
Applicability of Quantum Computing

on Database Query Optimization

A Thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science (M.Sc.)

At

Regensburg University of Applied Sciences

Student Name: Manuel Schönberger
Student Number: 3248320

Primary Supervising Professor: Prof. Dr. Wolfgang Mauerer
Secondary Supervising Professor: Prof. Dr. Stefanie Scherzinger

Submission Date: 22.12.2021

Erklärung zur Masterarbeit von

Name: Schönberger

Vorname: Manuel

Studiengang: Master Informatik

1. Mir ist bekannt, dass dieses Exemplar der Masterarbeit als Prüfungsleistung in das Eigen-
tum der Ostbayerischen Technischen Hochschule Regensburg übergeht.

2. Ich erkläre hiermit, dass ich diese Masterarbeit selbständig verfasst, noch nicht ander-
weitig für Prüfungszwecke vorgelegt, keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate als solche gekennzeichnet habe.

Regensburg, den 22.12.2021

Manuel Schönberger

Abstract

This thesis analyzes the applicability of quantum computing on database query optimization.

More specifically, both the multi query optimization (MQO) problem as well as the join order-

ing problem are investigated to this end. An approach for solving MQO on a D-Wave quantum

annealing machine has previously been proposed and experimentally evaluated. For the join

ordering problem, this work presents a two-step transformation in which the problem is first re-

formulated as a binary integer linear programming problem, based on an existing method. The

transformed problem can then be formulated as a quadratic unconstrained binary optimization

(QUBO) problem, which is a suitable formulation for current quantum systems.

This work further investigates the applicability of the existing approach for MQO via simu-

lations with respect to state-of-the-art gate-based quantum systems, specifically IBM-Q ma-

chines, in comparison to the existing results for quantum annealing. Similar simulations for both

gate-based and quantum annealing systems are conducted to evaluate the proposed approach

for solving join ordering problems. Two variational hybrid quantum-classical algorithms, the

variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm

(QAOA), are simulated for current IBM-Q machines. Simulation results show that QAOA can

in nearly all cases be more reliably executed than VQE with respect to the limited coherence

time of current systems. Moreover, for both problems, existing D-Wave quantum annealing

systems can solve significantly larger problems than current gate-based IBM-Q systems.

However, these problem sizes are still limited compared to the problem dimensions solvable via

classical approaches. Still, considering the rapid evolution of quantum systems, the prospect of

using sufficiently mature quantum devices, which may become available in the near future, for

practical problem dimensions is promising and motivates further research to identify further

suitable database optimization problems.

Contents

Contents

List of Figures IV

List of Tables V

List of Abbreviations VI

1 Introduction 1

2 Related Work 3

3 Background on Quantum Computing 5

3.1 Qubits and Superpositions . 5

3.2 Quantum Gates and Circuits . 8

3.3 Encoding Optimization Problems as Ising Hamiltonians 10

3.4 Variational Hybrid Quantum-Classical Algorithms 11

3.5 Adiabatic Quantum Computing . 15

3.6 State of Current Quantum Systems . 16

4 Background on Query Optimization 20

4.1 Multi Query Optimization . 20

4.2 Join Order Optimization . 21

5 Solving Multi Query Optimization with Quantum Computing 25

5.1 QUBO Formulation . 25

5.2 Implementation . 27

5.3 Evaluation . 29

6 Solving the Join Ordering Problem with Quantum Computing 34

6.1 QUBO Formulation . 34

6.2 Implementation . 41

6.3 Evaluation . 44

7 Discussion 57

8 Conclusion and Outlook 60

Bibliography 61

Page III

List of Figures

List of Figures
1 Bloch sphere for visualizing single qubit states 6

2 Circuit for swapping the states of two qubits . 10

3 The steps of the variational quantum eigensolver 12

4 The qubit topology of the IBM-Q Mumbai system 17

5 The arrangement of 32 qubits into 4 Chimera unit cells 18

6 An example query graph for 3 relations . 22

7 A possible join tree for the exemplary join ordering problem 22

8 The MQO circuit depths for QAOA with respect to varying qubit numbers, plans

per query and qubit topologies . 31

9 MQO circuit depths for VQE and QAOA and varying qubit topologies 32

10 The steps of the join ordering reformulation approach 34

11 The qubit scaling behavior for the join ordering problem with respect to the

number of relations and varying numbers of predicates 47

12 The qubit scaling behavior for the join ordering problem with respect to varying

approximation factors . 49

13 The scaling behavior of the circuit depth in relation to the number of qubits, the

applied algorithms and the properties of the join ordering problem 52

14 The scaling behavior of the number of required physical qubits in relation to the

dimensions of the join ordering problem . 55

Page IV

List of Tables

List of Tables
1 An example MQO problem with three queries and eight plans in total 21

2 The possible cost savings for the MQO example and their associated plans . . . 21

3 The cost calculation for each possible join order for the example query graph . . 24

4 A comparison of different join ordering problem instances with regards to their

input parameters and resulting number of quadratic terms and circuit depths . . 50

Page V

List of Abbreviations

List of Abbreviations

BILP binary integer linear programming

MILP mixed integer linear programming

MQO multi query optimization

NISQ noisy intermediate-scale quantum

PPQ plans per query

QAOA quantum approximate optimization algorithm

QPU quantum processing units

QUBO quadratic unconstrained binary optimization

SDK software development kit

VQE variational quantum eigensolver

Page VI

Chapter 1 Introduction

1 Introduction

Quantum computing seeks to use properties and phenomena of quantum mechanics in order to

achieve computational speedups. It has been shown that certain problems can indeed be solved

faster with quantum algorithms in comparison to classical computing. Two famous quantum

algorithms that demonstrate the advantage of quantum computing over classical computing

for certain problems are Grover’s algorithm and Shor’s algorithm [1], [2]. The former can be

used to find an element in an unsorted database with time complexity O(
√
n) and thus has

a quadratic speedup over classical algorithms [1]. The latter efficiently solves the problem of

prime factorization and finding discrete logarithms [2].

The first quantum computing machines have already been built. For instance, IBM offers access

to its gate-based quantum systems as a cloud service [3]. However, the currently available

devices are classified as so-called noisy intermediate-scale quantum (NISQ) systems, which are

prone to different kinds of errors that limit their capabilities [4]. For instance, errors can occur

during the execution of quantum gates or due to the decoherence of quantum states caused by

interactions with the environment of the system. Moreover, current machines generally only

feature a limited number of qubits, which puts strict restrictions on the size of problems that

can be solved on them.

However, certain quantum computing approaches are promising even for quantum systems

in the NISQ era. For instance, variational hybrid quantum-classical algorithms such as the

variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm

(QAOA) are particularly suitable for near-term gate-based quantum machines [4]–[7]. By per-

forming only a limited number of steps on a quantum computer and the remaining ones on

classical machines, the task of leveraging the benefits of quantum computing and yet using

current quantum systems becomes more feasible.

