducted, we can only compare
the replication results across the replication tools in this analysis.

We consistently see core developers with high node degree and low cluster-
ing coefficient clustered in the bottom right region and peripheral developers
with lower node degree and high clustering coefficient clustered in the top left
region of each time window plot for QEMU (top graph). The overall linear de-
pendence between node degree and clustering coefficient can also be observed
to a similar degree with all tools, albeit slightly less pronounced with KarauLu.
This confirms the results found in the original study. In subject project GCC,
however, trends are slightly different: Although the higher node degree of core
developers is obvious with all tools, the relational difference between core and
peripheral developers in clustering coefficient is evident with CODEFACE and
GIT2NET, but significantly less pronounced with GRIMOIRELAB and KAIAULU.
Due to outliers, the overall linear dependence actually appears reversed with
KAIAULU in several time intervals. However, as this phenomenon is rare, the
overall results for the hierarchical embedding of developer roles can be consid-
ered consistent with the results from |Joblin et al (2017a)) and across tools.

Further investigations: So far we have compared the results obtained by each
replication carried out with a specific tool independently. Specifically, the
agreement and consistency observed in figure [f] refers to high-level metrics
calculated individually for each tool in isolation. These results do not give
us any insights into actual consistency of operationalisations between tools.
In other words, we could observe the same level of metrics agreement by two
tools, even though the actual classifications of developers differ completely.
This would correspond to the worst case scenario in which developers are con-
sistently classified as core with one tool and consistently classified as peripheral
with the other tool. To rule out the possibility of this scenario and to evaluate
the interchangeability of tools in more detail, we examine the consistency of
the individual developer classifications across tools. The results from section
show that the set of identified developer identities is not always consistent
across tools in the first place. Therefore, we limit our evaluation to the group of
developers that was found by all tools according to their names. Then, we cal-
culate Cohen’s kappa as done for the operationalisations’ agreement between
all tools for each metric per project. It is important to note that the absolute
agreement may be significantly higher, but Cohen’s kappa takes into account
the class imbalance between core and peripheral developers. If the tools can
be considered interchangeable, we would expect an almost perfect agreement
(> 0.81) in all cases, as they should all measure the same variable similarly.
Figure [§] shows exemplary results for subject projects QEMU, FFmpeg,
GCC and U-Boot. For the QEMU and FFmpeg in the top graphs, we in-
deed observe the expected almost perfect agreement (0.8-0.93) between tools
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Fig. 7: Hierarchy stability in projects QEMU (top graph) and GCC (bottom
graph) during four development periods measured by CODEFACE, GIT2NET,
GRIMOIRELAB and KATAULU. The linear dependence between clustering co-
efficient and degree expresses the hierarchy. In most cases, core developers
appear clustered at the top of the hierarchy (bottom right region), while pe-
ripheral developers are clustered at the bottom of the hierarchy (upper left
region).
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Fig. 8: Time-averaged agreement of classifications of the same set of develop-
ers identified and classified by all four tools CODEFACE, GIT2NET, GRIMOIRE-
LAB and KA1AuLU. The pairwise agreement on classifications between tools
is shown for lines of code (LOC) count (yellow), commit count (green), node
degree (lilac), eigenvector centrality (blue) and hierarchy centrality (pink).

for classifications based on LOC count (yellow tile) and number of commits
(green tile). The level of agreement on classifications based on the network
metrics node degree (lilac tile), eigenvector centrality (blue tile) and hierar-
chy centrality (pink tile) is lower, but still moderate to substantial (0.47-0.74)
in these cases. For the subject projects GCC and U-Boot, the agreement be-
tween tools is lower in general. For classifications based on network metrics,
the agreement between tools does often not exceed the fair level above ran-
dom agreement. Given that inconsistently identified developers were already
removed from the dataset, this indicates significant differences in the developer
classifications derived from different tools.
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Answer to RQ3a (Is the level of agreement of core and peripheral de-
veloper operationalisations based on count and structural metrics and the
hierarchical embedding of developer roles consistent across tools?): In gen-
eral, the level of agreement between count- and network-based metrics and
the hierarchical embedding of developers observed by four independent
tools is consistent with the levels observed by Joblin et al. (2017a) in the
original study. We would therefore draw the same high-level conclusions
with all tools.

Nevertheless, it should be noted that discrepancies come to light when
comparing the actual developer classifications across tools. In some cases,
the magnitude of disagreement is significant and suggests that tools are not
interchangeable. Due to their higher complexity and downstream position
in the pipeline, network-based metrics appear more prone to tool-level
threats than simple count-based metrics.

4.4 Second replication: software maintenance

The following results summarise the replicated analyses of Gote et al. (2022)
to answer sub-research question RQ3b, which studies the relationship between
productivity and team size in line with Brooks’ law.

Correlation between productivity and collaboration metrics: The first analy-
sis calculates the Pearson correlation between all extracted productivity and
collaboration metrics. As explained in Appendix we were only able to
calculate a part of the metrics (number of commits and team size) exactly as
they were calculated in the original study, since the code for the productiv-
ity metrics aggregation and network metrics calculation was missing. For this
reason, the correlations measured in figure [J] are partly subject to our own as-
sumptions regarding implementation. The matrix on top shows the correlation
between the productivity metrics measuring the difference in the number of
commits, functions and Halstead effort and the collaboration metrics including
team size, number of nodes in the developer network graph, mean in-degree
of developers and mean foreign modification ratio (FModR). The calculation
is performed for all time intervals and projects together.

The top plot shows the values measured by the original study when reduc-
ing the subject projects in the reproduction data to the set considered in our
replication, as motivated in Appendix Despite the significant reduction
from 201 to 10 projects with representative characteristics, the calculated val-
ues are consistent with the results obtained from the large original data set.
The most important finding of this matrix in the original study is the nega-
tive correlation between team size and each of the productivity metrics. With
values below -0.5, this correlation is more pronounced in the reduced data set.
The magnitude of the other correlations corresponds to the ones from the large
original data set.
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Fig. 9: Pearson correlation between the transformed productivity and network
metrics, calculated by the original study (top plot) and by the replication
(bottom plot) using data extracted by CODEFACE (top tile), GIT2NET (right
tile), GRIMOIRELAB (bottom tile) and KArauLu (left tile).
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The bottom plot shows the correlations between the metrics calculated on
data extracted by the mining tools CODEFACE, GIT2NET, GRIMOIRELAB and
KaraurLu. With all four tools, we observe the essential negative correlation
between the team size and the productivity metrics. The magnitude of the
correlations in the individual tool data sets is very similar. For example, the
correlation between team size and number of commits varies by a maximum of
0.04 across tools. The correlations between team size and productivity metrics
are in general higher in the replication than in the original study. For instance,
the correlation between team size and Halstead effort varies between -0.6 and
-0.69 in our replication, while the original study reported a value of -0.26.
This is especially surprising as GIT2NET (right tile) was used in the original
study, but the correlations from the original matrix could not be replicated
consistently. This indicates that our replicated metrics calculation differs from
the original algorithm not specified in the code.

We contacted the lead author of the study and developer of the GIT2NET
tool regarding this matter. Although the original code was not available any
more, he provided us with possible reasons explaining the discrepancies in the
replication. For instance, in a previous version of the correlation matrix, which
we included in the supplementary material, we exported the GIT2NET devel-
oper networks in adjacency matrix format, which combined multiple edges into
a single edge weight. This corrupted the multi-edge count used in the original
study and led to positive correlations between the foreign modification ratio
and the productivity metrics. When switching to the multi-edge edgelist, this
issue was overcome, but at the same time changed the correlation between
team size and mean in-degree to a negative value. Due to these side effects,
a large number of possible combinations would have had to be explored to
achieve an accurate replication in all metrics. However, this circumstance does
not affect the agreement between the tools, which is of interest for this study.

Although the tools agree on the central correlation of team size and pro-
ductivity, several differences are apparent for the network metrics, which are
used as control variables in the original study. First, the correlation between
productivity and mean in-degree of developers in the network is positive for
CODEFACE, GIT2NET and KAIAULU, while it is negative for GRIMOIRELAB. As
explained in more detail in Appendix GRIMOIRELAB constructs undi-
rected networks, which actually does not allow us to calculate the in-degree,
but only the higher total node degree. The undirected graph also limits the
possibility to calculate the foreign modification ratio, since the information of
changes in ownership is not captured. However, the results for the undirected
graph could be considered a substitute for replication or adoption of the ap-
proach when switching tools. CODEFACE and KAIAULU aggregate directed
edges between developers according to a weight scheme. Therefore, we observe
similar correlations with the in-degree for these tools, while the correlation for
GIT2NET differs in magnitude due to the multi-edge graph. Although we use
the same algorithm to calculate the foreign modification ratio across tools, the
correlations between this metric and team size and number of network nodes
differ significantly. While CODEFACE reports a negative correlation, KAIAULU
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and the other tools report a positive relationship. Similarly, CODEFACE and
KAIAULU report a positive correlation between productivity and the foreign
modification ratio, while GIT2NET and GRIMOIRELAB measure a negative re-
lationship. This further highlights the impact of different network construction
techniques and indicates that other, more complex relationships and interac-
tions exist, which are captured differently by the individual tools.

Regression models relating team size to productivity: The next analysis repli-
cated from Gote et al. (2022) fits linear and polynomial regression models
to the individual productivity metrics to investigate the effect of team size
in more detail. We visualise the original and replicated linear and quadratic
models in figure From a visual point of view, we observe a negative rela-
tionship between team size and individual productivity across all combinations
of tools and productivity metrics. Although the overall shape of the quadratic
curve appears to differ slightly across tools, this may be a side effect of the
logarithmic scale used in the original and adopted in our replication study.

The quantitative results for the linear and quadratic model fitted to the
original reduced data set and to data extracted by the four replication tools
are presented in table ] The models are constructed separately for each
productivity metric, for instance explaining the averaged difference in num-
ber of commits by team size (Commits ~ TS) in the linear model and
Commits ~ TS + T'S? in the quadratic model. The linear models consis-
tently report negative regression coefficients for the team size, indicating that
individual productivity in terms of difference in commits, functions or Hal-
stead effort decreases for larger teams. Although the regression coefficients in
the linear models differ slightly between tools and metrics, this relationship is
clearly evident and stable.

Due to the reduction of subject projects, the quadratic model fitted to the
original study data exhibits negative coefficients for T'S' explaining commits
and functions and a positive coefficient when explaining Halstead effort. The
coefficients for T'S? are close to zero, being negative for commits and Hal-
stead effort and positive for functions. This diverges from the results found in
the original study for the entire data set, which reported consistently positive
coefficients for TS and consistently negative coefficients for T'S?. This could
indicate that our data set is too small to fit a more complex model or that the
relationship is not evident in all subject projects. The magnitude of coefficients
in the replicated quadratic models overall agree with those found for the re-
duced original data set in terms of commits and functions, although the signs
of the coefficients close to zero are reverted in the replication. The absolute
regression coefficients for T'S and T7'S? when explaining the Halstead effort,
however, are significantly higher than in the original study. This indicates
that in the replication, the divergence due to metrics calculation outweighs
differences in the baseline data.
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Table 4: Regression models fit to data from the original study and with the
replicated data from the four mining tools. Each table column shows a separate
model with the productivity metric as target variable and the team size (TS)
as covariate. Yellow indicates a negative regression coefficient, blue indicates
a positive coefficient. The intensity shows the coefficient magnitude. Standard

errors are shown in parentheses.

Linear relationship

Quadratic relationship

Tool ‘ Term Commits  Functions  HallEff ‘ Term Commits  Functions  HallEff
(IC) 4.84 5.53 17.48 (I1c) 4.64 5.69 16.87
(0.19) (0.27) (0.38) (0.32) (0.45) (0.64)
= TS —0.45 —0.52 —0.35 TS —0.30 —0.64 0.09
= (0.05) (0.07) (0.11) (0.20) (0.28) (0.39)
2 TS2 —0.02 0.02 —0.07
o (0.03) (0.04) (0.06)
R? 0.32 0.24 0.07 R? 0.32 0.24 0.07
Adj. R? 0.32 0.24 0.06 Adj. R? 0.31 0.23 0.06
(IC) 5.48 7.75 21.82 (I1c) 5.92 6.51 17.95
(0.14) (0.22) (0.44) (0.26) (0.39) (0.73)
g TS —0.54 —0.95 —1.17 TS —0.80 —0.20
£ (0.03) (0.05) (0.10) (0.14) (0.21) (0.38)
g TS? 0.03 —0.09 —0.29
@) (0.02) (0.02) (0.05)
R? 0.58 0.65 0.42 R? 0.59 0.68 0.53
Adj. R? 0.58 0.65 0.42 Adj. R? 0.59 0.68 0.52
(10) 5.39 7.57 21.37 (10) 5.52 6.42 17.72
(0.14) (0.21) (0.42) (0.24) (0.37) (0.67)
- TS —0.50 —0.92 —1.08 TS —0.59 —0.18
2 (0.03) (0.05) (0.10) (0.13) (0.20) (0.37)
< TS? 0.01 —0.09 —0.30
e (0.02) (0.03) (0.05)
R? 0.55 0.63 0.38 R? 0.55 0.65 0.50
Adj. R? 0.55 0.63 0.38 Adj. R? 0.55 0.65 0.50
(IC) 5.52 7.64 21.31 (Ic) 5.83 6.54 17.65
a (0.13) (0.21) (0.43) (0.24) (0.37) (0.68)
i TS —0.52 —0.91 —1.03 TS —0.71 —0.21
E (0.03) (0.05) (0.10) (0.13) (0.20) (0.37)
2 TS? 0.03 —0.09 —0.30
5 (0.02) (0.02) (0.05)
R? 0.58 0.63 0.36 R? 0.59 0.66 0.48
Adj. R? 0.58 0.63 0.36 Adj. R? 0.59 0.65 0.47
(IC) 5.04 7.49 21.54 (IC) 5.42 6.42 18.29
(0.13) (0.22) (0.38) (0.24) (0.38) (0.61)
= TS —0.46 —0.90 —1.21 TS —0.69 —0.24
E (0.03) (0.05) (0.10) (0.13) (0.20) (0.33)
G TS? 0.03 —0.09 —0.26
* (0.02) (0.02) (0.04)
R? 0.52 0.61 0.47 R? 0.53 0.63 0.57
Adj. R? 0.51 0.60 0.47 Adj. R? 0.52 0.63 0.57
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For the sake of clarity, we do not present the results for the linear and
quadratic regression models accounting for the network metrics as control
variables in the paper, but provide the tables in the supplementary materials.
Due to the differences in network metrics already observed in the correlation
matrices, the regression coefficients for the in-degree and the foreign modifi-
cation ratio vary significantly across tools. Despite these effects, the negative
coefficient for T'S remained consistent across all tools and metrics in the lin-
ear models. In the quadratic regression models, the control variables turned
the previously positive coefficients for T'S explaining productivity in terms
of Halstead effort into negative coefficients when fitting the models to data
extracted by GIT2NET, GRIMOIRELAB and KA1AULU. For CODEFACE, the co-
efficient remained positive, which could be a consequence of differences in
network construction.

Answer to RQ3b (Is the relationship between team size and productivity
consistently negative across all tools, corresponding to Brook’s law?): The
relationship between time size and productivity is overall consistently neg-
ative across all tools, confirming the central conclusion on the applicability
of Brooks’ law found by Gote et al. (2022).

However, there are some disagreements in the correlations and effects of
network metrics across tools. Although these metrics play a subordinate
role as control variables for the regression models, the discrepancies indi-
cate that the conclusions drawn for another hypothetical research ques-
tion, for instance studying the effect of collaboration intensity with other
developers on productivity, would have diverged across tools.