Moreover, the company D-Wave has built several machines for adiabatic quantum computing.

More specifically, these machines perform quantum annealing, which can be understood as

adiabatic quantum computing on noisy devices [4]. The newest available D-Wave machine at

the time of writing is the D-Wave Advantage system [8]. These quantum annealing systems

can be used for solving a specific type of optimization problem.

Quantum annealing machines feature a significantly higher number of qubits than current gate-

based devices. For instance, the D-Wave Advantage system offers over 5,000 qubits, whereas

the largest available IBM-Q system in terms of qubit numbers at the time of writing features

65 qubits. However, as a result of embedding the optimization problems onto the topology of a

D-Wave system, several physical qubits connected in a chain are typically needed to represent

one logical qubit, making the number of effectively available logical qubits significantly lower.

Still, various different optimization problems have already been solved using the D-Wave quan-

tum annealing machines. Among these are also problems in database query optimization. More

Page 1

Chapter 1 Introduction

specifically, the application of quantum annealing on multi query optimization (MQO) prob-

lems was previously analyzed in [9]. Given the limitations of current devices, only smaller-sized

problem instances could be solved on the quantum annealing system. Despite that, the authors

of [9] were able to identify certain MQO problem classes for which the used quantum annealing

system was superior in comparison to other approaches based on classical machines.

Since several new gate-based quantum systems have been made available by IBM in recent

years, similar results might be achievable on gate-based systems through the use of the above-

mentioned variational hybrid algorithms. As such, this work aims to analyze the applicability

of the hybrid quantum-classical algorithms on the MQO problem using current IBM-Q systems

in comparison to the results for the quantum annealing approach presented in [9].

Another highly relevant problem in the field of query optimization is the join ordering problem,

which features a vast search space [10]. Since such problems are particularly challenging to

handle with classical approaches, the prospect of using quantum computing as a promising

alternative is particularly attractive [11]. Similar to the approach shown in [9] for MQO, it

might be possible to leverage quantum computing by bringing the problems into a form suitable

for current gate-based quantum devices and quantum annealers. As such, the second goal of this

work is to find such a reformulation method and to analyze it with respect to the applicability

of both currently available gate-based systems and quantum annealing machines.

In summary, this work aims to answer the following research questions:

1. How does the applicability of variational hybrid quantum-classical algorithms on MQO

problems, using state-of-the-art gate-based quantum systems, compare to previous results

for a quantum annealing machine?

2. How can the join ordering problem be reformulated for quantum computing and how

applicable is this approach for current quantum systems with respect to the solvable

problem dimensions?

Structure. The remainder of this work is structured as follows: Chapter 2 describes how this

work relates to prior research. Chapter 3 gives an overview on quantum computing and further

describes the state of currently available quantum systems. Chapter 4 gives an overview on

the two above-mentioned query optimization problems. Chapters 5 and 6 respectively describe

how MQO and the join ordering problem can be reformulated into a form suitable for quantum

computing and present simulation results, which are discussed in Chapter 7. Finally, Chapter 8

concludes this work.

Page 2

Chapter 2 Related Work

2 Related Work

MQO has been a topic of extensive prior research in database query optimization. In [12], a

detailed explanation on MQO is given and different types of algorithms, some of which only

consider locally optimal plans whereas others are heuristic in nature, are presented. Since the

search space for MQO is of size O(nn), exhaustive algorithms only provide limited use and

most of the existing approaches for finding optimal solutions for the problem are heuristic

instead [13]. This includes an algorithm presented in [13], which contains a reformulation of

MQO as an unconstrained, normalized submodular maximization problem.

An approach for MQO which relies on a genetic algorithm has been proposed in [14] and has

been shown to produce good results for larger MQO problems. Finally, an approach which

allows MQO to be solved using a quantum annealer after reformulating the problem as a

quadratic unconstrained binary optimization (QUBO) problem is presented in [9]. Despite

the limited dimension of MQO problems solvable on the quantum annealer, the authors of [9]

identified classes of MQO problems for which the quantum annealing device was superior in

comparison to classical machines.

The join ordering problem has also been intensively researched. In [10], a detailed explanation

of the join ordering problem is given and it is moreover described how a join ordering problem

may be classified, e.g., by taking into account which type of cost function and join tree is

considered. Different kinds of algorithms, namely heuristic, randomized and genetic ones, have

been studied [15]. The latter two were found to produce better results than heuristic algorithms,

albeit taking longer to execute. Moreover, a method for reformulating the join ordering problem

as an mixed integer linear programming (MILP) problem in order to make use of mature MILP

solvers has been presented in [16]. This MILP approach has been found to be applicable for

join ordering problems that were too large for solvers that rely on other approaches.

This work contributes to existing research in the field of query optimization in several ways.

Firstly, it builds on [9] and, based on the MQO reformulation method into a QUBO problem,

examines the applicability of hybrid quantum-classical algorithms with respect to the properties

of current gate-based IBM-Q quantum systems. It moreover compares the results for a state-of-

the-art IBM-Q system to the existing ones for the D-Wave quantum annealing system used in [9]

with regards to the problem dimensions that are possible to solve on the respective systems.

Another contribution of this work is the identification of an approach that allows the join

ordering problem to be solved on current quantum systems. In order to achieve this, this work

builds on [16] and makes use of the reformulation method for join ordering problems into MILP

problems in order to ultimately bring the problem into a form suitable for current quantum

systems. However, this work only considers a more basic MILP formulation in order to lower the

qubit requirements, whereas [16] also describes various extensions which make the formulation

more sophisticated.

Page 3

Chapter 2 Related Work

Finally, this work contributes to existing research for the join ordering problem by evaluating

the reformulation approach for both quantum annealing as well as gate-based quantum systems

in terms of the solvable problem dimensions. The evaluation results are moreover compared

to the results for a classical MILP solver described in [16]. Unlike other works such as [9], the

results for this work are gained exclusively via simulations and not via the use of real quantum

systems. Moreover, only the size of the solvable problem dimensions is taken into account for

the results of this work, whereas other criteria such as the quality of the solutions are not

investigated.

Page 4

Chapter 3 Background on Quantum Computing

3 Background on Quantum Computing

This chapter will give an overview on quantum computing. First, Section 3.1 will explain

the difference between classical bits and qubits and describe the concept of superpositions.

Next, Section 3.2 will give an overview on quantum gates and circuits, which serve as the

basis for gate-based quantum computing. Section 3.3 will then briefly introduce the concept

of Hamiltonians, which are used for both the variational hybrid quantum-classical algorithms

explained in Section 3.4 as well as for adiabatic quantum computing described in Section 3.5.

Finally, Section 3.6 will give an overview on the state of current quantum systems, as well as

their limitations.

3.1 Qubits and Superpositions

Similar to classical bits, which can be in either the state 0 or 1, a qubit can also occupy different

states, such as |0〉 and |1〉 [17]. However, in contrast to classical bits, which can only be in

one of two states at a time, qubits can be in a so-called superposition of states [18]. This

superposition can be expressed as a linear combination of states:

|ψ〉 = α |0〉+ β |1〉 , (1)

where the states |0〉 and |1〉 are the computational basis states and the coefficients α and β

are complex numbers [17]. These coefficients are also referred to as amplitudes. However, in

accordance to quantum mechanics, such a superposition of states only persists as long as the

qubit is not observed. After measuring the state of |ψ〉, the superposition will collapse into

either one of the computational basis states. The probability of the superposition collapsing

into a specific basis state is given by the square of its corresponding amplitude, in the above

case |α|2 for |0〉 or |β|2 for |1〉 [17].

The notation used for the states which was applied above is called the Dirac notation, which

is explained in [18]. A state such as |ψ〉 is called a ket, which is in this case labeled by ψ, and

is moreover a linear combination of vectors so that |ψ〉 = a1 |s1〉+ a2 |s2〉+ ...+ an |sn〉, where

ai with 1 ≤ i ≤ n is the amplitude for the state |si〉. Since all squared amplitudes need to

add up to 100%, |ψ〉 is normalized to length 1 [17]. A set of vectors B which can be used to

uniquely express each state in a quantum system as a linear combination makes up a basis for

this system.

Furthermore, 〈ψ| is called a bra with the label ψ and is the conjugate transpose of |ψ〉:

|ψ〉 =


a1
a2
...

an

 〈ψ| = (a1, a2, ..., an). (2)

Page 5

Chapter 3 Background on Quantum Computing

It can be seen that |ψ〉 is a column vector whereas 〈ψ| is a row vector. The inner product of

two state vectors |v1〉 and |v2〉 is then given by 〈v1|v2〉. Due to the normalization condition

mentioned above, 〈ψ|ψ〉 = 1 must hold for any quantum state |ψ〉. However, if 〈v1|v2〉 = 0, then

the vectors |v1〉 and |v2〉 are called orthogonal. Moreover, a set of vectors is called orthonormal

if each pair of vectors in the set is orthogonal and if for each vector |v〉 in the set, 〈v|v〉 = 1

holds. The orthonormal condition plays a big role in quantum computing, since a base for

a quantum system typically needs to have this property. One possible set of state vectors to

express the basis states |0〉 and |1〉 which fulfills the orthonormal condition is given by

(
1

0

)
for

|0〉 and

(
0

1

)
for |1〉. Another orthonormal basis which is important in quantum computing is

given by the states |+〉 = (|0〉 + |1〉)/
√

2 and |−〉 = (|0〉 − |1〉)/
√

2. It can be seen that these

basis states correspond to a balanced superposition, which collapses to either |0〉 or |1〉 with

equal probability upon measurement.

As described in [17] and with consideration of the equation sin2 x+ cos2 x = 1, Equation 1 can

also be expressed by

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉
)

, (3)

where θ, ϕ, γ ∈ R. The factor eiγ is a global phase, which means it has no observable effect

and can effectively be ignored for the following considerations. Parameterized by θ and ϕ, any

single-qubit quantum state can be visualized by the so-called Bloch sphere.

Figure 1: Bloch sphere for visualizing single qubit states (source: [17]).

Page 6

Chapter 3 Background on Quantum Computing

Figure 1 depicts the Bloch sphere, which is a three-dimensional space where the computational

basis states |0〉 and |1〉 are positioned on opposing polar ends. As explained in [18], the surface

of the Bloch sphere contains the entire state space of a single-qubit system. For instance, the

state |+〉 is represented by the surface point which is touched by the positive x-axis.

While the Bloch sphere is useful for visualizing the possible states of a one-qubit quantum sys-

tem, it cannot be used on systems with more than one qubit. However, multi-qubit systems are

much more relevant than their single-qubit counterparts, since this is where the computational

advantage of quantum computing comes into play. As described in [17], for a quantum system

with two qubits, the superposition for a state is given by

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 , (4)

where |00〉, |01〉, |10〉 and |11〉 are the four computational basis states and αij with i, j ∈ {0, 1}
are their respective probability amplitudes. Like before, the normalization condition requires

the squared amplitudes to add up to 1. In general, a single state of an n-qubit quantum system

is described by 2n amplitudes. As such, the information stored by such a quantum state vastly

exceeds the information contained in a classical state. Quantum computation seeks to make

use of the large amount of information that can be stored in the states of quantum systems.

Quantum states of multi-qubit systems can also be described as vectors in a vector space of 2n

dimensions. The vector space of a two-qubit system, which has 4 dimensions, can be considered

a combination of the vector spaces of two single-qubit systems, each of them having a dimension

of 2. As explained in [17], in general the combination of vector spaces V and W with m and n

respective dimensions can be expressed as V ⊗W . The ⊗-operation is referred to as the tensor

product.

The resulting vector space has mn dimensions and its orthonormal basis is given by |i〉 ⊗ |j〉
where |i〉 and |j〉 are the bases of W and V respectively. Moreover, the states of the new vector

space are linear combinations of |v〉 ⊗ |w〉 where |v〉 and |w〉 are states of V and W . In this

work, a tensor product |v1〉⊗|v2〉⊗ ...⊗|vn〉 will henceforth be abbreviated by |v1v2...vn〉, which

is a commonly used abbreviation. For matrices and vectors, this operation can be represented

by the Kronecker product as described in [17]. For instance, using the state vector for |0〉 for

both operands, the operation works as follows:

|0〉 ⊗ |0〉 =

(
1

0

)
⊗

(
1

0

)
=


1 · 1
1 · 0
0 · 1
0 · 0

 =


1

0

0

0

 (5)

It can be seen that the elements of the first operand are pairwise multiplied with the second

operand to obtain the result.

Page 7

Chapter 3 Background on Quantum Computing

Finally, quantum computing can utilize a peculiar phenomenon that is exclusive to quantum

mechanics. As explained in [18], the state of a classical state space can be described through

all individual states of all components that make up the space. In contrast, the state of a

quantum system can often times not be characterized by considering the states of all separate

components. This is due to possible correlations between several states, which are then referred

to as entangled states. The phenomenon of entanglement serves as the basis for many quantum

computing approaches.

3.2 Quantum Gates and Circuits

This section will give an overview on quantum computation based on the quantum states ex-

plained in the previous section. Specifically, it will describe how these quantum states are

transformed into other states. As explained in [18], a quantum state is transformed by rotating

its state vector in the complex vector space. The transformation of a vector can obviously be

done by applying a matrix. Moreover, there are restrictions on the properties a matrix must

have in order to perform valid quantum state transformations. Specifically, valid transforma-

tions require the corresponding matrix to be unitary.

For a matrix U to be unitary, the following condition must hold as described in [17]:

U †U = I, (6)

where I is the identity matrix and U † is the transpose conjugate of U . The transformation of a

state vector |ψ〉 using a unitary matrix U preserves the inner product of |ψ〉 [18]. As such, the

transformed state vector |ψ∗〉 also fulfills the normalization condition explained in the previous

section if |ψ〉 is a valid quantum state vector.