4.5 Third replication: software quality

This section describes the results obtained by the mining tools in the replica-
tion of Foucault et al. (2015) to answer sub-research question RQ3c.

Relevance of developer turnover: As a starting point for replication, we anal-
yse the relevance of the turnover phenomenon in open-source software projects
by analysing time series evolution. In figure [T} we compare the evolutionary
trends of contributions from external newcomers, leavers and stayers and all
developers in the same time frames analysed by the original study and our
replications. From a visual perspective, all time series are very similar, al-
though the original tool DIGGIT and the replication tool GRIMOIRELAB anal-
yse all branches of a subject repository, while the remaining tools only consider
the main branch. Marginal differences exist in some time series, for instance
the leavers and newcomers activity observed between 2014 and 2015 for project
Jenkins. Similar to the original study, we find that throughout the project his-
tory, at least 80% of developers are either newcomers or leavers. Therefore,
the observation that developer turnover is a highly relevant phenomenon in
open-source software projects is clearly stable across all tools.
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Fig. 11: Evolution of developer turnover found by the original study and the
four replication tools. The plain grey line on top represents the total number
of developers, the plain lilac line at the bottom the number of stayers, the
blue line the number of external newcomers and the yellow line the number of
external leavers.

Patterns of activity and bug fixes: Figure shows the activity of external
and internal newcomers (ENA, INA), leavers (ELA and INA), stayers (StA)
and the number of bugs per module in six months before and after the release
chosen by the authors for each project. Modules are determined by matching
files identified by each tool via regular expressions. Grey modules indicate
that no file in the module was detected by a certain tool, for instance due
to differences in raw data parsing. The most significant discrepancy can be
observed for subject project Ansible. A large majority of modules are missed by
the tools CODEFACE and KAIAULU, while the original tool DIGGIT, GIT2NET
and GRIMOIRELAB were able to identify them. Manually inspecting the missed
modules reveals that the repository contains several files containing Python
code but missing the file ending .py. Since CODEFACE and KAIAULU both
filter files for analysis by their extensions, these could not be detected.
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Another surprising aspect is the relatively low number of modules in the
Ansible project. When inspecting the data, we note that several modules iden-
tified in the manual clustering performed by Foucault et al. (2015 were not
matched, both in the original and our replication results. The code reveals the
mapping to which module a file belongs to. The original implementation tra-
verses a list of regular expressions and groups a file based on the first match. In
Ansible, superordinate modules appeared first in the list, therefore more fine-
grained modules could not be matched. However, this behaviour corresponds
to the original implementation of DIGGIT. Therefore, we adopt it to maintain
comparability across results. Other modules are detected by the replication
tools while being absent in the original results. This is the case for files for
which D1GGIT applies a more complex regular expression during data parsing,
which could not be replicated exactly with the configuration options offered
by the other tools.

In general, the developer group activity found for each tool corresponds
to the activity observed in the original study. Nevertheless, slight deviations
were observed. Ideally, the intensity of activity per module should correspond
to the one from the original study, but when comparing the intensity for spe-
cific modules across tools, we note many differences. For instance, with GRI-
MOIRELAB and KAIAULU, we measure a higher total activity in all projects
and a significantly higher external newcomers and stayers activity in projects
Jenkins and Rails compared to the original study tool DIGGIT and the repli-
cation tools CODEFACE and GIT2NET. As another example, the original study
states explicitly that no module was exclusively changed by external newcom-
ers, indicating that supervision by experienced developers always took place.
According to the replication with CODEFACE and GIT2NET, this was not the
case for the second module in subject project Jenkins, where we observe only
contributions from external newcomers.

In addition to the activity patterns, the plot shows the number of bug
fixes identified by each tool for each module. Despite using the list of bug
fixing commits manually identified by Foucault et al. (2015) as a reference for
detecting affected files and modules, minor differences across tools are evident.
These differences are attributed to the baseline data extracted by the tools.
In subject project Jenkins, for instance, CODEFACE was not able to identify
certain bug fixing commits or affected files. Although all of these differences
seem minor, they impact the developer activity and bug density per module,
which is important for the next analysis.



Oops!...I did it again 47

Original ‘ Codeface git2net ‘ GrimoireLab Kaiaulu

=

FHEE
e Eses
Eﬁﬁﬁm

il

\yd

=
5
(5]
X
1
=
—
%)

>
]
12N
&
@

Module

sunjua[

sy

s

x\’@\ﬂo“srq

%Y”@}QV\ NN %‘2

&

@v 2% *” STV SISV @&%
< o Q)\s Q; <&

Fig. 12: Visualization of developer groups’ activity and the quantity of bugfixes
for each module identified by the original study and the four replication tools
CODEFACE, GIT2NET, GRIMOIRELAB and KAIAULU. Each horizontal line of
blocks represents a module. The darker the colour, the higher the metric value.
Grey lines indicate that the respective module was not detected by a tool.
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Table 5: Spearman correlation coefficients between turnover metrics and bug
density (bug-fixing commits normalised by code size) per module and subject
project. Confidence intervals are computed per tool data set using bootstrap.
Turnover metrics include internal newcomers activity (INA), internal leavers
activity (ILA), external newcomers activity (ENA), external leavers activity
(ELA), stayers activity (StA) and total activity of all developers (A). Coloured
cells indicate statistically significant correlations found by the original study
(grey) and in the replications with Codeface (yellow), git2net (green), Gri-
moireLab (lilac) and Kaiaulu (blue).

Tool INA ILA ENA ELA StA Total A
»n  Original [-0.44, 0.38] [-0.36,0.30] [0.11,0.68] [-0.56,0.20] [0.16, 0.83 ] [-0.14, 0.69 ]
E Codeface  [-0.04, 0.62] [-0.27,0.47] [0.01,0.72] [0.06,0.69] [0.12,0.81] [-0.21,0.69]
2 git2net  [[0:02,0:65]" [-0.41,0.40] | [0.15,0.82] [-0.09,0.52] | [0.11,0.77] | [-0.29, 0.64]
2 Grimoire = [0.06,0.72] [-0.39,0.41] [0.10,0.81] [0.01,0.61] [0.06,0.84] [-0.22, 0.68 ]
< Kaiaulu [-0.01, 0.65] [-0.38,0.43] | [0.09,0.81] [-0.08,0.53] | [0.04, 0.87] [-0.15,0.72]

Original [-0.23,0.73] [-0.34,0.64] [-0.21,0.67] [-0.29,0.72] [-0.22,0.75] [-0.33,0.73 ]
% Codeface - - - - - -

T git2net [-0.15,0.75] [-0.37,0.66] [-0.42,0.68] [-0.32,0.70] [-0.32,0.69] [-0.38,0.73 ]
£ Crimoire [-0.37,0.71] [-0.29,0.64] [-0.37,0.68] [-0.33,0.69] [-0.28,0.72] [-0.40, 0.72 ]
Kaiaulu - - - - - -

Original [-0.28,0.30] [-0.17,0.42] [0.27,0.74] [-0.07,0.49] [0.08,0.65] [0.01, 0.63 ]
Z  Codeface [0.07,0.59] [-0.20,043] [0.02,0.55] [0.40,0.88] [0.30,0.72] [0.37,0.70]
% git2net [0.14, 066 ] [-0.29,0.32] [-0.03,0.55] | [0.30,0.77] [0.07,0.63] [0.13,0.64]
S Grimoire [0.05,0.55] [-0.20,0.38] [-0.10,0.55] [-0.03,0.55] [0.08,0.61] [0.13,0.62 ]
Kaiaulu  [-0.05,0.50] [-0.25,0.33] [-0.11,0.55] [-0.02,0.55] | [0.07,0.62] [0.07, 0.58]
Original [-0.14, 0.67] | [0.15,0.81] [0.02,0.70] [-0.41,0.46] [0.14,0.85] [0.07,0.80 ]
2z Codeface [-0.59,0.25] [-0.19, 0.63] [-0.24, 0.65] [-0.52, 0.40] [-0.23,0.68] [-0.27, 0.71 ]
S git2net [-0.53, 0.42] | [0.10, 0.75] [-0.11,0.80] [-0.28,0.61] [-0.20,0.69] [-0.12,0.71]
S Grimoire [-0.44,049] [0.17,0.80] [0.06,0.82] [-0.31,0.56] [-0.23,0.72] [-0.15,0.71 ]
Kaiaulu  [-0.55,0.36] [0.12,0.81] [-0.16,0.79] [-0.42,0.53] [-0.35,0.64] [-0.27, 0.66 |
Original [-0.01, 0.53] [-0.21,0.30] ' [0.11,0.58] [-0.18,0.33] ' [0.16,0.58] [0.03, 0.55]
» Codeface [0.04,0.51] [-0.11,042] [0.10,0.58] [-0.03,0.49] [-0.02,0.47] [-0.04, 0.50 ]
T git2net [-0.09, 0.39 ] [-0.08,0.44] | [0.14,0.62] [0.06,0.56] [0.10,0.57] [-0.05,0.49]
® Grimoire [-0.10, 0.40 ] [-0.07,0.46] [0.08,0.57] [0.09,0.58] [0.09,0.58] [-0.01, 0.51]
Kaiaulu [-0.10,0.39 ] [-0.19,0.40] | [0.08,0.55] [0.09,0.56] [0.05,0.55] [-0.02,0.53]
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Correlation between developer turnover and software module quality: Finally,
we present the 95% confidence intervals for Spearman’s correlation between
developer group activities and bug density in software modules for all tool
data sets in table [5| Bug density is normalised based on the number of lines
of code measured by cLOC (Danial, |2025)) for all files of a module. As in the
original study, this approach includes files that were recognised by CLOC but
not by the respective mining tool. In an additional investigation, we filtered
the files for lines of code calculation to only include files actually recognised by
the respective mining tool. Despite significant differences in the lines of code,
this approach had no significant impact on the overall result of the study.
Therefore, we only include it in the supplementary material.

The confidence intervals in table Bl are wide for all turnover metrics and
tools, which indicates that it is difficult to draw a clear conclusion. Due to the
low number of bug fixes and modules identified by CODEFACE and KAIAULU,
we could not perform bootstrapping to calculate meaningful confidence inter-
vals. Therefore, these values are missing in the table. Since the original study
does not specify a random seed, our results differ slightly from those in the
original paper due to random sampling during bootstrapping. In our experi-
ments, we fix the seed for reproducibility. However, to validate our findings,
we tested different seeds and always obtained confidence intervals similar to
those presented in the table. Beyond statistical fluctuations, some correlations
differ more significantly across tools. For instance, the confidence intervals for
external leaver activity and bug density in Jenkins indicate a very weak neg-
ative to moderate positive correlation when using the original tool DIGGIT,
GRIMOIRELAB or KAIAULU, while the confidence intervals for CODEFACE and
GIT2NET indicate a weak to strong positive correlation.

To draw conclusions about the influence of developer turnover on software
quality per module, [Foucault et al| (2015)) consider confidence intervals which
indicate a consistently positive or negative correlation as statistically signifi-
cant. For replication conformity, we apply the same logic to draw conclusions as
the original study. In table[5| we mark significant results for each tool. Central
to the original study is the consistently positive relationship between external
newcomer activity and bug density observed for the majority of projects. In
our replication, we find these statistically significant confidence intervals only
for the original tool DiGGIT and CODEFACE. For GIT2NET, GRIMOIRELAB and
KAIAULU, the confidence intervals indicate a consistently positive correlation
for just two out of five subject projects. Therefore, we cannot confirm a nega-
tive impact of the external newcomer activity on software quality when using
these tools.
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Answer to RQ3c (Is the relationship of internal and external turnover
and software quality consistent across all tools, indicating that external
newcomer actiwity negatively impacts module quality?): The relationship
between internal and external turnover and software quality is not consis-
tent across tools in all cases. In particular, the negative impact of exter-
nal newcomer activity on software module quality found by Foucault et
al. (2015) could only be confirmed with one replication tool. With three
other tools, this relationship is not evident.

The discrepancies observed in the analyses that build on each other demon-
strate that small differences in the baseline data can propagate through
the analysis pipeline and impact the central conclusion, especially in non-
trivial contexts.

5 Discussion and lessons learned

Are the results of independent mining tools different? From RQ2 to
RQ3a—c, we never observed ezactly matching metrics calculated with the same
algorithms based on data extracted by different tools. This is true for both
the baseline data and subsequently derived metrics. Given the many imple-
mentation decisions along the tool pipeline, this is not surprising and may be
acceptable in some cases. However, under circumstances such as the existence
of multiple active branches in a repository, we have seen tools indicate oppo-
site activity trends. The more fine-grained and downstream analyses are, the
larger the differences in results become. For example, one tool identifies up to
64 times more code entity blocks than another one and in developer networks,
connections and nodes differ due to different strategies in developer identity
matching and graph construction.

This has consequences for subsequent analyses: In both studies relying on
network metrics, we observe a relatively low level of agreement on classifica-
tions of developer roles across tools and when calculating correlations between
a developer’s contribution behaviour and various collaboration and productiv-
ity metrics, switching to a different tool can even reveal the opposite effect.

Are the differences critical? With differences in even the most simple
metrics, such as the number of commits, all of the discrepancies can impact
decisions in practice, for instance by affecting popular problems of monitoring
open-source community health, its engagement and activity (Claes et al (2017,
2018b)); [Izquierdo-Cortazar et al (2022); Newton and Fiore| (2023)); |Robles
et al (2024) or identifying the most suitable person to review a new code
contribution (Rahman et all 2016; |Chen et al, [2022).

From a research perspective focusing on generalisable best practices and
methods, this question cannot be answered conclusively. In two of three stud-
ies, conclusions remain consistent when switching tools. However, with this
being the only change, our replications are as close to the original studies as



Oops!...I did it again 51

possible, which often leads to confirming results (Shepperd et al, [2018]). While
our replications show the minimal impact of switching general-purpose mining
tools, the impact when also switching subsequently applied tools is not eval-
uated, but expected to be even stronger. For instance, the original study of
Gote et al. (2022) relies on an additional tool to extract code-level metrics and
the study of Foucault et al. (2015)) additionally classifies bug-fixing commits
manually. We think that separate studies from an even higher level of abstrac-
tion are required to evaluate the impact of changing these tool combinations.

The third replication study shows that when investigating complex rela-
tionships with several possible directions and high uncertainty, the impact of
tool choice can be significant and can even change the overall conclusion. With
research questions becoming more and more complex and detailed, we may not
have a clear intuition on the direction of causes and effects, leading us to heav-
ily rely on data-driven approaches to validate possible assumptions. Therefore,
data quality, in particular consistency and accuracy (Sidi et al, 2012)) of tool
data, should be a major concern and a high degree of uncertainties in the data
cannot be accepted. According to our literature review, tool development and
application is of major relevance in empirical software engineering. This implies
that many areas of software engineering may face similar challenges, especially
considering findings of other studies (Lefever et al, 2021)).

What can be done about it? In our previous study, we addressed this
question from a tool development perspective and adjusted one tool to yield
the same results as another. However, we also found a lack of standardisa-
tion, which is difficult to overcome, because there is often no clearly correct
implementation. The discrepancies we have identified are largely not due to
bugs, but to different assumptions and decisions, all of which may be equally
justified. Therefore, in the following, we address this question by summarising
our lessons learned and recommendations on aspects that should be consid-
ered during empirical study design and practical application of evolutionary
software analysis tools.

Choosing tools: With a clear primary use case, users can start their selection
process with an overview of tools providing a subset of the desired capabilities,
as we did in section [3.3] Then, users can investigate tool-specific papers and
documentation to answer more detailed questions on their implementation and
the properties of the extracted data. These questions should be related to the
metrics desired for their analysis.