Practically, a quantum computer performs such quantum state transformations through gates,

which are parts of circuits and connected via wires [17]. More specifically, gates represent uni-

tary matrices. The final operations performed by a quantum circuit are typically measurements

on the qubit states which have been prepared by applying gates. More details about how such

measurements are done will be explained below. In the following, an overview on important

single qubit gates and multiple qubit gates will be given.

Some of the most relevant gates which act on a single qubit are the so called Pauli gates [17].

They are given by

X =

[
0 1

1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]
. (7)

For instance, applying X on the computational basis states produces

Page 8

Chapter 3 Background on Quantum Computing

X |0〉 =

[
0 1

1 0

](
1

0

)
=

(
0

1

)
X |1〉 =

[
0 1

1 0

](
0

1

)
=

(
1

0

)
. (8)

It can be seen that X performs a negation as it transforms |0〉 into |1〉 and vice versa. More

generally, the first column of a single qubit matrix shows how the computational basis state

|0〉 is transformed whereas the second column does so for |1〉. As such, it is obvious that Z

leaves |0〉 unchanged while it transforms |1〉 to − |1〉. Sometimes, the identity matrix is also

considered a Pauli matrix.

One property that makes the Pauli matrices special is that they are not only unitary, but also

Hermitian matrices. As explained in [18], for a matrix A to be Hermitian, the following must

hold:

A = A†. (9)

As explained in [18], all eigenvalues of Hermitian operators are real. Moreover, Hermitian oper-

ators are sometimes also referred to as observables when they are used for measurements. More

specifically, the eigenvectors of A are the possible states after the measurement. For instance,

the Pauli Z operator has the eigenvectors |0〉 and |1〉 with the corresponding eigenvalues 1

and -1. As such, Z can be used for measurements in the computational basis and is thus a

commonly used observable. Hermitian operators play an important role in the context of both

the hybrid quantum-classical algorithms as well as adiabatic quantum computing which will be

discussed in later sections.

Another important single qubit matrix is the Hadamard matrix H, which is also Hermitian:

H =
1√
2

[
1 1

1 −1

]
. (10)

The Hadamard operator transforms the computational basis states |0〉 and |1〉 into the balanced

superposition states |+〉 and |−〉 respectively. As such, the Hadamard gate is often among the

first gates used in a quantum circuit in order to create a superposition.

Furthermore, the controlled-NOT or CNOT gate is one of the most relevant gates acting on

multiple qubits. As explained in [17], it is given by the following matrix:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (11)

The first qubit the CNOT gate acts on is referred to as the control qubit. The state of the

control qubit determines whether or not the second qubit, also called the target qubit, will be

transformed. If the control qubit is |1〉, the target qubit will be flipped. Otherwise, the state

Page 9

Chapter 3 Background on Quantum Computing

of the target qubit remains unchanged. Together with the Hadamard gate, the CNOT gate is

oftentimes used to create entangled states.

|0〉 |1〉

|1〉 |0〉

Figure 2: Circuit for swapping the states of two qubits.

Figure 2 depicts a quantum circuit, which, as explained in [17], has the useful effect of swapping

the states of the two qubits. This is illustrated by the specific scenario depicted in Figure 2,

where the two-qubit state |01〉 is transformed into the state |10〉. This is achieved by applying

three CNOT gates, the first and third one using the first qubit as the control qubit whereas

the second CNOT gate uses the second qubit as the control qubit.

In the context of practical quantum computing, in particular when considering current state-of-

the-art gate-based quantum computers, this swap operation plays a crucial role. More specifi-

cally, it can be used to create indirect connections between physical qubits that are not direct

neighbours. More details about the important role of the swap gate for state-of-the-art quantum

systems will be discussed in a later section.

Finally, as explained in [17], similar to how in the classical case, some sets of gates or even single

gates like the NAND gate can be used to create any other gate and thus allow for universal

computing, there exists a set of quantum gates which can be used to create any quantum circuit.

In general, a set of gates is universal for quantum computing if it can be used to approximate

any unitary operator to arbitrary accuracy. The CNOT gate, alongside single qubit gates, can

be utilized for this purpose. Regarding single qubit gates, it is possible to approximate any

gate to arbitrary accuracy using only a limited number of gates. As such, universal quantum

computation is possible with a limited set containing such single qubit gates as well as the

CNOT gate.

3.3 Encoding Optimization Problems as Ising Hamiltonians

This section will briefly explain the optimization problem encoding that is used by all quantum

computing approaches that will be discussed in the following sections. Typically, an optimiza-

tion problem that is to be solved with quantum computing on currently available quantum

systems is formulated as a Hamiltonian, which is a Hermitian operator describing the dynamics

of a quantum system and which represents the energy of the system [17]. As explained in [6],

Page 10

Chapter 3 Background on Quantum Computing

a Hamiltonian H can be decomposed and written as

H =
∑
i,α

hiασ
i
α +

∑
i,j,α,β

hi,jα,βσ
i
ασ

j
β + ... , (12)

where h is a real value and σα, σβ are Pauli operators. The indices i, j denote the subspace

which the operators act on. For this work, a more restricted type of Hamiltonian is considered,

which is typically required for current quantum systems and where each operator acts on at

most two qubits. Specifically, the Ising model is used for the formulation of optimization

problems. As explained in [19], [20], the Ising model is given by

H(s1, ..., sN) = −
∑
i<j

Jijsisj −
N∑
i=1

hisi, (13)

where si ∈ {−1, 1} and Jij as well as hi are real numbers. The corresponding Hamiltonian

for quantum computing is gained by replacing a spin si with Pauli operators similar to how it

is done in Equation 12. Quantum computing approaches dealing with Hamiltonians typically

seek to determine their minimum energy level. As such, an optimization problem needs to be

formulated as a Hamiltonian in such a way that its ground state encodes an optimal solution.

Moreover, the Ising model is equivalent to the QUBO problem formulation [21]. More precisely,

instead of spins, boolean variables are used for QUBO formulations, which makes the transfor-

mation from an Ising model to QUBO (and vice versa) straightforward as explained in [21]. As

such, the remainder of this work will treat both formulations as interchangeable.

3.4 Variational Hybrid Quantum-Classical Algorithms

This section will give an overview on two algorithms for solving optimization problems based

on quantum computing. More specifically, the algorithms are hybrid algorithms as they contain

steps for both classical machines as well as quantum systems. First, Section 3.4.1 will explain

the VQE algorithm. Next, the QAOA algorithm will be described in Section 3.4.2.

3.4.1 Variational Quantum Eigensolver

One algorithm utilizing quantum computing which can ultimately be used for solving optimiza-

tion problems of a certain form is the VQE algorithm [6]. More specifically, in addition to the

quantum computational parts, VQE also contains steps which can be performed on a classical

computer. This hybrid approach is particularly suitable for current quantum computers, which

are both limited in the problem dimensions they can handle and prone to errors. More details

about these limitations will be discussed in a later section. By decomposing an algorithm into

several parts and by only performing certain parts on a quantum computer, the algorithm

becomes more applicable for current quantum systems.