Specifically for evolutionary analyses based on version-control system data,
which we explored in this paper, important data-related questions are:

— Which raw data sources and programming languages are supported? This
question must be evaluated for different types of analyses, as they can rely
on different parser capability. Limitations can impact the choice of subject
repositories and study validity in general.
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— How does the data scheme look like? Are all the required information
captured? How is data between different data sources, such as version-
control systems and issues, connected?

— Which mechanisms are available to unify data and ensure consistency?
Depending on the scale and granularity of a study, users may, for exam-
ple, require developer identities to be merged across multiple projects and
data sources. If no or only limited mechanisms ensuring consistency are
available, users have additional development efforts.

— How does the data flow through the pipeline look like? Is data stored in
raw and processed form? Are filters applied and if yes, in which order?
It is important to understand dependencies between such decisions. For
instance, file filtering intuitively impacts results of subsequent code struc-
ture detection. However, if files are only stored after a code structure was
detected, there is a mutual connection.

— How can developer networks be constructed? Are networks constructed
in temporal order or through bipartite graphs and projections? Which
artefacts are supported for network construction? Are edges directed and
weighted? How does the edge weight function look like? As our replications
demonstrated, these details can significantly impact collaboration analysis.

— What complexity metrics are used? How are they calculated? For instance,
tools may calculate complexity in lines of code per commit, file, module or
entire project and store it for different time intervals.

— Which configuration options are available? Do parameters allow for a con-
figuration of all of these aspects, or are default assumptions hard-coded?
Configuration parameters facilitate customisation, but also increase the
risk of misconfiguration if the effects of an analysis step on the subsequent
pipeline cannot yet be accurately assessed. For established tools with prede-
fined defaults, other developers may have already considered these issues. If
configuration parameters are missing, however, the effort required to adapt
the source code is significantly higher.

Acquiring such deep technical knowledge about tools can lead to the im-
pression that developing own, custom solutions could be more sustainable.
To avoid reinventing the wheel, we suggest to conduct more research on tool-
centric considerations: Dedicated studies (Lefever et all [2021} [Hoess et all, [2025))
can provide a comprehensive overview of technical details and outcomes for a
group of mining tools with a shared purpose to support users in trading-off
capabilities and making the most suitable choice. To motivate such studies, we
provide an annotated list of tools and purposes in the supplementary material.
Sometimes, it remains unclear which approach is best suited for a problem,
for instance when constructing developer networks. Tests or surveys with the
target group of the developed method (Joblin et al, |2015)) can therefore offer
valuable insights.

Reproduction and replication: The experience from our replications confirms
that reproducibility cannot be limited to pointing to a tool repository and
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supplementary data. For instance, missing scripts for metrics calculation, un-
known tool versions and unavailability of tool dependencies complicate repli-
cations and the adoption of the proposed methods in practice. Therefore, we
recommend that reproduction packages should include snapshots of the tool
repositories and subject projects, along with all analysis scripts, result data
and visualisations in self-contained docker images as proposed by Mauerer et
al. (2022b)) or implemented similarly using virtual box by Foucault et al. (2015).
Providing tool snapshots in docker images with compatible dependencies on
Zenodo (Duenas et all [2021)) can also help tool users in much faster evaluating
whether a tool fits their needs.

Study design: In primary studies, metrics are relevant input features for many
types of models such as defect predictors or recommender systems. While
structural network-based metrics can be more expressive (Joblin et all 20174)),
we find that tool agreement on these metrics is often lower. For generalisability,
it could therefore be helpful for future studies to additionally evaluate simpler
metrics with less degrees of freedom in calculation.

As addressed by Graf-Vlachy and Wagner (2024]) and observed in our litera-
ture review, many studies explore such relationships by measuring correlations
and building regression models, despite being actually interested in causal ef-
fects, for instance when attempting to improve software quality. However, re-
gression models are often prone do endogeneity, for instance due to missing
influential variables, hindering the identification of root causes. As Duenas et
al. (2021) report from experience with GRIMOIRELAB, practitioners require
explanations why metrics are important and how they change. Causal dis-
covery is therefore an increasingly popular field, which aims to automatically
generate causal graphs from data. Although these methods are still threatened
by instabilities during training, they could be useful means for verification in
future research (Hulse et al, 2025).

Reporting limitations and threats: Currently, the choice of a tool is rarely re-
ported as a threat in empirical studies. However, our results suggest that it can
become a significant threat under specific circumstances. This emphasises the
above: As we cannot report all technical details for every study and pipeline,
we should build on established tools and related comparisons to better assess
the scope of validity of our results. Changing results and conclusion of a study
by switching mining tools emphasises the existence of tool threats, but may
also indicate that conclusions are sometimes drawn too general. This issue is
not specific to tool threats, but has also been addressed by Hulse et al. (2025)),
who examined threats in causal graph generation. Therefore, we recommend
to appreciate unclear or negative results and document the scope of validity
more specifically. For instance, if a study only finds significant correlations
for a specific group of projects, such as with a certain team size or program-
ming language, or does not find significant correlations by only analysing the
main branch of a project, this can be helpful indicators for future research, as
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other, possibly different or more complex approaches may be needed for other
circumstances.

6 Limitations and threats to validity

Construct validity: Comparing tool outcomes and evaluating stability of con-
clusions can be done in many ways, based on a wide range of data sources,
metrics and of course original studies. Therefore, there is a risk that we have
chosen suboptimal tools and studies, representing outliers in the landscape.
We reduce this threat by conducting a literature review to identify popular
tools and topics, from which we select a sample based on defined criteria.

When replicating studies to compare tool results, we trade-off replication
conformance and novel insights with respect to tool agreement. Finding an
optimal balance can be challenging: We favour replication conformance in cases
where metrics used by the original study are not calculated in a comparable
way by the replication tools. Here, we adopt the calculation of the respective
metric from the original study and reuse the algorithm for all replication tools,
including those that may offer a similar metric, but calculate it differently.
Including separate, novel tools to calculate the specific missing metric would
be an alternative approach, but would limit comparability across the original
and the replication studies. Contrary, in the scenario that a basic metric such
as the number of commits can be extracted by all tools, but is distorted by
other factors in the original study, we deviate from the original study to capture
more tool-specific details. These decisions may influence the result, but in our
opinion represent a valid compromise for evaluating the minimal discrepancies
and effects caused by a tool switch.

Internal validity: To compare the baseline data, we automate the calculation
of statistics, but additional manual investigations of data schemes and the
original git log were needed to explore the actual causes of differences. Due to
the large number of discrepancies and the interplay of effects along the pipeline,
we could not inspect all of them for each tool. Thus, there is a chance that more
hidden causes exist. As the characteristics of differences look similar to those
in our previous work and this extended paper focuses on conclusion stability,
we accept this threat.

Regarding replication, not all scripts for metrics calculation were provided
by the original studies. This required us to implement our own methods, which
may skew results. We minimised this threat by contacting the original author,
who gave us valuable hints. As results disagree with the original study in
several aspects, it can be assumed that our pipeline does not match the original
unavailable one in all aspects. Since we use the same pipeline for all tools, this
should not impact comparability of conclusions across tools.

External validity: The major threat of this study is that we compare only
four mining tools. However, the literature review revealed that few tools sup-
port the analyses addressed in our previous study, and even fewer are actively
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maintained. In addition, pipelines in evolutionary software repository mining
are computationally expensive. Replicating a study took several weeks up to a
month with a single tool. This is also the reason why external validity is further
limited by only replicating three studies. Of course, we could always include
more subject tools and studies, but this would not allow us to explore disagree-
ments in such depth. We think that this work has revealed some important
tool-related threats, although we do not claim completeness. Future research
can build on our supplementary material and extend our lessons learned by
similar studies with different tools and replications, possibly in other fields of
application.

7 Conclusion

Our literature review indicates that empirical software engineering heavily
relies on tools, and these tools often have a similar purpose. In this paper, we
studied the agreement between four independent tools that help to analyse
software evolution with socio-technical aspects. By replicating three studies
from highly ranked research venues and comparing results across tools, we
find

— differences in the extracted baseline data and its derivates;

— differences in the implementation of each data extraction and processing
step;

— differences in subsequently calculated metrics and results of statistical anal-
yses;

— impact on practical applicability;

— and in one case, impact on the overall study conclusion.

These results demonstrate that tools in this domain are not completely
standardised and interchangeable, and that the change of a tool can cause im-
portant distortions. We believe that the scope of study validity should there-
fore be considered in greater detail and that conclusions should not be over-
generalised.

Our replications further indicate that the provision of comprehensive re-
production packages, both for studies and tools, would highly benefit progress
in research and practice. We think that future work can conduct similar com-
parisons for tools in other fields to help others apply and implement tools with
less uncertainty.
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A Appendix
A.1 Original studies and replication details

A.1.1 First replication: collaboration and coordination

Context: The first study “Classifying Developers into Core and Peripheral: An Empirical
Study on Count and Network Metrics” from Joblin et al. (2017a) addresses the organisa-
tional roles of developers in software projects. Classifying developers into core and peripheral
is a common practice to understand a project’s collaborative dynamics.

Objective: In addition to prevailing operationalisations based on simple counts of devel-
oper activities, the authors propose and evaluate novel operationalisations based on the
organisational structure and collaboration behaviour derived from developer networks to
enrich information and overcome potential limitations. The study analyses the validity and
agreement of these metrics.

Method: The original study calculates count- (commit, lines of code and mail count) and
network-based metrics (eigenvector centrality, hierarchy centrality, node degree) on version-
control system and mailing-list data extracted from ten large open-source software projects
using the tool CODEFACE. Developer operationalisations are calculated using overlapping
time windows of three months. Cohen’s kappa is used to measure the pairwise agreement of
these operationalisations to evaluate whether the different operationalisations are statisti-
cally consistent across data sources and across count- and network-based metrics. Assuming
that core and peripheral developers exhibit different communication and coordination struc-
tures, the authors additionally analyse the position and temporal stability of developer roles.
Therefore, the authors evaluate node degree and clustering coefficient over time and build
Markov Chain models expressing the transition of developers across the roles core, periph-
eral, absent and idle. The authors additionally construct the core-periphery block model
describing edge probabilities between core and peripheral nodes in the developer network
to evaluate coordination preferences. Finally, Joblin et al. conduct a survey across 166 de-
velopers to evaluate to what extent the operationalisations agree with actual developer
perceptions.

Results: Joblin et al. find that the level of agreement between count-based metrics cal-
culated on version-control system and mailing-list data is consistently substantial for the
same data source and fair across data sources. For network-based metrics, the authors find
substantial agreement on the same data source. The agreement across all metrics and data
sources always exceeds random agreement. The time-resolved evaluation of structural and hi-
erarchical properties demonstrates that core developers consistently exhibit a low clustering
coefficient and high node degree in the network, while peripheral developers have the op-
posite. The Markov chain shows that core developers are less likely to transit to the absent
or isolated state. The decreasing probability of core-core, core-peripheral and peripheral-
peripheral edges in the core-periphery block model further confirms different coordination
preferences. The developer survey reveals that among the metrics types, network-based met-
rics have a higher agreement with developer perception, especially when constructed from
mailing lists.

Conclusions: Based on the quantitative and qualitative study results, the authors conclude
that all of the evaluated count- and network-based core-peripheral operationalisations are
overall consistent and agree with actual developer perception. They find that network-based
metrics can accurately discriminate core and peripheral developers due to their different
structural and hierarchical positions and their communication and coordination behaviour.

Scope of replication: The replication of Joblin et al. (2017al) focuses on the agreement
of core-peripheral developer operationalisations and the manifestation of different positions
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and role stability in the network structure. In particular, we focus on replicating the VCS
metrics, their level of agreement and the structural and hierarchical properties as analysed
by the original study.

Limitations: Our replication is further limited by several technical constraints. First, the
original study constructs developer networks in overlapping time windows. This feature is
not supported by GIT2NET, GRIMOIRELAB and KAIAULU and would cause additional compu-
tational effort, which is beyond the scope of this study. Since the authors compare results
pointwise and report temporal stability, we consider this threat as acceptable. In addition,
as we extract data and compare results obtained by different tools for exactly the same time
intervals, results should be consistent across tools regardless of whether overlapping time
intervals were used or not. Another limitation is caused by an anonymised subject project
named Project X, whose true identity could not be determined. Due to computing time
constraints, we were also unable to complete the calculations for the Linux project with
one of the tools. However, as shown in the original supplementary material, the findings for
these projects are consistent with those of all other subject projects, indicating only minor
information loss.

Considerations: The original study relies on CODEFACE and refers to its official repository,
but as dependencies used at the time of study are outdated and several important bug fixes
have been made, we conduct the replication using our own actively maintained version of
CODEFACE. KAIAULU was adjusted with new parameter options in previous work to support a
very close replication of data obtained by CODEFACE, which we adopt in this study. GIT2NET
also allows for constructing temporal developer networks as used in the original study.
However, the tool is only able to connect developers at line- instead on function-granularity
for this type of network. Similarly, file-level is the finest entity granularity supported by
GRIMOIRELAB. Although GRIMOIRELAB allows for network construction through its Kibana
Dashboard, the networks represent undirected graphs connecting arbitrary columns from its
database. We evaluated different types of nodes and relations and found the connection of
developers based on commonly edited files as the most similar representation to CODEFACE.
To get the actual adjacency matrix for the visualisation, we implemented a corresponding
query and network construction with the help of GRIMOIRELAB’s ElasticSearch API.

A.1.2 Second replication: software maintenance

Context: The second study Big Data = Big Insights? Operationalising Brooks’ Law in a
Massive GitHub Data Set from Gote et al. (2022) examines the relationship between pro-
ductivity and team size. In psychology, the Ringelmann effect describes the phenomenon of
productivity linearly decreasing with team size. In software engineering, Brooks’ law states
that adding manpower to a late software project makes it later.

Objective: Productivity has been widely studied in software engineering research, but
studies carried out on large data sources with similar empirical methods report disagreeing
results. The authors examine threats in large-scale repository mining and study the validity
of Brook’s law based on multiple productivity and collaborative metrics to dissolve these
conflicts.

Method: The original study employs a selection pipeline to systematically filter suitable
subject projects based on criteria such as the number of developers, project size, activity
and purpose from the GHTorrent dataset. The repositories are then mined with GIT2NET.
Based on this dataset, the authors calculate commit-based (number of commits, number
of events measured by line changes, and number of modified characters) and code-based
productivity metrics (changed LOC, changed number of code tokens, changed number of
functions, change in McCabe cyclomatic complexity, Halstead effort to make changes) per
time window of 42 weeks and respective team size. To explore the effect of collaborative as-
pects, the authors calculate metrics based on temporal line-granularity networks, including
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the number of nodes, number of edges, network density, network diameter, global cluster-
ing coefficient, mean indegree, mean foreign modification ratio and eigengap. The authors
log- or square-root-transform metrics due to skewness. To select a meaningful set of met-
rics to evaluate Brooks’ law, the original study calculates Pearson’s correlation coefficient
between the productivity and network metrics among each other and cross-correlation. The
authors then build multiple linear and quadratic regression models for different produc-
tivity target variables using team size and other network metrics to test the relationship
between team size and productivity assumed by Brooks’ law. This relationship is indicated
by the regression coefficients of the model. Gote et al. additionally analyse the existence of a
global maximum of the quadratic functions to evaluate the existence of an optimal team size.

Results: The authors find a strong correlation between all productivity metrics, except
for the number of commits and Halstead effort, which exhibit lower correlation coefficients.
For the network metrics, Gote et al. identify three clusters in the correlation matrix: The
first cluster indicates strong positive relationships between team size, number of nodes and
network diameter. The second cluster reports a positive correlation between clustering coef-
ficient, mean indegree and eigengap, and the third cluster only consists of the mean foreign
modification ratio. The authors pick one measure from each cluster to build their regression
models. Both the linear and quadratic models regressing different productivity metrics on
team size consistently yield a negative relation, indicating that, on average, individual pro-
ductivity decreases with higher team size. Furthermore, some of the models exploring the
existence of an optimal team size suggest that individual productivity increases for small
and decreases for larger teams, with an optimum of 7 or 19 members. The models with
network metrics as control variables suggest a positive relationship between mean indegree
and productivity, while the mean foreign modification ratio has a negative relationship with
productivity. Models further exploring the effect of network structure indicate a positive
relation between team size and the mean indegree of developers.

Conclusions: Since both, correlations and models expressing the relationship between team
size and a diverse set of metrics capturing independent dimensions of productivity consis-
tently indicate a negative trend, the original study concludes that the Ringelmann effect
and Brooks’ law apply to collaborative software development. The authors attribute con-
tradictory results to threats in the method and interpretation of results in other studies.

Scope of replication: The replication of |Gote et al (2022) focuses on the relationship
of team size and productivity, while accounting for the effect of structural properties. We
use a subset of expressive productivity and collaboration metrics to calculate correlations
and build linear and quadratic regression models. Specifically, we include the number of
commits and Halstead effort exhibiting unique characteristics. From the highly correlated
productivity measures, we choose the change in the number of functions, as it has the lowest
correlation with other productivity metrics. Among the network measures, we choose the
ones used by the authors to build regression models.

Limitations: The authors analyse 201 projects with GIT2NET, which took them over one
million CPU-hours. As resources are limited in our replication with four tools and three stud-
ies, we select a subset of ten representative subject projects. We reduce population threats
by selecting projects with all different team size clusters investigated by the original study
to approximate the distribution. As we do not know which version of the GHTorrent dataset
was used for sampling, we select projects based on the team size in the latest time window
in the reproduction data. This may lead to the selection of larger projects, as authors are
already disambiguated in this dataset. To ensure comparability with the original results, we
reduce the reproduction data to our set of projects and recalculate the originally observed
metrics accordingly. Gote et al. calculate all metrics based on time windows of 42 weeks.
Since CODEFACE does not support weekly granularity, we would not be able to compare its
results to those obtained by the other tools in a close replication. Therefore, we configure
a time window of nine months for all tools and use CODEFACE’s time window boundaries
as reference. Unfortunately, the code to calculate metrics is missing in the reproduction
package. We assume that code-level productivity metrics were calculated in the same way
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as by the official GIT2NET repositories. However, even with help of the original author, we
could not fully clarify the calculation of the network metrics. This leaves room for potential
incorrect implementations, which we cannot fully overcome. Although this limits compara-
bility with the original study, comparability across tools in the replication is not affected.

Considerations: The GIT2NET tutorials repository (Gote, [2022b) indicates that the team
size may be calculated after performing a left join between the complexity metrics and com-
mits, meaning that all commits without complexity statistics are discarded. While this may
appear as a technical detail, it influences the commit count as a unique productivity metric
and the team size as the central collaboration metric. In our replication, we prioritise the
impact of tool-specific variations over replication conformity. Therefore, we consider the mea-
sures extracted directly from each tool’s data base whenever possible. Productivity metrics
calculated by GIT2NET’s complexity analysis depend on the tools PYDRILLER and LIZARD.
Although these steps are part of GIT2NET, we apply the same pipeline to data extracted
by CODEFACE, GRIMOIRELAB and KAIAULU, as these tools do not implement comparable
metrics calculation.

A.1.8 Third replication: software quality

Context: The third study Impact of Developer Turnover on Quality in Open-Source Soft-
ware from Foucault et al. (2015) investigates the effect of team dynamics on software quality.
Developers may join and leave entire software projects or individual software module. Most
theories assume that these turnover phenomenons negatively impact software quality due
to a loss of experience and knowledge. Others hypothesise positive or negative effects on
team motivation and social interactions.

Objective: In an industrial setting, prior research found that developers who leave a soft-
ware project have a negative impact on software quality, while newcomers who join a project
have no impact on quality. The study aims to investigate whether the relationship between
turnover and quality is similar in open-source software projects with extensive use and low
entry barriers.

Method: The original study extracts data from five popular subject repositories using the
tool DiGaGIT. First, the authors evaluate whether turnover is an important phenomenon in
open-source projects. They measure turnover at module-granularity, with each module rep-
resenting a finite set of files. To modularise the source code, files are clustered manually
based on the directory structure. The study distinguishes between external turnover affect-
ing all modules of a project and internal turnover affecting a specific module. At project
level, turnover metrics are evaluated considering two subsequent time intervals of two weeks.
Developers contributing in the second but not the first period are considered newcomers. De-
velopers contributing in the first, but not in the second period are considered leavers. Stayers
contribute in both periods. To detect patterns, the original study splits the project’s history
into development periods of six months. By measuring the groups’ activity as the sum of
code churn per developer and module, the authors consider the varying levels of involvement
of individual developers. The study calculates bug density as the number of bug-fixing com-
mits per module, normalised by its size in lines of code. Bug-fixing commits are identified
manually from maintenance branches and include arithmetic and logic errors, security issues,
requirements misunderstanding and design flaws. Finally, the authors conduct Spearman’s
rank correlation tests and estimate confidence intervals using bootstrapping to evaluate the
relationship between each turnover metric and software quality.

Results: The study finds that at least 80% of developers are either newcomers or leavers.
Qualitatively analysing characteristics that cause developers to become stayers reveals that
payment and consulting may be influencing factors. Regarding contribution patterns, the
authors find that no module is exclusively changed by only external newcomers. Besides
that, the authors identify project-specific patterns. The confidence intervals for the correla-
tion between turnover and quality indicate a positive correlation between external newcomer
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activity and bug density for the majority of subject projects. Foucault et al. find no signif-
icant correlation between external leavers and quality. The confidence intervals for stayers
majorly indicate a positive correlation with bug fixes. For the internal turnover metrics,
results are unclear.

Conclusions: Finding high turnover in five highly successful projects leads the authors to
conclude that the role of turnover in open-source projects differs from the one in industrial
settings, disagreeing with the suggestion to control turnover. Although contribution patterns
are project-specific, the original study finds that external newcomers always work under su-
pervision. Based on the confidence intervals, the study concludes that external turnover
negatively impacts module quality, while internal turnover is not problematic.

Scope of replication: To address the domain of software quality, our replication of Fou-
cault et al. (2015) focuses on the impact of turnover on quality. However, to answer this
question in an informed manner, we calculate turnover metrics and evaluate patterns per
project as done in the original study, which also indicate the general relevance of turnover
in open-source projects. The original study evaluates different approaches for time inter-
val splitting, project modularisation, bug fix identification and classification, but does not
present results for all combinations in the paper and reproduction package. Therefore, we
exclude these additional approaches from our replication.

Limitations: The comprehensive reproduction package allows for reuse of the same subject
repositories and code logic. Although the code to calculate confidence intervals was miss-
ing, we could recover it from an updated version in a git repository of the author (Foucault|
2016)). An important difference in tools concerns the parsing of the git log. The original study
tool DIGGIT traverses across all branches to identify commits, while CODEFACE, GIT2NET and
KAIAULU only consider the linear history of the currently checked-out branch. While this
technical detail is less relevant for the previous studies, it plays a major role when analysing
the LTS branches containing bug fixing commits. This required us to perform separate analy-
sis runs of multiple branches to simulate the behaviour of DIGGIT with the before mentioned
tools. Limitations remain, as this approach would actually require manual identity merging
between the analysis runs. Another difference is the file filtering. DIGGIT supports complex
filters of regular expressions to choose files. Most similarly, KAIAULU provides configura-
tion options for users, but since they are based on exact substring matching, we cannot
accurately replicate all filters. The same is true for CODEFACE and GIT2NET with internally
defined filters and GRIMOIRELAB, which would require custom post-processing. All analyses
performed in the original study rely directly on the extracted commit history, without more
complex analyses such as network construction. This allows for an otherwise close replication.

Considerations: The authors modularise source code manually. As we are interested in
comparing tool pipelines, we do not replicate the manual part but adopt the authors’ de-
composition in all replications. Similarly, we adopt the classification of bug-fixing commits.
Although CODEFACE provides a keyword-based classification, its adoption would bias the
comparison of quality measured by CODEFACE and by other tools without such capabilities.
Therefore, we fixed the pipeline after data extraction to the original one for comparability.



Oops!...I did it again 63

References

Abualhaija S, Aydemir FB, Dalpiaz F, Dell’Anna D, Ferrari A, Franch X, Fucci D (2024)
Replication in Requirements Engineering: The NLP for RE Case. ACM Trans Softw Eng
Methodol 33(6)

Accioly P, Borba P, Silva L, Cavalcanti G (2018) Analyzing conflict predictors in open-source
Java projects. In: Proceedings of the 15th International Conference on Mining Software
Repositories, Association for Computing Machinery, MSR ’18, pp 576-586

Aghili R, Li H, Khomh F (2023) Studying the characteristics of AIOps projects on GitHub.
Empirical Softw Engg 28(6)

Ajienka N, Capiluppi A, Counsell S (2018) An empirical study on the interplay between
semantic coupling and co-change of software classes. Empirical Software Engineering
23(3):1791-1825

Alami A, Pardo R, Linaker J (2024) Free open source communities sustainability: Does it
make a difference in software quality? Empirical Software Engineering 29(5):114

Alami A, Klockmann S, Rehder Sgrensen L, Pardo R, Linaker J (2025) Incubation and
Beyond: A Comparative Analysis of ASF Projects Sustainability Impacts on Software
Quality

Alexandru CV, Gall HC (2015) Rapid Multi-Purpose, Multi-Commit Code Analysis. In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol 2, pp
635638

Alfadel M, Costa DE, Shihab E (2023) Empirical analysis of security vulnerabilities in
Python packages. Empirical Software Engineering 28(3):59

Alkadhi R, Lata T, Guzmany E, Bruegge B (2017) Rationale in Development Chat Messages:
An Exploratory Study. In: 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pp 436-446

Almanee S, Unal A, Payer M, Garcia J (2021) Too Quiet in the Library: An Empirical
Study of Security Updates in Android Apps’ Native Code. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pp 1347-1359

Almarimi N, Ouni A, Mkaouer MW (2020) Learning to detect community smells in open
source software projects. Knowledge-Based Systems 204:106201

Algadi BS, Maletic JI (2020) Slice-Based Cognitive Complexity Metrics for Defect Predic-
tion. In: 2020 IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp 411-422

Amreen S, Mockus A, Zaretzki R, Bogart C, Zhang Y (2020) ALFAA: Active Learning
Fingerprint based Anti-Aliasing for correcting developer identity errors in version control
systems. Empirical Software Engineering 25(2):1136-1167

Arabat A, Sayagh M (2024) An empirical study on cross-component dependent changes: A
case study on the components of OpenStack. Empirical Software Engineering 29(5):109

Ashraf U, Mayr-Dorn C, Egyed A, Panichella S (2020) A Mixed Graph-Relational Dataset
of Socio-technical Interactions in Open Source Systems. In: Proceedings of the 17th In-
ternational Conference on Mining Software Repositories, Association for Computing Ma-
chinery, MSR 20, pp 538-542

Avgustinov P, Baars AI, Henriksen AS, Lavender G, Menzel G, De Moor O, Schafer M,
Tibble J (2015) Tracking Static Analysis Violations over Time to Capture Developer
Characteristics. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol 1, pp 437-447

Basili V, Shull F, Lanubile F (1999) Building knowledge through families of experiments.
IEEE Trans Softw Eng 25(4):456—473

Batoun MA, Yung KL, Tian Y, Sayagh M (2023) An Empirical Study on GitHub Pull
Requests’ Reactions. ACM Trans Softw Eng Methodol 32(6)

Bavota G (2016) Mining Unstructured Data in Software Repositories: Current and Future
Trends. In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol 5, pp 1-12

Baysal O, Kononenko O, Holmes R, Godfrey MW (2016) Investigating technical and
non-technical factors influencing modern code review. Empirical Software Engineering
21(3):932-959



64 Nicole Hoess et al.

Bendimerad A, Remil Y, Mathonat R, Kaytoue M (2023) On-Premise AIOps Infrastructure
for a Software Editor SME: An Experience Report. In: Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Association for Computing Machinery, ESEC/FSE 2023, pp
1820-1831

Berger T, Steghofer JP, Ziadi T, Robin J, Martinez J (2020) The state of adoption and the
challenges of systematic variability management in industry. Empirical Software Engi-
neering 25(3):1755-1797

Bernardo JH, da Costa DA, Kulesza U, Treude C (2023) The impact of a continuous in-
tegration service on the delivery time of merged pull requests. Empirical Softw Engg
28(4)

Bernardo JH, Da Costa DA, Medeiros SQd, Kulesza U (2024) How do Machine Learning
Projects use Continuous Integration Practices? An Empirical Study on GitHub Actions.
In: Proceedings of the 21st International Conference on Mining Software Repositories,
Association for Computing Machinery, MSR. ’24, pp 665676

Bertoncello MV, Pinto G, Wiese IS, Steinmacher I (2020) Pull Requests or Commits? Which
Method Should We Use to Study Contributors’ Behavior? In: 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER), pp
592-601

Beyer S, Pinzger M (2016) Grouping android tag synonyms on stack overflow. In: Proceed-
ings of the 13th International Conference on Mining Software Repositories, Association
for Computing Machinery, MSR ’16, pp 430—440

Bezemer CP, McIntosh S, Adams B, German DM, Hassan AE (2017) An empirical study of
unspecified dependencies in make-based build systems. Empirical Software Engineering
22(6):3117-3148

Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A (2006) Mining email social net-
works. In: Proceedings of the 2006 International Workshop on Mining Software Reposi-
tories (MSR), Association for Computing Machinery, pp 137-143

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009) The promises
and perils of mining git. In: 2009 6th IEEE International Working Conference on Mining
Software Repositories (MSR), pp 1-10

Bird C, Murphy B, Nagappan N, Zimmermann T (2011) Empirical software engineering
at Microsoft Research. In: ACM 2011 Conference on Computer Supported Cooperative
Work (CSCW), pp 143-150

Bludau P, Pretschner A (2022) PR-SZZ: How pull requests can support the tracing of defects
in software repositories. In: 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp 1-12

Bock T, Hunsen C, Joblin M, Apel S (2021a) Synchronous development in open-source
projects: A higher-level perspective. Automated Software Engineering 29(1):3

Bock T, Schmid A, Apel S (2021b) Measuring and Modeling Group Dynamics in Open-
Source Software Development: A Tensor Decomposition Approach. ACM Trans Softw
Eng Methodol 31(2)

Bock T, Alznauer N, Joblin M, Apel S (2023) Automatic Core-Developer Identification on
GitHub: A Validation Study. ACM Trans Softw Eng Methodol 32(6)

Borg M, Wnuk K, Regnell B, Runeson P (2017) Supporting Change Impact Analysis Using
a Recommendation System: An Industrial Case Study in a Safety-Critical Context. IEEE
Transactions on Software Engineering 43(7):675-700

Bosu A, Greiler M, Bird C (2015) Characteristics of Useful Code Reviews: An Empirical
Study at Microsoft. In: 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pp 146-156

Brisson S, Noei E, Lyons K (2020) We Are Family: Analyzing Communication in GitHub
Software Repositories and Their Forks. In: 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp 59-69

Brito A, Xavier L, Hora A, Valente MT (2018) APIDiff: Detecting API breaking changes. In:
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp 507-511

Businge J, Openja M, Nadi S, Berger T (2022) Reuse and maintenance practices among
divergent forks in three software ecosystems. Empirical Software Engineering 27(2):54