Page 11

Chapter 3 Background on Quantum Computing

As explained in [6], the goal of VQE is to determine the smallest eigenvalue of a Hamiltonian,

which corresponds to finding its lowest energy value as explained in Section 3.3. One of the

most well-known applications of VQE is the field of quantum chemistry: Here, VQE can be

used to calculate the ground state energy of a molecule [6]. However, VQE can also be used

for more general optimization problems that are encoded by Hamiltonians in such a way that

their respective ground state corresponds to an optimal solution.

The foundation for VQE is the variational principle, which is explained in [5]. First, the

expectation value for an operator O and a state |ψ〉 is given by

〈O〉|ψ〉 =
〈ψ|O |ψ〉
〈ψ|ψ〉

. (14)

The denominator containing the inner product 〈ψ|ψ〉 can be ignored, as it always equals 1 since

only normalized quantum states are considered in this work. The variational principle is given

as follows:

〈H〉|ψ(θ)〉 ≡ 〈H〉 (θ) = 〈ψ(θ)|H |ψ(θ)〉 ≥ λmin, (15)

where H is a Hamiltonian, |ψ(θ)〉 is a quantum state that has been prepared depending on the

parameter θ and λmin is the smallest eigenvalue of H. The expectation value is thus an upper

bound for the smallest eigenvalue that VQE seeks to determine. The smallest eigenvalue can

be determined by fine-tuning the parameter θ until the expectation value with regards to the

state |ψ(θ)〉 is minimized. This is the general idea behind the VQE algorithm.

Figure 3: The steps of the variational quantum eigensolver (source: [6]).

Figure 3 shows the steps of the VQE algorithm. In the first step, the quantum state is prepared

on the quantum computer with respect to the parameter θ. Next, the expectation values for the

individual terms of the Hamiltonian are computed on a quantum system via repeated sampling.

Based on the individual results 〈H1〉 , ..., 〈HN〉, the overall expectation value for H is determined

Page 12

Chapter 3 Background on Quantum Computing

on a classical machine. Finally, depending on this expectation value, θ is adjusted and once

again used for the state preparation for the next iteration of the algorithm. This process is

repeated until the upper bound for the smallest eigenvalue converges.

3.4.2 Quantum Approximate Optimization Algorithm

Another hybrid algorithm similar to VQE that is able to utilize quantum computing in addi-

tion to performing steps on a classical computer is the QAOA algorithm [7]. Much like the

former, QAOA is a variational algorithm, since it prepares a quantum state depending on two

parameters which are tuned in between iterations. However, the state preparation process for

QAOA is more sophisticated when compared to VQE.

The QAOA algorithm seeks to determine optimal solutions for combinatorial optimization

problems. In contrast to VQE, where the Hamiltonian encoding the optimization problem

is merely used for measurements, the concrete optimization problem already plays a role for

the preparation of the quantum state when using the QAOA algorithm. Similar to VQE, the

optimization problem is formulated as a Hamiltonian such that the ground state represents an

optimal solution.

As explained in [7], there are two kinds of unitary operators which are used for preparing the

quantum state. The first one depends on the specific optimization problem and is given by

U(C, γ) = e−iγC =
m∏
α=1

e−iγCα , (16)

where C is the Hamiltonian encoding the problem and the angle γ is one of the parameters

that are tuned in between iterations. C is a diagonal matrix and so its eigenvectors are the

computational basis states. Moreover, their respective eigenvalues correspond to the objective

function outcomes of the optimization problem. As described in Section 3.3, a Hamiltonian can

be decomposed into separate terms that contain Pauli operators typically acting on a limited

number of qubits. Cα denotes one of the m individual terms. In the case of this work, which

considers only Ising Hamiltonians, a term depends on at most two qubits.

The Hamiltonian which is needed for the second unitary operator is typically referred to as the

mixer Hamiltonian and is given by

B =
n∑
j=1

σxj , (17)

where n is the number of qubits and σxj is a Pauli X gate. The second unitary operator is then

given by

U(B, β) = e−iβB =
n∏
j=1

e−iβσ
x
j , (18)

where β is the second parameter which is adjusted after each iteration of the algorithm.

Page 13

Chapter 3 Background on Quantum Computing

The initial state |s〉 which is to be prepared by the algorithm is simply given by the uniform

superposition over the computational basis states |z〉:

|s〉 =
1√
2n

∑
z

|z〉 . (19)

Based on the two described operators and the initial quantum state, the prepared quantum

state |γ, β〉 is given by

|γ, β〉 = U(B, β)U(C, γ)...U(B, β)U(C, γ) |s〉 . (20)

It can be seen that the initial state is prepared by repeatedly alternating between applying

the problem operator and the mixer operator. The number of repetitions p can be considered

another parameter of the algorithm. As explained in [7], an upper bound for the circuit depth

is given by mp + p. As such, it depends on the number of terms which make up the problem

Hamiltonian. More specifically, this means a high number of two-qubit interactions in the case

of Ising Hamiltonians results in larger circuit depths and thus has a negative impact on the

applicability of the QAOA algorithm on current quantum systems, which will be discussed in

more detail in later chapters. In contrast, the number of quadratic terms does not impact the

circuit depth for the state preparation of the VQE algorithm.

The structure of the overall algorithm is similar to VQE. More specifically, the goal of the

QAOA algorithm is to determine the parameters which produce a quantum state for which the

expectation value Fp(γ, β), which is given by

Fp(γ, β) = 〈γ, β|C|γ, β〉 , (21)

is maximized or minimized depending on the specific problem. Once an expectation value for

the current quantum state |γ, β〉 has been determined, it is used for finding better parameters

which are to be used for the next iteration. This process is performed on a classical computer.

The algorithm terminates once the expectation value converges.

Furthermore, as shown in [7], let Mp be the maximum expectation value over the two parameters

for p operator repetitions, then

lim
p−>∞

Mp = maxzC(z), (22)

where z is the resulting bit string after measuring the prepared state in the computational basis.

However, due to the strict limitations of current quantum systems, which will be discussed in

later sections, it is likely that the resulting larger circuit depths caused by an increased number

of operator repetitions negatively impact the quality of the algorithm execution.

Page 14

Chapter 3 Background on Quantum Computing

3.5 Adiabatic Quantum Computing

Another quantum computing approach for solving optimization problems is given by adiabatic

quantum computing [22], which provides an alternative to the circuit-based computational

model discussed in earlier sections. It was shown in [23] that adiabatic quantum computation

is equivalent to standard circuit-based quantum computation. Moreover, a term that is closely

related to adiabatic quantum computing is quantum annealing.