Oops!...I did it again 65

Calefato F, Lanubile F, Maiorano F, Novielli N (2018) Sentiment Polarity Detection for
Software Development. Empirical Software Engineering 23(3):1352-1382

Calefato F, Gerosa MA, Iaffaldano G, Lanubile F, Steinmacher I (2022) Will you come back
to contribute? Investigating the inactivity of OSS core developers in GitHub. Empirical
Software Engineering 27(3):76

Catolino G, Palomba F, Tamburri DA, Serebrenik A, Ferrucci F (2019) Gender diversity
and women in software teams: how do they affect community smells? In: Proceedings
of the 41st International Conference on Software Engineering: Software Engineering in
Society, IEEE Press, ICSE-SEIS 19, pp 11-20

Chatley R, Jones L (2018) Diggit: Automated code review via software repository min-
ing. In: 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp 567-571

Chen AR, Chen THP, Wang S (2023) T-Evos: A Large-Scale Longitudinal Study on CI Test
Execution and Failure. IEEE Transactions on Software Engineering 49(4):2352-2365

Chen B, (Jack) Jiang ZM (2017) Characterizing logging practices in Java-based open source
software projects — a replication study in Apache Software Foundation. Empirical Software
Engineering 22(1):330-374

Chen Q, Kong D, Bao L, Sun C, Xia X, Li S (2022) Code reviewer recommendation in ten-
cent: practice, challenge, and direction. In: Proceedings of the 44th International Confer-
ence on Software Engineering: Software Engineering in Practice, Association for Comput-
ing Machinery, ICSE-SEIP 22, pp 115-124, URL https://doi.org/10.1145/3510457.
3513035

Chidambaram N, Mazrae PR (2022) Bot detection in GitHub repositories. In: Proceedings
of the 19th International Conference on Mining Software Repositories, Association for
Computing Machinery, MSR 22, pp 726-728

Chowdhury S, Uddin G, Hemmati H, Holmes R (2024) Method-level Bug Prediction: Prob-
lems and Promises. ACM Trans Softw Eng Methodol 33(4)

Chowdhury SA, Uddin G, Holmes R (2022) An empirical study on maintainable method
size in Java. In: Proceedings of the 19th International Conference on Mining Software
Repositories, Association for Computing Machinery, MSR ’22, pp 252-264

Ciniselli M, Cooper N, Pascarella L, Poshyvanyk D, Di Penta M, Bavota G (2021) An Em-
pirical Study on the Usage of BERT Models for Code Completion. In: 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR), pp 108-119

Claes M, Mens T, Di Cosmo R, Vouillon J (2015) A Historical Analysis of Debian Package
Incompatibilities. In: 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pp 212-223

Claes M, Méantyla M, Kuutila M, Adams B (2017) Abnormal Working Hours: Effect of Rapid
Releases and Implications to Work Content. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), pp 243-247

Claes M, Mantylda M, Farooq U (2018a) On the use of emoticons in open source software
development. In: Proceedings of the 12th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement, Association for Computing Machinery,
ESEM 18

Claes M, Méantyla M, Kuutila M, Farooq U (2018b) Towards automatically identifying paid
open source developers. In: Proceedings of the 15th International Conference on Mining
Software Repositories, Association for Computing Machinery, MSR ’18, pp 437-441

Cosentino V, Duenas S, Zerouali A, Robles G, Gonzalez-Barahona JM (2018) [Engineering
Paper| Graal: The Quest for Source Code Knowledge. In: 2018 IEEE 18th International
Working Conference on Source Code Analysis and Manipulation (SCAM), pp 123-128

Croft R, Xie Y, Zahedi M, Babar MA, Treude C (2021) An empirical study of develop-
ers’ discussions about security challenges of different programming languages. Empirical
Software Engineering 27(1):27

Danial A (2025) cloc: v2.06. URL https://doi.org/10.5281/zenodo. 15734241

Davis JC, Coghlan CA, Servant F, Lee D (2018) The impact of regular expression denial of
service (ReDoS) in practice: an empirical study at the ecosystem scale. In: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Association for Computing
Machinery, ESEC/FSE 2018, pp 246-256


https://doi.org/10.1145/3510457.3513035
https://doi.org/10.1145/3510457.3513035
https://doi.org/10.5281/zenodo.15734241

66 Nicole Hoess et al.

De Stefano M, Pecorelli F, Tamburri DA, Palomba F, De Lucia A (2020) Splicing Community
Patterns and Smells: A Preliminary Study. In: Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, Association for Computing
Machinery, ICSEW’20, pp 703-710

Decan A, Constantinou E, Mens T, Rocha H (2020) GAP: Forecasting commit activity in
git projects. Journal of Systems and Software 165:110573

Dehghan A, Neal A, Blincoe K, Linaker J, Damian D (2017) Predicting Likelihood of Re-
quirement Implementation within the Planned Iteration: An Empirical Study at IBM. In:
2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
pp 124-134

Dey S, Woods W (2022) LAGOON: an analysis tool for open source communities. In: Pro-
ceedings of the 19th International Conference on Mining Software Repositories, Associa-
tion for Computing Machinery, MSR ’22, pp 717-721

Di Nucci D, Palomba F, De Rosa G, Bavota G, Oliveto R, De Lucia A (2018) A Developer
Centered Bug Prediction Model. IEEE Transactions on Software Engineering 44(1):5-24

Di Penta M, Bavota G, Zampetti F (2020) On the relationship between refactoring actions
and bugs: A differentiated replication. In: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE), ACM, pp 556-567

Di Rocco J, Di Ruscio D, Di Sipio C, Nguyen PT, Rubei R (2021) Development of recom-
mendation systems for software engineering: the CROSSMINER experience. Empirical
Software Engineering 26(4):69

Dilhara M, Ketkar A, Dig D (2021) Understanding Software-2.0: A Study of Machine Learn-
ing Library Usage and Evolution. ACM Trans Softw Eng Methodol 30(4)

Dinh-Trong TT, Bieman JM (2005) The FreeBSD Project: A Replication Case Study of
Open Source Development. IEEE Trans Softw Eng 31(6):481-494

Dueiias S, Cosentino V, Robles G, Gonzalez-Barahona JM (2018) Perceval: software project
data at your will. In: Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, Association for Computing Machinery, ICSE ’18, pp
1-4

Duenas S, Cosentino V, Gonzalez-Barahona JM, del Castillo San A, Izquierdo-Cortazar D,
Cafias-Diaz L, Pérez Garcia-Plaza A (2021) GrimoireLab: A toolset for software devel-
opment analytics. PeerJ Computer Science

Durieux T, Madeiral F, Martinez M, Abreu R (2019) Empirical review of Java program re-
pair tools: a large-scale experiment on 2,141 bugs and 23,551 repair attempts. In: Proceed-
ings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Association for Computing
Machinery, ESEC/FSE 2019, pp 302-313

Eken B, Palma F, Ayse B, Ayse T (2021) An empirical study on the effect of community
smells on bug prediction. Software Quality Journal 29(1):159-194

El-Hajj R, Nadi S (2020) LibComp: an IntelliJ plugin for comparing Java libraries. In: Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Association for Computing
Machinery, ESEC/FSE 2020, pp 1591-1595

Ellis M, Nadi S, Dig D (2023) Operation-Based Refactoring-Aware Merging: An Empirical
Evaluation. IEEE Transactions on Software Engineering 49(4):2698-2721

Eng K, Sahar H (2022) Replicating data pipelines with GrimoireLab. In: Proceedings of the
19th International Conference on Mining Software Repositories, Association for Comput-
ing Machinery, MSR ’22, pp 741-743

Erlenhov L, Neto FGdO, Leitner P (2020) An empirical study of bots in software develop-
ment: characteristics and challenges from a practitioner’s perspective. In: Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Association for Computing Machinery,
ESEC/FSE 2020, pp 445455

Falcao F, Barbosa C, Fonseca B, Garcia A, Ribeiro M, Gheyi R (2020) On Relating Tech-
nical, Social Factors, and the Introduction of Bugs. In: 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp 378-388



Oops!...I did it again 67

Fan L, Liu J, Liu Z, Lo D, Xia X, Li S (2025) Exploring the Capabilities of LLMs for
Code-Change-Related Tasks. ACM Trans Softw Eng Methodol 34(6)

Fan Y, Xia X, da Costa DA, Lo D, Hassan AE, Li S (2021) The Impact of Mislabeled Changes
by SZZ on Just-in-Time Defect Prediction. IEEE Transactions on Software Engineering
47(8):1559-1586

Fang H, Herbsleb J, Vasilescu B (2023) Matching Skills, Past Collaboration, and Limited
Competition: Modeling When Open-Source Projects Attract Contributors. In: Proceed-
ings of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Association for Computing Machinery, ES-
EC/FSE 2023, pp 42-54

Fernandez-Ramil J, Izquierdo-Cortazar D, Mens T (2009) What Does It Take to Develop a
Million Lines of Open Source Code? In: Boldyreff C, Crowston K, Lundell B, Wasserman
AI (eds) Open Source Ecosystems: Diverse Communities Interacting, Springer Berlin
Heidelberg, pp 170-184

Flint SW, Chauhan J, Dyer R (2022) Pitfalls and guidelines for using time-based Git data.
Empirical Software Engineering 27(7):194

Foucault M (2016) RdeveloperTurnover. URL https://github.com/matthieu-foucault/
RdeveloperTurnover

Foucault M, Palyart M, Blanc X, Murphy GC, Falleri JR (2015) Impact of developer turnover
on quality in open-source software. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, Association for Computing Machinery, ESEC/FSE
2015, pp 829-841

Foundjem A, Eghan E, Adams B (2021a) Onboarding vs. Diversity, Productivity and Quality
— Empirical Study of the OpenStack Ecosystem. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp 1033-1045

Foundjem A, Eghan E, Adams B (2021b) An Open Dataset for Onboarding new Contribu-
tors: Empirical Study of OpenStack Ecosystem. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp
240-241

Foundjem A, Constantinou E, Mens T, Adams B (2022) A mixed-methods analysis of micro-
collaborative coding practices in OpenStack. Empirical Software Engineering 27(5):120

Gallaba K, McIntosh S (2020) Use and Misuse of Continuous Integration Features: An
Empirical Study of Projects That (Mis)Use Travis CI. IEEE Transactions on Software
Engineering 46(1):33-50

Gallaba K, Lamothe M, McIntosh S (2022) Lessons from eight years of operational data from
a continuous integration service: an exploratory case study of CircleCI. In: Proceedings of
the 44th International Conference on Software Engineering, Association for Computing
Machinery, ICSE ’22, pp 1330-1342

Gao H, Treude C, Zahedi M (2023) Evaluating Transfer Learning for Simplifying GitHub
READMEsS. In: Proceedings of the 31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, Association for
Computing Machinery, ESEC/FSE 2023, pp 1548-1560

Gao Z, Xia X, Lo D, Grundy J, Zimmermann T (2021) Automating the removal of obsolete
TODO comments. In: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
Association for Computing Machinery, ESEC/FSE 2021, pp 218-229

Gaughan M, Champion K, Hwang S (2024) Engineering Formality and Software Risk in
Debian Python Packages. In: 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp 1005-1010

Gautam A, Vishwasrao S, Servant F (2017) An empirical study of activity, popularity, size,
testing, and stability in continuous integration. In: Proceedings of the 14th International
Conference on Mining Software Repositories, IEEE Press, MSR ’17, pp 495-498

Ghaleb TA, da Costa DA, Zou Y (2019) An empirical study of the long duration of contin-
uous integration builds. Empirical Software Engineering 24(4):2102-2139

Ghezzi G, Gall HC (2013) Replicating mining studies with SOFAS. In: 2013 10th Working
Conference on Mining Software Repositories (MSR), pp 363-372

Gil Y, Lalouche G (2017) On the correlation between size and metric validity. Empirical
Software Engineering 22(5):2585-2611


https://github.com/matthieu-foucault/RdeveloperTurnover
https://github.com/matthieu-foucault/RdeveloperTurnover

68 Nicole Hoess et al.

Goeminne M, Mens T (2013) A comparison of identity merge algorithms for software repos-
itories. Science of Computer Programming 78(8):971-986

Goggins SP, Germonprez M, Lumbard K (2021) Making Open Source Project Health Trans-
parent. Computer 54(8):104-111

Golzadeh M, Decan A, Mens T (2022) On the rise and fall of CI services in GitHub. In:
2022 IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp 662-672

Gong J, Chen T (2022) Does configuration encoding matter in learning software perfor-
mance? an empirical study on encoding schemes. In: Proceedings of the 19th International
Conference on Mining Software Repositories, Association for Computing Machinery, MSR,
22, pp 482-494

Gonzalez-Barahona JM, Robles G (2023) Revisiting the reproducibility of empirical software
engineering studies based on data retrieved from development repositories. Information
and Software Technology 164:107318

Gonzalez-Barahona JM, Izquierdo-Cortdzar D, Robles G (2022) Software Development Met-
rics With a Purpose. Computer 55(4):66-73

Gonzdlez-Barahona JM, Robles G (2012) On the reproducibility of empirical software engi-
neering studies based on data retrieved from development repositories. Empirical Software
Engineering 17(1):75-89

Gote C (2022a) ASONAM 2022 Tutorial I: Mining and Analysing Collaboration in git
Repositories with git2net. In: 2022 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), pp xxviii-xxviii

Gote C (2022b) git2net-tutorials. URL https://github.com/gotec/git2net-tutorials

Gote C, Zingg C (2021) gambit — An Open Source Name Disambiguation Tool for Version
Control Systems. In: 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pp 80-84

Gote C, Scholtes I, Schweitzer F (2019) git2net - Mining Time-Stamped Co-Editing Net-
works from Large git Repositories. In: 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pp 433-444

Gote C, Scholtes I, Schweitzer F (2021) Analysing Time-Stamped Co-Editing Networks in
Software Development Teams using git2net. Empirical Software Engineering 26(4):75

Gote C, Mavrodiev P, Schweitzer F, Scholtes I (2022) Big Data = Big Insights? Operational-
ising Brooks’ Law in a Massive GitHub Data Set. In: 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), pp 262-273

Gousios G (2013) The GHTorent dataset and tool suite. In: Proceedings of the 10th Working
Conference on Mining Software Repositories, IEEE Press, MSR ’13, pp 233-236

Graf-Vlachy L, Wagner S (2024) Cleaning Up Confounding: Accounting for Endogeneity
Using Instrumental Variables and Two-Stage Models. ACM Trans Softw Eng Methodol
33(8)

Grotov K, Titov S, Sotnikov V, Golubev Y, Bryksin T (2022) A large-scale comparison of
Python code in Jupyter notebooks and scripts. In: Proceedings of the 19th International
Conference on Mining Software Repositories, Association for Computing Machinery, MSR
22, pp 353-364

Guizani M, Feng Z, Arteaga EJ, Canas-Diaz L, Serebrenik A, Sarma A (2023) Unveiling
Diversity: Empowering OSS Project Leaders with Community Diversity and Turnover
Dashboards

Guo S, Li D, Huang L, Lv S, Chen R, Li H, Li X, Jiang H (2024) Estimating Uncertainty
in Labeled Changes by SZZ Tools on Just-In-Time Defect Prediction. ACM Trans Softw
Eng Methodol 33(4)

Guo X (2016) SmartDebug: an interactive debug assistant for Java. In: Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, Association for Computing Machinery, FSE 2016, pp 1127-1129

Goémez OS, Juristo N, Vegas S (2014) Understanding replication of experiments in software
engineering: A classification. Information and Software Technology 56(8):1033-1048

Hasabnis N (2022) GitRank: a framework to rank GitHub repositories. In: Proceedings
of the 19th International Conference on Mining Software Repositories, Association for
Computing Machinery, MSR 22, pp 729-731


https://github.com/gotec/git2net-tutorials

Oops!...I did it again 69

Hashimoto M, Mori A, Izumida T (2018) Automated patch extraction via syntax- and
semantics-aware Delta debugging on source code changes. In: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Association for Computing Machinery,
ESEC/FSE 2018, pp 598-609

Hata H, Kula RG, Ishio T, Treude C (2021) Same File, Different Changes: The Potential
of Meta-Maintenance on GitHub. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pp 773-784

He H, He R, Gu H, Zhou M (2021a) A large-scale empirical study on Java library migrations:
prevalence, trends, and rationales. In: Proceedings of the 29th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Association for Computing Machinery, ESEC/FSE 2021, pp 478-490

He H, Xu Y, Ma Y, Xu Y, Liang G, Zhou M (2021b) A Multi-Metric Ranking Approach
for Library Migration Recommendations. In: 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp 72-83

Herbold S, Amirfallah A, Trautsch F, Grabowski J (2021) A systematic mapping study of
developer social network research. Journal of Systems and Software 171:110802

Herbold S, Trautsch A, Ledel B, Aghamohammadi A, Ghaleb TA, Chahal KK, Bossenmaier
T, Nagaria B, Makedonski P, Ahmadabadi MN, Szabados K, Spieker H, Madeja M, Hoy
N, Lenarduzzi V, Wang S, Rodriguez-Pérez G, Colomo-Palacios R, Verdecchia R, Singh
P, Qin Y, Chakroborti D, Davis W, Walunj V, Wu H, Marcilio D, Alam O, Aldaeej A,
Amit I, Turhan B, Eismann S, Wickert AK, Malavolta I, Sulir M, Fard F, Henley AZ,
Kourtzanidis S, Tuzun E, Treude C, Shamasbi SM, Pashchenko I, Wyrich M, Davis J,
Serebrenik A, Albrecht E, Aktas EU, Striiber D, Erbel J (2022) A fine-grained data set
and analysis of tangling in bug fixing commits. Empirical Software Engineering 27(6):125

Hermann B, Winter S, Siegmund J (2020) Community expectations for research artifacts
and evaluation processes. In: Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, Association for Computing Machinery, ESEC/FSE 2020, pp 469-480

Hirao T, McIntosh S, Thara A, Matsumoto K (2019) The review linkage graph for code review
analytics: a recovery approach and empirical study. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Association for Computing Machinery, ESEC/FSE
2019, pp 578-589

Hoess N, Paradis C, Kazman R, Mauerer W (2025) Does the Tool Matter? Exploring Some
Causes of Threats to Validity in Mining Software Repositories. In: 2025 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER), pp
645-656

Hommersom D, Sabetta A, Coppola B, Nucci DD, Tamburri DA (2024) Automated Mapping
of Vulnerability Advisories onto their Fix Commits in Open Source Repositories. ACM
Trans Softw Eng Methodol 33(5)

Hora A, Silva D, Valente MT, Robbes R (2018) Assessing the threat of untracked changes
in software evolution. In: Proceedings of the 40th International Conference on Software
Engineering, Association for Computing Machinery, ICSE ’18, pp 1102-1113

Huang L, Meyer B, Mustafin I, Oriol M (2024) Execution-Free Program Repair. In: Com-
panion Proceedings of the 32nd ACM International Conference on the Foundations of
Software Engineering, Association for Computing Machinery, FSE 2024, pp 517-521

Huang Q, Shihab E, Xia X, Lo D, Li S (2018) Identifying self-admitted technical debt in
open source projects using text mining. Empirical Software Engineering 23(1):418-451

Hulse J, Eisty NU, Menzies T (2025) Shaky structures: The wobbly world of causal graphs
in software analytics. Empirical Software Engineering 30(5):142

Hunsen C, Siegmund J, Apel S (2020) On the fulfillment of coordination requirements in
open-source software projects: An exploratory study. Empirical Software Engineering
25(6):4379-4426

Hartel J, Lammel R (2020) Incremental Map-Reduce on Repository History. In: 2020
IEEE 27th International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), pp 320-331



70 Nicole Hoess et al.

Hartel J, Lammel R (2022) Operationalizing threats to MSR studies by simulation-based
testing. In: Proceedings of the 19th International Conference on Mining Software Repos-
itories, Association for Computing Machinery, MSR ’22, pp 86-97

Hartel J, Laimmel R (2023) Operationalizing validity of empirical software engineering stud-
ies. Empirical Software Engineering 28(6):153

Tannone E, Codabux Z, Lenarduzzi V, De Lucia A, Palomba F (2023) Rubbing salt in the
wound? A large-scale investigation into the effects of refactoring on security. Empirical
Software Engineering 28(4):89

Izquierdo D, Gonzalez-Barahona JM, Kurth L, Robles G (2019) Software Development
Analytics for Xen: Why and How. IEEE Software 36(3):28-32

Izquierdo-Cortazar D, Alonso-Gutierrez J, Garcia-Plaza AP, Robles G, Gonzalez-Barahona
JM (2022) Starting the InnerSource journey: key goals and metrics to measure collabo-
ration. In: Proceedings of the 19th International Conference on Mining Software Reposi-
tories, Association for Computing Machinery, MSR ’22, pp 105-106

Jebnoun H, Ben Braiek H, Rahman MM, Khomh F (2020) The Scent of Deep Learning Code:
An Empirical Study. In: Proceedings of the 17th International Conference on Mining
Software Repositories, Association for Computing Machinery, MSR ’20, pp 420-430

Jiang H, Shi L, Che M, Zhang Y, Wang Q (2024) Bringing Open Source Communication
and Development Together: A Cross-Platform Study on Gitter and GitHub. IEEE Trans-
actions on Software Engineering 50(11):2807-2826

Jiang Q, Peng X, Wang H, Xing Z, Zhao W (2015) Summarizing Evolutionary Trajectory
by Grouping and Aggregating relevant code changes. In: 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pp 361-370

Jiang Y (2015) Improving the integration process of large software systems. In: 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), pp 598-598

Joblin M, Apel S (2022) How Do Successful and Failed Projects Differ? A Socio-Technical
Analysis. ACM Trans Softw Eng Methodol 31

Joblin M, Mauerer W, Apel S, Siegmund J, Riehle D (2015) From Developer Networks
to Verified Communities: A Fine-Grained Approach. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol 1, pp 563573

Joblin M, Apel S, Hunsen C, Mauerer W (2017a) Classifying Developers into Core and
Peripheral: An Empirical Study on Count and Network Metrics. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), pp 164-174

Joblin M, Apel S, Mauerer W (2017b) Evolutionary trends of developer coordination: a
network approach. Empirical Software Engineering 22(4):2050-2094

Joblin M, Eckl B, Bock T, Schmid A, Siegmund J, Apel S (2023) Hierarchical and Hybrid
Organizational Structures in Open-source Software Projects: A Longitudinal Study. ACM
Trans Softw Eng Methodol 32(4)

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The
promises and perils of mining GitHub. In: Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR), ACM, pp 92-101

Kamienski A, Bezemer CP (2021) An empirical study of Q&A websites for game developers.
Empirical Software Engineering 26(6):115

Kannee K, Kula RG, Wattanakriengkrai S, Matsumoto K (2023) Intertwining Communities:
Exploring Libraries that Cross Software Ecosystems. In: 2023 IEEE/ACM 20th Interna-
tional Conference on Mining Software Repositories (MSR), pp 518-522

Kauhanen E, Nurminen JK, Mikkonen T, Pashkovskiy M (2021) Regression Test Selection
Tool for Python in Continuous Integration Process. In: 2021 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER), pp 618-621

Khalajzadeh H, Shahin M, Obie HO, Agrawal P, Grundy J (2023) Supporting Developers
in Addressing Human-Centric Issues in Mobile Apps. IEEE Trans Softw Eng 49(4):2149—
2168

Kiehn M, Pan X, Camci F (2019) Empirical Study in using Version Histories for Change Risk
Classification. In: 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), pp 58-62

Kitchenham B (2004) Procedures for Performing Systematic Reviews. Keele, UK, Keele
Univ 33



Oops!...I did it again 71

Kitchenham B, Brereton P (2013) A systematic review of systematic review process research
in software engineering. Information and Software Technology 55(12):2049-2075

Kriiger J (2019) Tackling knowledge needs during software evolution. In: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Association for Computing Machinery,
ESEC/FSE 2019, pp 12441246

Kuutila M, Méantyla MV, Claes M, Elovainio M, Adams B (2018) Using experience sam-
pling to link software repositories with emotions and work well-being. In: Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, Association for Computing Machinery, ESEM ’18

Kuutila M, Méantylda M, Claes M, Elovainio M, Adams B (2021) Individual differences limit
predicting well-being and productivity using software repositories: a longitudinal indus-
trial study. Empirical Software Engineering 26(5):88

Lamba H, Trockman A, Armanios D, Késtner C, Miller H, Vasilescu B (2020) Heard it
through the Gitvine: an empirical study of tool diffusion across the npm ecosystem. In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, Association for
Computing Machinery, ESEC/FSE 2020, pp 505-517

Lambiase S, Catolino G, Tamburri DA, Serebrenik A, Palomba F, Ferrucci F (2022) Good
fences make good neighbours? on the impact of cultural and geographical dispersion on
community smells. In: Proceedings of the 2022 ACM /IEEE 44th International Conference
on Software Engineering: Software Engineering in Society, Association for Computing
Machinery, ICSE-SEIS 22, pp 67-78

Lefever J, Cai Y, Cervantes H, Kazman R, Fang H (2021) On the lack of consensus among
technical debt detection tools. In: Proceedings of the 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), IEEE Press, pp
121-130

Li H, Chen THP, Shang W, Hassan AE (2018) Studying software logging using topic models.
Empirical Software Engineering 23(5):2655-2694

Li L, Gao J, Bissyandé TF, Ma L, Xia X, Klein J (2020) CDA: Characterising Deprecated
Android APIs. Empirical Software Engineering 25(3):2058—2098

LiY, Wang S, Nguyen TN (2022) UTANGO: untangling commits with context-aware, graph-
based, code change clustering learning model. In: Proceedings of the 30th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Association for Computing Machinery, ESEC/FSE 2022, pp 221-232

Liang JT, Badea C, Bird C, DeLine R, Ford D, Forsgren N, Zimmermann T (2024) Can
GPT-4 Replicate Empirical Software Engineering Research? Proc ACM Softw Eng 1(FSE)

Lin B, Wang S, Liu Z, Liu Y, Xia X, Mao X (2023) CCT5: A Code-Change-Oriented Pre-
trained Model. In: Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Association for
Computing Machinery, ESEC/FSE 2023, pp 1509-1521

Liu C, Gao C, Xia X, Lo D, Grundy J, Yang X (2021) On the Reproducibility and Replica-
bility of Deep Learning in Software Engineering. ACM Trans Softw Eng Methodol 31(1)

Liu P, Fazzini M, Grundy J, Li L (2022) Do customized Android frameworks keep pace
with Android? In: Proceedings of the 19th International Conference on Mining Software
Repositories, Association for Computing Machinery, MSR ’22, pp 376-387

Luo Q, Poshyvanyk D, Grechanik M (2016) Mining performance regression inducing code
changes in evolving software. In: Proceedings of the 13th International Conference on
Mining Software Repositories, Association for Computing Machinery, MSR ’16, pp 25-36

Lyu Y, Kang HJ, Widyasari R, Lawall J, Lo D (2024) Evaluating SZZ Implementations:
An Empirical Study on the Linux Kernel. IEEE Transactions on Software Engineering
50(9):2219-2239

Ma Y, Dey T, Bogart C, Amreen S, Valiev M, Tutko A, Kennard D, Zaretzki R, Mockus A
(2021) World of code: enabling a research workflow for mining and analyzing the universe
of open source VCS data. Empirical Software Engineering 26(2):22

Macho C, McIntosh S, Pinzger M (2017) Extracting Build Changes with BUILDDIFF. In:
2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
pp 368-378



72 Nicole Hoess et al.

Maddila C, Shanbhogue S, Agrawal A, Zimmermann T, Bansal C, Forsgren N, Agrawal D,
Herzig K, van Deursen A (2022) Nalanda: a socio-technical graph platform for building
software analytics tools at enterprise scale. In: Proceedings of the 30th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Association for Computing Machinery, ESEC/FSE 2022, pp 1246-1256

Mahadi A, Ernst NA, Tongay K (2021) Conclusion stability for natural language based
mining of design discussions. Empirical Software Engineering 27(1):9

Mahmood Z, Bowes D, Hall T, Lane PCR, Petri¢ J (2018) Reproducibility and replicability
of software defect prediction studies. Information and Software Technology 99:148-163

Mahmoudi M, Nadi S, Tsantalis N (2019) Are Refactorings to Blame? An Empirical Study of
Refactorings in Merge Conflicts. In: 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp 151-162

Mauerer W, Joblin M, Tamburri DA, Paradis C, Kazman R, Apel S (2022a) In Search of
Socio-Technical Congruence: A Large-Scale Longitudinal Study. IEEE Transactions on
Software Engineering 48(8):3159-3184

Mauerer W, Klessinger S, Scherzinger S (2022b) Beyond the badge: Reproducibility en-
gineering as a lifetime skill. In: 4th International Workshop on Software Engineering
Education for the Next Generation (SEENG), ACM, pp 1-4

Mazuera-Rozo A, Bautista-Mora J, Linares-Vasquez M, Rueda S, Bavota G (2019) The An-
droid OS stack and its vulnerabilities: an empirical study. Empirical Software Engineering
24(4):2056-2101

McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact
of modern code review practices on software quality. Empirical Software Engineering
21(5):2146-2189

Meijer W, Visscher D, de Haan E, Schroder M, Visscher L, Capiluppi A, Botez I (2022)
Maintenance and evolution: GrimoireLab graal. In: Proceedings of the 19th International
Conference on Mining Software Repositories, Association for Computing Machinery, MSR,
22, pp 732-734

Meneely A, Williams L (2011) Socio-technical developer networks: Should we trust our mea-
surements? In: Proceedings of the 33rd International Conference on Software Engineering
(ICSE), ACM, pp 281-290

Mezouar ME, da Costa DA, German DM, Zou Y (2022) Exploring the Use of Chatrooms
by Developers: An Empirical Study on Slack and Gitter. IEEE Transactions on Software
Engineering 48(10):3988-4001

Michelon GK, Obermann D, Assungao WKG, Linsbauer L, Griinbacher P, Fischer S, Lopez-
Herrejon RE, Egyed A (2022) Evolving software system families in space and time with
feature revisions. Empirical Software Engineering 27(5):112

Milano K, Cafeo B (2024) Navigating Expertise in Configurable Software Systems through
the Maze of Variability. In: 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp 450-454

Milewicz R, Pinto G, Rodeghero P (2019) Characterizing the Roles of Contributors in Open-
Source Scientific Software Projects. In: 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pp 421-432

Mockus A, Spinellis D, Kotti Z, Dusing GJ (2020) A Complete Set of Related Git Repos-
itories Identified via Community Detection Approaches Based on Shared Commits. In:
Proceedings of the 17th International Conference on Mining Software Repositories, As-
sociation for Computing Machinery, MSR ’20, pp 513-517

Mondal M, Rahman MS, Roy CK, Schneider KA (2018) Is cloned code really stable? Em-
pirical Software Engineering 23(2):693-770

Montgomery L, Liiders C, Maalej W (2022) An alternative issue tracking dataset of public
Jira repositories. In: Proceedings of the 19th International Conference on Mining Software
Repositories, Association for Computing Machinery, MSR ’22, pp 73-77