While the two terms generally refer to the same method, they can be distinguished with regards

to the conditions at which the algorithms are executed. Adiabatic quantum computing assumes

a coherent adiabatic ground state evolution at zero temperature and thus ideal conditions,

whereas quantum annealing does not [24]. The latter is thus more practically feasible and

quantum systems on which this method can be performed have already been built.

The remainder of this section will give an overview on adiabatic quantum computing as ex-

plained in [22]. Once again, the method is centered around a problem Hamiltonian HP which

encodes the optimization problem so that its unknown ground state corresponds to an optimal

solution. In addition, the algorithm includes the Hamiltonian HB, which is constructed in

such a way that its ground state is easy to determine. Then, a Hamiltonian representing an

interpolation between HB and HP is given by

H(t) = (1− t/T)HB + (t/T)HP . (23)

The idea behind adiabatic quantum computation is to evolve the initial state at time step t = 0,

which is the known ground state of H(0) = HB, in a way that preserves the ground state during

the evolution, which has an overall duration of T . If successful, the state at time step T will

correspond to the ground state of H(T) = HP , which represents an optimal solution to the

optimization problem.

The ground state is preserved during the evolution process if certain conditions are met ac-

cording to the adiabatic theorem. More specifically, the gap between the lowest energy level

and the first excited energy level needs to be strictly greater than zero at all times. Then, the

evolved state at t = T will be in the ground state if the evolution process is done slowly enough

by choosing a sufficiently high value for T . As such, the efficiency of the method depends on

T .

As further described in [22], the following must hold for T :

T � E
g2min

, (24)

where gmin is the minimum energy gap between the ground state and the first excited state.

Further explanation of the term E can be omitted and is not relevant for this work, since, as

explained in [22], E is typically not very big and as a result, T depends on g2min. This relation

Page 15

Chapter 3 Background on Quantum Computing

should be taken into account when formulating the problem Hamiltonian, since an unsuitable

formulation can lead to a small minimum energy gap and thus make the method inefficient.

3.6 State of Current Quantum Systems

This section will give an overview on currently available quantum systems and their properties.

As already mentioned in Chapter 1, the current quantum machines are classified as NISQ

systems, which means the systems have merely up to a few hundred qubits and are further

impacted by errors causing noise [4]. Furthermore, these systems do not utilize quantum error

correction, which could be used to mitigate these errors. Section 3.6.1 will give an overview on

different kinds of errors which impact current gate-based quantum systems. Next, Section 3.6.2

will describe current quantum annealing systems.

3.6.1 Gate-Based Quantum Computing

Without quantum error correction, various different errors impose further limitations on the

practicability of current gate-based quantum systems in the NISQ era in addition to their limited

number of qubits. An overview on different kinds of errors is given in [4]. For one, errors may

occur during the execution of a quantum gate, thus leading to noise during the circuit execution.

The larger the number of gates in the quantum circuit, the more the execution is impacted by

such gate errors. In [4], a circuit depth of around 1,000 is mentioned as the depth beyond which

the execution of quantum circuits becomes impractical due to noise resulting from gate errors.

Another kind of error that needs to be considered is given by readout errors which may occur

when conducting measurements. Furthermore, as explained in [25], errors related to crosstalk

that arise due to the parallel execution of operations also need to be considered. However, such

a parallel execution is necessary, since a serialized one would lead to large circuit depths and

thus prolong the circuit execution time.

Since current quantum systems only have very limited coherence times, long circuit execution

times are troublesome as they increase the likelihood of decoherence errors. Decoherence errors

mean the loss of information about the state of the quantum system to the environment [18].

In order to avoid such errors, the circuit should be executed within the coherence time of

the system. However, as described in [25], coherence decays exponentially. Thus, it is very

important to reduce the execution time of a quantum circuit by keeping its depth as small as

possible. However, due to the qubit topology of current quantum systems, achieving this goal

is typically not a trivial task.

More specifically, not every qubit is connected with every other qubit on the qubit topology

graph of current IBM-Q systems. Instead, the qubit topology for current quantum systems

is typically sparse as illustrated in Figure 4, which shows the qubit topology for the IBM-Q

Mumbai system containing 27 qubits. Without further measures, it is therefore not possible to

Page 16

Chapter 3 Background on Quantum Computing

Figure 4: The qubit topology of the IBM-Q Mumbai system (source: [3]).

execute a two-qubit gate on an arbitrary pair of qubits. However, the specific problem that is

to be solved may require operations on a large number of different qubit pairs which exceeds

the number of directly connected qubit pairs available on current quantum systems.

In order to ensure that such problems can still be mapped onto current quantum systems, the

application of two-qubit gates on an arbitrary qubit pair needs to be made possible. This can

be achieved by creating indirect connections between qubits via the use of swap gates [26].

The structure of a swap gate was explained in Section 3.2. However, creating these indirect

connections is costly, since the insertion of additional gates increases the depth of the quantum

circuit and therefore increases the likelihood of gate errors and decoherence errors.

For IBM-Q systems, the process of mapping the original circuit for the problem onto the qubit

topology of the quantum system is one step of the circuit compilation flow. An overview on

this compilation flow is provided in [27]. Other steps include a transformation of the original

gates in the circuit to the limited, yet universal gate set utilized by the IBM-Q systems as well

as further optimizations that reduce the depth of the circuit.

Finally, detailed information about the remotely accessible IBM-Q systems can be found in [3].

More specifically, calibration data providing information on the average gate errors, readout

errors, coherence times, average gate execution times among others is shown for each available

system. The current systems offer up to 65 qubits and feature different qubit topologies. In

addition to real quantum systems, various classical simulators can be accessed. For instance, the

qasm simulator is a general simulator which is able to simulate up to 32 qubits. Other simulators

feature more qubits, but can only be used for quantum circuits with specific properties.

3.6.2 Quantum Annealing

This section will provide an overview on the properties of current quantum annealers. Quan-

tum annealing can be considered the application of adiabatic quantum computing on noisy

systems [4]. Due to this noise, further restrictions need to be considered for quantum anneal-

ing. As mentioned in Section 3.5, adiabatic quantum computing has been shown to be universal

Page 17

Chapter 3 Background on Quantum Computing

much like gate-based quantum computing. However, this argument only holds true when as-

suming noiseless qubits and it is still an open question whether or not quantum annealing can

truly offer computational speedups that are not possible with classical computing [4].

The currently available quantum annealers offer significantly more qubits when compared to

the current gate-based NISQ devices. For instance, the D-Wave Advantage system, which is

the latest D-Wave system at the time of writing, has over 5,000 physical qubits [8]. However, in

order to solve an optimization problem formulated as an Ising Hamiltonian on such a system,

it first needs to be mapped onto the topology of the quantum annealer [28].

This is not a trivial task, since D-Wave systems, much like IBM-Q systems, have only limited

connectivity graphs. Details about the architecture of quantum annealers, specifically about

the so-called Chimera topology, are explained in [28]. In order to achieve a simple design and

operation of the system, the D-Wave quantum annealing systems are made up by unit cells

which are arranged in arbitrary structures.