Moonen L, Rolfsnes T, Binkley D, Di Alesio S (2018) What are the effects of history length
and age on mining software change impact? Empirical Software Engineering 23(4):2362—
2397

Moreno D, Duenas S, Cosentino V, Fernandez MA, Zerouali A, Robles G, Gonzalez-
Barahona JM (2019) SortingHat: Wizardry on Software Project Members. In: 2019
IEEE/ACM 41st International Conference on Software Engineering: Companion Pro-



Oops!...I did it again 73

ceedings (ICSE-Companion), pp 51-54

Mumtaz H, Paradis C, Palomba F, Tamburri DA, Kazman R, Blincoe K (2022a) A prelimi-
nary study on the assignment of GitHub issues to issue commenters and the relationship
with social smells. In: Proceedings of the 15th International Conference on Cooperative
and Human Aspects of Software Engineering (CHASE), Association for Computing Ma-
chinery, pp 61-65

Mumtaz H, Singh P, Blincoe K (2022b) Analyzing the Relationship between Community and
Design Smells in Open-Source Software Projects: An Empirical Study. In: Proceedings of
the 16th ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), ACM, pp 23-33

Muse BA, Khomh F, Antoniol G (2023) Refactoring practices in the context of data-intensive
systems. Empirical Software Engineering 28(2):46

Nafi KW, Asaduzzaman M, Roy B, Roy CK, Schneider KA (2022) Mining Software Infor-
mation Sites to Recommend Cross-Language Analogical Libraries. In: 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER), pp
913-924

Nejati S, Sabetzadeh M, Arora C, Briand LC, Mandoux F (2016) Automated change impact
analysis between SysML models of requirements and design. In: Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
Association for Computing Machinery, FSE 2016, pp 242-253

Newton OB, Fiore SM (2023) Leveraging Corporate Engagement for Diversity in Free/Li-
bre and Open Source Software Projects. In: 2023 IEEE/ACM 4th Workshop on Gender
Equity, Diversity, and Inclusion in Software Engineering (GEICSE), pp 41-48

Nguyen H, Lomio F, Pecorelli F, Lenarduzzi V (2022) PANDORA: Continuous Mining
Software Repository and Dataset Generation. In: 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp 263-267

Nguyen N, Nadi S (2022) An empirical evaluation of GitHub copilot’s code suggestions.
In: Proceedings of the 19th International Conference on Mining Software Repositories,
Association for Computing Machinery, MSR ’22, pp 1-5

Nguyen PT, Rubei R, Di Rocco J, Di Sipio C, Di Ruscio D, Di Penta M (2023) Dealing
with Popularity Bias in Recommender Systems for Third-party Libraries: How far Are
We? In: 2023 IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR), pp 12-24

Ni C, Xia X, Lo D, Yang X, Hassan AE (2022) Just-In-Time Defect Prediction on JavaScript
Projects: A Replication Study. ACM Trans Softw Eng Methodol 31(4)

Nia R, Bird C, Devanbu P, Filkov V (2010) Validity of network analyses in Open Source
Projects. In: 2010 7th IEEE Working Conference on Mining Software Repositories (MSR),
pp 201-209

Nikolaidis N, Mittas N, Ampatzoglou A, Feitosa D, Chatzigeorgiou A (2023) A metrics-
based approach for selecting among various refactoring candidates. Empirical Software
Engineering 29(1):25

Niu F, Mayr-Dorn C, Assungdo WKG, Huang L, Ge J, Luo B, Egyed A (2023) The ABLoTS
Approach for Bug Localization: is it replicable and generalizable? In: 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR), pp 576-587

Noei S, Li H, Georgiou S, Zou Y (2023) An Empirical Study of Refactoring Rhythms and
Tactics in the Software Development Process. IEEE Transactions on Software Engineering
49(12):5103-5119

Norikane T, Thara A, Matsumoto K (2017) Which review feedback did long-term contributors
get on OSS projects? In: 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp 571-572

Nurwidyantoro A, Shahin M, Chaudron M, Hussain W, Perera H, Shams RA, Whittle J
(2023) Integrating human values in software development using a human values dash-
board. Empirical Software Engineering 28(3):67

Nyamawe AS, Liu H, Niu N, Umer Q, Niu Z (2020) Feature requests-based recommendation
of software refactorings. Empirical Software Engineering 25(5):4315-4347

OBrien D, Biswas S, Imtiaz S, Abdalkareem R, Shihab E, Rajan H (2022) 23 shades of self-
admitted technical debt: an empirical study on machine learning software. In: Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium on the



74 Nicole Hoess et al.

Foundations of Software Engineering, Association for Computing Machinery, ESEC/FSE
2022, pp 734-746

Oishwee SJ, Codabux Z, Stakhanova N (2022) An exploratory study on the relationship of
smells and design issues with software vulnerabilities. In: Proceedings of the 1st Interna-
tional Workshop on Mining Software Repositories Applications for Privacy and Security,
Association for Computing Machinery, MSR4P&S 2022, pp 16-20

Oliveira A, Correia J, Sousa L, Assungao WKG, Coutinho D, Garcia A, Oizumi W, Barbosa
C, Uchda A, Pereira JA (2023) Don’t Forget the Exception! : Considering Robustness
Changes to Identify Design Problems. In: 2023 IEEE/ACM 20th International Conference
on Mining Software Repositories (MSR), pp 417-429

Oliveira E, Fernandes E, Steinmacher I, Cristo M, Conte T, Garcia A (2020) Code
and commit metrics of developer productivity: a study on team leaders percep-
tions. Empirical Software Engineering 25(4):2519-2549, URL https://doi.org/10.1007/
s10664-020-09820-z

Oumarou H, Anquetil N, Etien A, Ducasse S, Taiwe KD (2015) Identifying the exact fixing
actions of static rule violation. In: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pp 371-379

Palomba F, Tamburri DA (2021) Predicting the emergence of community smells using
socio-technical metrics: A machine-learning approach. Journal of Systems and Software
171:110847

Palomba F, Zanoni M, Fontana FA, De Lucia A, Oliveto R (2019) Toward a Smell-Aware
Bug Prediction Model. IEEE Transactions on Software Engineering 45(2):194-218

Palomba F, Andrew Tamburri D, Arcelli Fontana F, Oliveto R, Zaidman A, Serebrenik A
(2021) Beyond Technical Aspects: How Do Community Smells Influence the Intensity of
Code Smells? IEEE Trans Softw Eng 47(1):108-129

Panichella S, Bavota G, Penta MD, Canfora G, Antoniol G (2014) How Developers’ Collab-
orations Identified from Different Sources Tell Us about Code Changes. In: 2014 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp 251-260

Paradis C, Kazman R (2022) Building the MSR Tool Kaiaulu: Design Principles and Expe-
riences. In: Software Architecture, Springer International Publishing, pp 107-129

Paradis C, Perez Dominguez I, Davies M (2023) Towards Streamlining Auditing for Com-
pliance with Requirements in Open-Source Software at Nasa

Paradis C, Kazman R, Konrad M (2024a) A socio-technical perspective on software vulner-
abilities: A causal analysis. Information and Software Technology 176:107553

Paradis C, Kazman R, Tamburri D (2024b) Analyzing the Tower of Babel with Kaiaulu.
Journal of Systems and Software 210:111967

Parry O, Kapfhammer GM, Hilton M, McMinn P (2023) Empirically evaluating flaky test
detection techniques combining test case rerunning and machine learning models. Empir-
ical Software Engineering 28(3):72

Peruma A, Almalki K, Newman CD, Mkaouer MW, Ouni A, Palomba F (2020) tsDetect: an
open source test smells detection tool. In: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Association for Computing Machinery, ESEC/FSE 2020, pp 1650—
1654

Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping
studies in software engineering: An update. Information and Software Technology 64:1-18

Piantadosi V, Fierro F, Scalabrino S, Serebrenik A, Oliveto R (2020) How does code readabil-
ity change during software evolution? Empirical Software Engineering 25(6):5374-5412

Pinto G, Steinmacher I, Gerosa MA (2016) More Common Than You Think: An In-depth
Study of Casual Contributors. In: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol 1, pp 112-123

Ponta SE, Plate H, Sabetta A (2020) Detection, assessment and mitigation of vulnerabilities
in open source dependencies. Empirical Software Engineering 25(5):3175-3215

Pornprasit C, Tantithamthavorn CK (2021) JITLine: A Simpler, Better, Faster, Finer-
grained Just-In-Time Defect Prediction. In: 2021 IEEE/ACM 18th International Con-
ference on Mining Software Repositories (MSR), pp 369-379

Pravilov M, Bogomolov E, Golubev Y, Bryksin T (2021) Unsupervised learning of general-
purpose embeddings for code changes. In: Proceedings of the 5th International Workshop


https://doi.org/10.1007/s10664-020-09820-z
https://doi.org/10.1007/s10664-020-09820-z

Oops!...I did it again 75

on Machine Learning Techniques for Software Quality Evolution, Association for Com-
puting Machinery, MaLTESQuE 2021, pp 7-12

Picha P, Brada P, Ramsauer R, Mauerer W (2017) Towards Architect’s Activity Detection
through a Common Model for Project Pattern Analysis. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW), pp 175-178

Rahman A, Agrawal A, Krishna R, Sobran A (2018) Characterizing the influence of contin-
uous integration: empirical results from 250+ open source and proprietary projects. In:
Proceedings of the 4th ACM SIGSOFT International Workshop on Software Analytics,
Association for Computing Machinery, SWAN 2018, pp 8-14

Rahman A, Farhana E, Imtiaz N (2019) Snakes in Paradise?: Insecure Python-Related
Coding Practices in Stack Overflow. In: 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pp 200-204

Rahman A, Farhana E, Parnin C, Williams L (2020) Gang of eight: a defect taxonomy
for infrastructure as code scripts. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, Association for Computing Machinery, ICSE ’20,
pp 752-764

Rahman A, Shamim SI, Bose DB, Pandita R (2023) Security Misconfigurations in Open
Source Kubernetes Manifests: An Empirical Study. ACM Trans Softw Eng Methodol
32(4)

Rahman MM, Roy CK, Collins JA (2016) CoRReCT: code reviewer recommendation in
GitHub based on cross-project and technology experience. In: Proceedings of the 38th
International Conference on Software Engineering Companion, Association for Comput-
ing Machinery, ICSE ’16, pp 222-231

Rahman MR, Imtiaz N, Storey MA, Williams L (2022) Why secret detection tools are not
enough: It’s not just about false positives - An industrial case study. Empirical Software
Engineering 27(3):59

Ramsauer R, Lohmann D, Mauerer W (2019) The List is the Process: Reliable Pre-
Integration Tracking of Commits on Mailing Lists. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pp 807-818

Rastogi A, Nagappan N (2016) Forking and the Sustainability of the Developer Community
Participation — An Empirical Investigation on Outcomes and Reasons. In: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
vol 1, pp 102-111

Reck J, Bach T, Stoess J (2023) A Multidimensional Analysis of Bug Density in SAP HANA.
In: Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Association for Computing Ma-
chinery, ESEC/FSE 2023, pp 1997-2007

Rehman I, Wang D, Kula RG, Ishio T, Matsumoto K (2022) Newcomer OSS-Candidates:
Characterizing Contributions of Novice Developers to GitHub. Empirical Software Engi-
neering 27(5):109

Robati Shirzad M, Lam P (2024) A study of common bug fix patterns in Rust. Empirical
Software Engineering 29(2):44

Robles G (2010) Replicating MSR: A study of the potential replicability of papers published
in the Mining Software Repositories proceedings. In: 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR), pp 171-180

Robles G, Gonzélez-Barahona JM, Cervigén C, Capiluppi A, Izquierdo-Cortdzar D (2014)
Estimating development effort in Free/Open source software projects by mining software
repositories: a case study of OpenStack. In: Proceedings of the 11th Working Conference
on Mining Software Repositories, Association for Computing Machinery, MSR 2014, pp
222-231

Robles G, Capiluppi A, Gonzalez-Barahona JM, Lundell B, Gamalielsson J (2022) Devel-
opment effort estimation in free/open source software from activity in version control
systems. Empirical Software Engineering 27(6):135

Robles G, Gamalielsson J, Lundell B, Brax C, Persson T, Mattsson A, Gustavsson T, Feist
J, Oberg J (2024) On the Industrial Leadership and Involvement in the LwM2M IoT
Ecosystem. In: Proceedings of the ACM/IEEE 6th International Workshop on Software
Engineering Research & Practices for the Internet of Things, Association for Computing
Machinery, SERP4IoT 24, pp 44-51



76 Nicole Hoess et al.

Rolfsnes T, Di Alesio S, Behjati R, Moonen L, Binkley DW (2016) Generalizing the Analysis
of Evolutionary Coupling for Software Change Impact Analysis. In: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
vol 1, pp 201-212

Rolfsnes T, Moonen L, Alesio SD, Behjati R, Binkley D (2018) Aggregating Association
Rules to Improve Change Recommendation. Empirical Software Engineering 23(2):987—
1035

Rombaut B, Cogo FR, Adams B, Hassan AE (2023) There’s no Such Thing as a Free
Lunch: Lessons Learned from Exploring the Overhead Introduced by the Greenkeeper
Dependency Bot in Npm. ACM Trans Softw Eng Methodol 32(1)

Rosa G, Zappone F, Scalabrino S, Oliveto R (2024) Fixing Dockerfile smells: an empirical
study. Empirical Software Engineering 29(5):108

Rossi D, Zacchiroli S (2022) Geographic diversity in public code contributions: an ex-
ploratory large-scale study over 50 years. In: Proceedings of the 19th International Con-
ference on Mining Software Repositories, Association for Computing Machinery, MSR
22, pp 80-85

Rua R, Saraiva J (2023) A large-scale empirical study on mobile performance: energy, run-
time and memory. Empirical Software Engineering 29(1):31

Ruangwan S, Thongtanunam P, Thara A, Matsumoto K (2019) The impact of human factors
on the participation decision of reviewers in modern code review. Empirical Software
Engineering 24(2):973-1016

Roseler L, Scholtes I, Gote C (2023) A Network Perspective on the Influence of Code Review
Bots on the Structure of Developer Collaborations

Saariméki N, Moreschini S, Lomio F, Penaloza R, Lenarduzzi V (2022) Towards a Robust
Approach to Analyze Time-Dependent Data in Software Engineering. In: 2022 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER),
pp 36-40

Santolucito M, Zhang J, Zhai E, Cito J, Piskac R (2022) Learning CI Configuration Cor-
rectness for Early Build Feedback. In: 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp 1006-1017

Santos F, Vargovich J, Trinkenreich B, Santos I, Penney J, Britto R, Pimentel JF, Wiese I,
Steinmacher I, Sarma A, Gerosa MA (2023) Tag that issue: applying API-domain labels
in issue tracking systems. Empirical Software Engineering 28(5):116

Santos JCS, Zhang X, Mirakhorli M (2022) Counterfeit object-oriented programming vul-
nerabilities: an empirical study in Java. In: Proceedings of the 1st International Workshop
on Mining Software Repositories Applications for Privacy and Security, Association for
Computing Machinery, MSR4P&S 2022, pp 21-28

Sattler F, Bohm S, Schubert PD, Siegmund N, Apel S (2023) SEAL: Integrating Program
Analysis and Repository Mining. ACM Trans Softw Eng Methodol 32(5)

Sawadogo AD, Bissyandé TF, Moha N, Allix K, Klein J, Li L, Le Traon Y (2022) SSP-
Catcher: Learning to catch security patches. Empirical Software Engineering 27(6):151
Sawant AA, Robbes R, Bacchelli A (2018) On the reaction to deprecation of clients of 4 +
1 popular Java APIs and the JDK. Empirical Software Engineering 23(4):2158-2197
Schneider S, Bakhtin A, Li X, Soldani J, Brogi A, Cerny T, Scandariato R, Taibi D (2025)
Comparison of static analysis architecture recovery tools for microservice applications.

Empirical Software Engineering 30(5):128

Scholtes I, Mavrodiev P, Schweitzer F (2016) From Aristotle to Ringelmann: a large-scale
analysis of team productivity and coordination in Open Source Software projects. Em-
pirical Software Engineering 21(2):642-683

Seibt G, Heck F, Cavalcanti G, Borba P, Apel S (2022) Leveraging Structure in Software
Merge: An Empirical Study. IEEE Transactions on Software Engineering 48(11):4590—
4610

Sellik H, van Paridon O, Gousios G, Aniche M (2021) Learning Off-By-One Mistakes: An
Empirical Study. In: 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), pp 58-67

Sharif B, Clark B, Maletic JI (2016) Studying developer gaze to empower software engineer-
ing research and practice. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Association for Computing Machin-



Oops!...I did it again hard

ery, FSE 2016, pp 940-943

Shepperd M, Ajienka N, Counsell S (2018) The role and value of replication in empirical
software engineering results. Information and Software Technology 99:120-132

Shull FJ, Carver JC, Vegas S, Juristo N (2008) The role of replications in Empirical Software
Engineering. Empirical Software Engineering 13(2):211-218

Sidhu PK, Mussbacher G, McIntosh S (2019) Reuse (or Lack Thereof) in Travis CI Specifica-
tions: An Empirical Study of CI Phases and Commands. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp 524-533

Sidi F, Shariat Panahy PH, Affendey LS, Jabar MA, Ibrahim H, Mustapha A (2012) Data
quality: A survey of data quality dimensions. In: 2012 International Conference on Infor-
mation Retrieval & Knowledge Management, pp 300—-304

Silva D, Tsantalis N, Valente MT (2016) Why we refactor? confessions of GitHub contrib-
utors. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Association for Computing Machinery, FSE 2016,
pp 858-870

Silva D, da Silva JP, Santos G, Terra R, Valente MT (2021) RefDiff 2.0: A Multi-Language
Refactoring Detection Tool. IEEE Transactions on Software Engineering 47(12):2786—
2802

da Silva JR, Clua E, Murta L, Sarma A (2015) Niche vs. breadth: Calculating expertise
over time through a fine-grained analysis. In: 2015 IEEE 22nd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pp 409-418

da Silva Junior JR, Campagna DP, Clua E, Sarma A, Murta L (2022) Dominoes: An Inter-
active Exploratory Data Analysis Tool for Software Relationships. IEEE Transactions on
Software Engineering 48(2):377-396

Soetens QD, Demeyer S, Zaidman A, Pérez J (2016) Change-based test selection: an empir-
ical evaluation. Empirical Software Engineering 21(5):1990-2032

Song L, Minku LL, Yao X (2023) On the validity of retrospective predictive performance
evaluation procedures in just-in-time software defect prediction. Empirical Software En-
gineering 28(5):124

Sonnekalb T, Heinze TS, Kurnatowski Lv, Schreiber A, Gonzalez-Barahona JM, Packer H
(2020) Towards automated, provenance-driven security audit for git-based repositories:
applied to germany’s corona-warn-app: vision paper. In: Proceedings of the 3rd ACM
SIGSOFT International Workshop on Software Security from Design to Deployment,
Association for Computing Machinery, SEAD 2020, pp 15-18

Spadini D, Aniche M, Bacchelli A (2018) PyDriller: Python framework for mining software
repositories. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
Association for Computing Machinery, ESEC/FSE 2018, pp 908-911

Stefano MD, Iannone E, Pecorelli F, Tamburri DA (2022) Impacts of software community
patterns on process and product: An empirical study. Science of Computer Programming
214:102731

Steinbeck M (2020) Mining Version Control Systems and Issue Trackers with LibVCS4j. In:
2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp 647-651

Stevens R, Molderez T, De Roover C (2019) Querying distilled code changes to extract
executable transformations. Empirical Software Engineering 24(1):491-535

Tamburri DA, Palomba F (2021) Evolving software forges: An experience report from
Apache Allura. Journal of Software: Evolution and Process

Tamburri DA, Blincoe K, Palomba F, Kazman R (2020) “The Canary in the Coal Mine. . .”
A cautionary tale from the decline of SourceForge. Journal of Software: Practice and
Experience

Tamburri DA, Palomba F, Kazman R (2021) Exploring Community Smells in Open-Source:
An Automated Approach. IEEE Transactions on Software Engineering 47(3):630-652

Tan WS, Wagner M, Treude C (2023) Detecting outdated code element references in software
repository documentation. Empirical Software Engineering 29(1):5

Tantithamthavorn C, McIntosh S, Hassan AE, Thara A, Matsumoto K (2015) The Impact
of Mislabelling on the Performance and Interpretation of Defect Prediction Models. In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol 1, pp



78 Nicole Hoess et al.

812-823

Taraghi M, Dorcelus G, Foundjem A, Tambon F, Khomh F (2024) Deep Learning Model
Reuse in the HuggingFace Community: Challenges, Benefit and Trends. In: 2024 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER),
pp 512-523

Tecimer KA, Tiziin E, Dibeklioglu H, Erdogmus H (2021) Detection and Elimination of
Systematic Labeling Bias in Code Reviewer Recommendation Systems. In: Proceedings of
the 25th International Conference on Evaluation and Assessment in Software Engineering,
Association for Computing Machinery, EASE ’21, pp 181-190

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2015) Investigating Code Review Prac-
tices in Defective Files: An Empirical Study of the Qt System. In: 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, pp 168-179

Tourani P, Adams B (2016) The Impact of Human Discussions on Just-in-Time Quality
Assurance: An Empirical Study on OpenStack and Eclipse. In: 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER), vol 1,
pp 189-200

Tourani P, Adams B, Serebrenik A (2017) Code of conduct in open source projects. In: 2017
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp 24-33

Trautsch F, Herbold S, Makedonski P, Grabowski J (2016) Adressing problems with external
validity of repository mining studies through a smart data platform. In: Proceedings
of the 13th International Conference on Mining Software Repositories, Association for
Computing Machinery, MSR ’16, pp 97-108

Trautsch F, Herbold S, Makedonski P, Grabowski J (2018) Addressing problems with replica-
bility and validity of repository mining studies through a smart data platform. Empirical
Software Engineering 23(2):1036-1083

Treude C, Hata H (2023) She Elicits Requirements and He Tests: Software Engineering Gen-
der Bias in Large Language Models. In: 2023 IEEE/ACM 20th International Conference
on Mining Software Repositories (MSR), pp 624-629

Tsantalis N, Ketkar A, Dig D (2022) RefactoringMiner 2.0. IEEE Transactions on Software
Engineering 48(3):930-950

Tu F, Zhu J, Zheng Q, Zhou M (2018) Be careful of when: an empirical study on time-related
misuse of issue tracking data. In: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Association for Computing Machinery, ESEC/FSE 2018, pp 307—
318

Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D
(2015) When and Why Your Code Starts to Smell Bad. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol 1, pp 403-414

Tymchuk Y, Mocci A, Lanza M (2014) Collaboration in open-source projects: Myth or
reality? In: 11th Working Conference on Mining Software Repositories (MSR), pp 304—
307

Uddin G, Sabir F, Guéhéneuc YG, Alam O, Khomh F (2021) An empirical study of IoT
topics in IoT developer discussions on Stack Overflow. Empirical Software Engineering
26(6):121

Vassallo C, Proksch S, Zemp T, Gall HC (2020) Every build you break: developer-oriented
assistance for build failure resolution. Empirical Software Engineering 25(3):2218-2257

Verdi M, Sami A, Akhondali J, Khomh F, Uddin G, Motlagh AK (2022) An Empirical
Study of C++ Vulnerabilities in Crowd-Sourced Code Examples. IEEE Transactions on
Software Engineering 48(5):1497-1514

Wagner S, Abdulkhaleq A, Kaya K, Paar A (2016) On the Relationship of Inconsistent
Software Clones and Faults: An Empirical Study. In: 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER), vol 1, pp 79-89

Walden J (2020) The Impact of a Major Security Event on an Open Source Project: The Case
of OpenSSL. In: Proceedings of the 17th International Conference on Mining Software
Repositories, Association for Computing Machinery, MSR, ’20, pp 409-419

Wan X, Zheng Z, Qin F, Lu X (2024) Data Complexity: A New Perspective for Analyzing
the Difficulty of Defect Prediction Tasks. ACM Trans Softw Eng Methodol 33(6)



Oops!...I did it again 79

Wan Z, Lo D, Xia X, Cai L (2017) Bug Characteristics in Blockchain Systems: A Large-Scale
Empirical Study. In: 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pp 413-424

Wang L, Li Y, Zhang J, Tao X (2022) Quantifying community evolution in developer so-
cial networks. In: Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Association for
Computing Machinery, ESEC/FSE 2022, pp 157-169

Wang P, Brown C, Jennings JA, Stolee KT (2020) An Empirical Study on Regular Ex-
pression Bugs. In: Proceedings of the 17th International Conference on Mining Software
Repositories, Association for Computing Machinery, MSR ’20, pp 103-113

Wang S, Wen M, Liu Y, Wang Y, Wu R (2021) Understanding and Facilitating the Co-
Evolution of Production and Test Code. In: 2021 IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), pp 272-283

Wen E, Zhou J, Luo X, Russello G, Dietrich J (2024) Keep Me Updated: An Empirical
Study on Embedded Javascript Engines in Android Apps. In: Proceedings of the 21st
International Conference on Mining Software Repositories, Association for Computing
Machinery, MSR ’24, pp 361-372

Wen M, Chen J, Tian Y, Wu R, Hao D, Han S, Cheung SC (2021) Historical Spectrum
Based Fault Localization. IEEE Transactions on Software Engineering 47(11):2348-2368

Wessel M, Vargovich J, Gerosa MA, Treude C (2023) GitHub Actions: The Impact on the
Pull Request Process. Empirical Software Engineering 28(6):131

White R, Krinke J (2022) TCTracer: Establishing test-to-code traceability links using dy-
namic and static techniques. Empirical Software Engineering 27(3):67

Win HM, Wang H, Tan SH (2023) Towards Automated Detection of Unethical Behavior in
Open-Source Software Projects. In: Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
Association for Computing Machinery, ESEC/FSE 2023, pp 644-656

Wu J, He H, Gao K, Xiao W, Li J, Zhou M (2024a) A comprehensive analysis of chal-
lenges and strategies for software release notes on GitHub. Empirical Software Engineer-
ing 29(5):104

Wu Y, Chen Y, Peng X, Hu B, Wang X, Fu B, Zhao W (2024b) CloneRipples: predicting
change propagation between code clone instances by graph-based deep learning. Empirical
Software Engineering 30(1):14

Yan M, Xia X, Lo D, Hassan AE, Li S (2019) Characterizing and identifying reverted
commits. Empirical Software Engineering 24(4):2171-2208

Yan M, Xia X, Fan Y, Hassan AE, Lo D, Li S (2022) Just-In-Time Defect Identification
and Localization: A Two-Phase Framework. IEEE Transactions on Software Engineering
48(1):82-101

Youssef A, Capiluppi A (2015) The impact of developer team sizes on the structural at-
tributes of software. In: Proceedings of the 14th International Workshop on Principles of
Software Evolution, Association for Computing Machinery, IWPSE 2015, pp 3845

Zampetti F, Zid C, Antoniol G, Penta MD (2024) The downside of functional constructs:
a quantitative and qualitative analysis of their fix-inducing effects. Empirical Software
Engineering 30(1):9

Zanjani MB (2016) Effective assignment and assistance to software developers and review-
ers. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, Association for Computing Machinery, FSE 2016, pp
1091-1093

Zeng Q, Zhang Y, Sun Z, Guo Y, Liu H (2024) COLARE: Commit Classification via Fine-
grained Context-aware Representation of Code Changes. In: 2024 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp 752-763

Zerouali A, Cosentino V, Robles G, Gonzalez-Barahona JM, Mens T (2019) ConPan: A
Tool to Analyze Packages in Software Containers. In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pp 592-596

Zhang J, Wang L, Li Y, Jiang J, Wang T, Tao X (2025) Measuring and Mining Community
Evolution in Developer Social Networks with Entropy-Based Indices. ACM Trans Softw
Eng Methodol 34(1)



80 Nicole Hoess et al.

Zhang Y, Zhou M, Stol KJ, Wu J, Jin Z (2020) How do companies collaborate in open source
ecosystems? an empirical study of OpenStack. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, Association for Computing Machinery,
ICSE 20, pp 1196-1208

Zhang Y, Zhou M, Mockus A, Jin Z (2021) Companies’ Participation in OSS Develop-
ment—An Empirical Study of OpenStack. IEEE Transactions on Software Engineering
47(10):2242-2259

Zhang Y, Qiu Z, Stol KJ, Zhu W, Zhu J, Tian Y, Liu H (2024) Automatic Commit Message
Generation: A Critical Review and Directions for Future Work. IEEE Transactions on
Software Engineering 50(4):816-835

Zhao L, Chen S, Xu Z, Liu C, Zhang L, Wu J, Sun J, Liu Y (2023) Software Composition
Analysis for Vulnerability Detection: An Empirical Study on Java Projects. In: Proceed-
ings of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Association for Computing Machinery, ES-
EC/FSE 2023, pp 960-972, URL https://doi.org/10.1145/3611643.3616299

Zhao Y, Serebrenik A, Zhou Y, Filkov V, Vasilescu B (2017) The impact of continuous
integration on other software development practices: A large-scale empirical study. In:
2017 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp 60-71

Zheng Q, Mockus A, Zhou M (2015) A method to identify and correct problematic software
activity data: exploiting capacity constraints and data redundancies. In: Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, Association for
Computing Machinery, ESEC/FSE 2015, pp 637-648

Zhou M, Chen Q, Mockus A, Wu F (2017) On the scalability of Linux kernel maintain-
ers’ work. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, Association for Computing Machinery, ESEC/FSE 2017, pp 27-37

Zhou Y, Yang Y, Lu H, Chen L, Li Y, Zhao Y, Qian J, Xu B (2018) How Far We Have
Progressed in the Journey? An Examination of Cross-Project Defect Prediction. ACM
Trans Softw Eng Methodol 27(1)

Zhu J, Wei J (2019) An Empirical Study of Multiple Names and Email Addresses in OSS Ver-
sion Control Repositories. In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), pp 409-420

Zhu J, Zhou M, Mockus A (2016) Effectiveness of code contribution: from patch-based to
pull-request-based tools. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Association for Computing Machin-
ery, FSE 2016, pp 871-882

Zingg C, von Gernler A, Arzig C, Schweitzer F, Gote C (2023) Detecting and Optimising
Team Interactions in Software Development

Zolfagharinia M, Adams B, Guéhéneuc YG (2019) A study of build inflation in 30 million
CPAN builds on 13 Perl versions and 10 operating systems. Empirical Software Engineer-
ing 24(6):3933-3971

O Cinnéide M, Hemati Moghadam I, Harman M, Counsell S, Tratt L (2017) An experimental
search-based approach to cohesion metric evaluation. Empirical Software Engineering
22(1):292-329

Sliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: Proceedings
of the 2005 International Workshop on Mining Software Repositories, Association for
Computing Machinery, MSR ’05, pp 1-5


https://doi.org/10.1145/3611643.3616299

	Introduction
	Related Work
	Methodology
	Results
	Discussion and lessons learned
	Limitations and threats to validity
	Conclusion
	Declarations
	Appendix