Figure 5: The arrangement of 32 qubits into 4 Chimera unit cells (source: [29]).

Figure 5 illustrates how 32 qubits are arranged into four Chimera unit cells, each of them

containing eight qubits. The qubits are connected via couplers. It can be seen that each qubit

inside of a unit cell is connected to each of the four qubits on the opposite side whereas no

connection exists for a pair of qubits on the same side. Moreover, each qubit is connected to

two other qubits which are included in vertically or horizontally adjacent unit cells. As such,

each qubit is connected to at most six other qubits in a Chimera topology.

Chimera is the underlying qubit topology of the D-Wave 2X system which was used for solving

MQO problems in [9]. However, in recent years, new systems such as the above-mentioned

Page 18

Chapter 3 Background on Quantum Computing

Advantage system have been made available that feature an improved topology referred to as

the Pegasus topology. In the Pegasus topology, 15 couplers exist per qubit in contrast to the

Chimera topology, where one qubit is connected to only six other qubits as shown above [8].

However, some problems may require more than 15 connections for a single qubit to other qubits

or simply connections between qubits in a way that is not supported by the topology for single

qubits. In order to enable the embedding of problems with a more complex structure, a logical

qubit is typically represented by a chain consisting of multiple physical qubits [28]. As such,

when compared to the possible couplings between single qubits, a larger number of connections

between these chains of qubits can be achieved. However, this means that oftentimes, the

number of logical qubits that remain after the embedding process is significantly lower than

the number of physical qubits offered by the system.

Since the problem of finding such an embedding is NP-complete, heuristic algorithms are typ-

ically used for this task [30]. One such algorithm is the minorminer algorithm, which is

well-known and moreover used in the D-Wave Ocean software development kit (SDK) [30],

[31]. Finding potentially better heuristic algorithms for this embedding process has been a

topic of recent research. For instance, integer programming techniques are proposed in [32] as

an alternative approach.

Page 19

Chapter 4 Background on Query Optimization

4 Background on Query Optimization

This chapter will give an overview on the two classical query optimization problems considered

for this work. First, Section 4.1 will give an explanation on MQO. Next, Section 4.2 will

provide an overview on the join ordering problem.

4.1 Multi Query Optimization

This section will first describe the general goal of MQO and will then explain the definition of an

MQO problem used in this work. Typically, the result of a database query can be generated by

using one out of several alternative plans. Each of these plans has its own associated execution

cost. When only the resulting cost of generating one query result is taken into account, choosing

the plan with the lowest associated cost is, for obvious reasons, the optimal strategy to generate

the result.

However, as explained in [12], [13], when considering the global scenario of executing a batch

of multiple queries, it might be possible to achieve a lower total cost for the query batch by

using a different strategy. This strategy considers cost savings that arise when a subexpression

that was generated for one query can be reused for another query in the batch, instead of

evaluating the same subexpression multiple times. Choosing locally non-optimal plans can

therefore potentially result in a lower total cost if these common subexpressions allow significant

cost savings via reusage. Determining the set of plans that leads to the globally lowest cost by

taking such cost savings into account is the goal of MQO.

Problem Definition. This work uses the definition of an MQO problem as given in [9], which

retains the NP-hard property. Following that definition, the input of an MQO problem consists

of a set of queries Q and a set of alternative plans P . Moreover, the set Pq with P =
⋃
q Pq

includes all alternative plans corresponding to query q ∈ Q. Furthermore, the input includes

a cost value cp for each plan p denoting the cost of generating a query result when using the

respective plan. Finally, the cost savings enabled by sharing subexpressions between the plans

p1 and p2 are denoted by sp1, p2 > 0.

Further following [9], a solution to the MQO problem is a set Pe ⊆ P that contains all plans

that are selected to be executed. A solution is only valid if for each query q, exactly one of its

associated plans p ∈ Pq is selected. A solution is optimal if the accumulated execution cost ce,

given by

ce =
∑
p∈Pe

cp −
∑

{p1,p2}⊆Pe

sp1, p2, (25)

is minimized.

Page 20

Chapter 4 Background on Query Optimization

Table 1: An example MQO problem with three queries and eight plans in total. The associated
execution costs merely illustrate the relative cost differences between the plans in this exemplary
scenario and do not represent any real cost metric.

Query ID Plan ID Execution cost

1 1 10
1 2 12
1 3 15
2 4 9
2 5 16
3 6 7
3 7 12
3 8 9

Example. Table 1 shows an example MQO problem with three queries and eight execution

plans in total. Moreover, it includes the respective execution cost for each plan.

Table 2: The possible cost savings for the MQO example and their associated plans which are
to be used in combination.

Plan 1 Plan 2 Cost savings

2 4 4
2 8 5
3 4 6
5 7 7
5 8 3

In addition, Table 2 shows possible cost savings when selecting both of the corresponding plans.

In order to illustrate the MQO problem, the resulting accumulated cost value for choosing

locally optimal plans can be compared to the lowest accumulated cost value when possible cost

savings are accounted for. Regarding the former, the resulting total cost is 10 + 9 + 7 = 26

by selecting the plans 1, 4 and 6. In contrast, if the cost savings shown in Table 2 are also

considered, the lowest accumulated cost is 12 + 9 + 9− 4− 5 = 21 when choosing the plans 2,

4 and 8.

4.2 Join Order Optimization

This section will give a brief overview on the join ordering problem. As implied by the name,

the goal of this query optimization approach is to determine the optimal order in which multiple

database relations should be joined, which is a highly important optimization problem since

determining a suitable join order has a high impact on the evaluation cost of a query [10]. More

specifically, a join ordering problem is classified by a query graph, which serves as the input

Page 21

Chapter 4 Background on Query Optimization

to the problem, the types of join trees that are considered as well as the cost function that is

applied [10]. The definitions for these three components will be described in the remainder of

this section, following the explanations given in [10].

Query Graph. Based on these explanations, a query graph can be formally defined as a

graph G = (V,E) where V is the set of nodes and E is the set of edges. A node vi ∈ V with

i ∈ N, 1 ≤ i ≤ |V | represents the relation Ri to be joined whereas an edge eij ∈ E is labeled

by a join predicate pij. Moreover, each join predicate corresponds to a selectivity fij, which is

defined as

fij =
|Ri ./pij Rj|
|Ri| · |Rj|

, (26)

where |Ri| denotes the cardinality of relation Ri. As such, the selectivity denotes the percentage

of surviving tuples in relation to the cardinality of the cartesian product of Ri and Rj after

applying the corresponding join predicate.

Figure 6: An example query graph for 3 relations.

Figure 6 depicts a small example query graph for 3 relations R, S and T . Note that the

predicate label has been omitted so that the edges merely show the selectivities when applying

the respective predicates. Depending on the query optimization approach, cross products may

be considered as well. In this case, the cross product can be interpreted as a join operation

with selectivity 1.

Figure 7: A possible join tree for the exemplary join ordering problem.

Page 22

Chapter 4 Background on Query Optimization

Join Tree. A solution to the join ordering problem can be represented by a join tree (also

referred to as processing tree). Figure 7 depicts one possible join tree for the query graph

presented in Figure 6. The relations are represented by the leaf nodes while the intermediate

nodes denote the individual join operators. Typically, join ordering algorithms only take certain

types of join trees into account in order to limit the search space, since the number of possible

trees for some tree types, like left-deep trees, can be far smaller than the number of possibilities

for other types such as unrestricted bushy trees.

The tree depicted in Figure 7 shows a left-deep join tree, a type which historically has been

of high interest regarding query optimization research. The restriction to left-deep join trees

means that for any join operator, only one join operand (represented by an outer node) can be

an intermediate result, the remaining operand (represented by an inner node) needs to be one

of the input relations.

The approach suggested in [16], in which the join ordering problem is solved as an MILP

problem and which will be relevant for this work, also considers left-deep join trees. For this

kind of join tree, the assignment of the relations for the leaf nodes determines the join order

and can be expressed as a simple permutation. Following from that, the size of the search space

for left-deep join trees is given by n!, where n denotes the number of relations.

Cost Function. Finally, in order to evaluate the quality of a solution, a join tree needs to be

assigned a cost value. This cost value is produced by a cost function that takes a join tree as

an input. As a result, the cost of processing a join tree depends on the cost function. Different

cost functions are discussed in [33]. Out of these cost functions, the one that is most relevant

for this work, is given by

Cout(ni, nj) := ninjfi,j. (27)

This cost function is applicable for a single join of two relations i and j. Furthermore, ni and

nj denote the cardinalities of the relations i and j respectively and 0 ≤ fi,j ≤ 1 denotes the

selectivity of the join predicate. Further following [33], applied to a solution of the join ordering

problem s (more specifically, to a permutation of the relations representing the join tree) over

n relations, the cost metric is given as follows:

C(s) :=
n∑
i=2

Cout(|s1...si−1|, |si|), (28)

where |s1...sj−1| describes the cardinality of the intermediate result after joining relations 1

to i− 1 and |si| denotes the cardinality of relation i. Compared to the other cost functions

shown in [10], [33], this cost function is rather basic and aims to minimize the cardinalities of

the intermediate join results. However, as shown in [33], even when using the more basic cost

function shown above, the general join ordering problem is still NP-complete. More details on

the decision to use this cost function are given in Section 6.1.2.

Page 23

Chapter 4 Background on Query Optimization

Example. Finally, the following gives a demonstration of the join ordering problem, taking

the example query graph shown in Figure 6 as an input. Let the cardinalities for the relations

R, S and T be 10, 1000 and 1000 respectively. The query graph contains two edges representing

join predicates. The respective predicate selectivities correspond to the ones contained in the

labels for the edges, meaning there is a join predicate relating to the relations R and S with

a selectivity fRS = 0.1 and a second predicate for the relations S and T with a selectivity

fST = 0.05. As the example query graph only includes 3 relations, it is clear that all resulting

join trees are classified as left-deep trees. Finally, let the cost function be the one given in

Equation 28.

Table 3: The cost calculation for each possible join order for the example query graph.

Join order Cost calculation Resulting cost

(R ./ S) ./ T
Cout(|R|, |S|) + Cout(|RS|, |T |) = |R||S|fRS + |RS||T |fST =

= 10 · 1,000 · 0.1 + 1,000 · 1,000 · 0.05 = 1,000 + 50,000
51,000

(R ./ T) ./ S
Cout(|R|, |T |) + Cout(|RT |, |S|) = |R||T |+ |RT ||S|fRSfST =
= 10 · 1,000 + 10,000 · 1,000 · 0.1 · 0.05 = 10,000 + 50,000

60,000

(S ./ T) ./ R
Cout(|S|, |T |) + Cout(|ST |, |R|) = |S||T |fST + |ST ||R|fRS =
= 1,000 · 1,000 · 0.05 + 50,000 · 10 · 0.1 = 50,000 + 50,000

100,000

Table 3 shows the resulting costs for each join tree that can be produced for the example query

graph depicted in Figure 6. Note that the order in which the first two relations are joined

does not make a difference for the used cost function. As such, Table 3 does not include these

join orders in order to avoid superfluous entries. Also, while the used cost function as stated

in [33] does include the costs for the final join, those are not actually needed for determining

the optimal join order as they are obviously the same for all possible join orders. However, for

the purpose of illustrating the problem, the final join has been included in the calculations as

well.

It becomes clear that choosing a suitable join order makes a big difference even for the small

example query graph which only consists of three relations. The difference is particularly

striking when comparing the cost for the optimal join order (R ./ S) ./ T with the one for

the worst case order (S ./ T) ./ R. This underlines the importance of generating suitable join

orders as a part of query optimization.

Page 24

Chapter 5 Solving Multi Query Optimization with Quantum Computing

5 Solving Multi Query Optimization with Quantum Com-

puting

This chapter will explain the quantum computing approach for MQO problems. In Section 5.1,

an existing approach for formulating an MQO problem as a QUBO problem will be described.

Next, in Section 5.2, frameworks used for the implementation as well as details about the

implementation will be explained. Finally, an evaluation of the applicability of current quantum

systems with regards to MQO will be given in Section 5.3. More specifically, the existing results

for a D-Wave quantum annealing system will be compared with simulation results for a current

IBM-Q machine.

5.1 QUBO Formulation

An existing approach to solve MQO problems with quantum computing has been presented

in [9]. More specifically, the authors solved a variety of MQO problems using quantum an-

nealing on the D-Wave 2X system. As explained, quantum annealing can be applied on Ising

Hamiltonians, which can moreover be expressed as QUBO problems. A method for formulating

an MQO problem as a QUBO problem has been shown in [9].

However, QUBO problems can not only be used as an input for quantum annealing. Optimiza-

tion algorithms for gate-based quantum systems, such as QAOA and VQE, which have been

discussed in Section 3.4, also take Ising Hamiltonians or QUBO problems as an input. There-

fore, the method shown in [9] can also be used to solve MQO problems on IBM-Q systems. A

comparison of the results of the quantum annealing approach for D-Wave systems as presented

in [9] and current IBM-Q systems in regards to the possible MQO problem dimensions will be

given in Section 5.3.

Energy Formula. The definition of an MQO problem used for this work was described in

detail in Section 4.1. The remainder of this section will explain the approach to formulate

MQO problems as QUBO problems as proposed in [9]. First, the overall QUBO formulation,

also referred to as energy formula in [9], is given by

E = ωLEL + ωMEM + EC + ES. (29)

It can be seen that the QUBO formulation is divided into four terms. A term either ensures that

minimizing the energy cost produces valid results or it contributes in encoding the optimization

goal. The former includes the terms EL and EM , which are additionally multiplied by the

weights ωL and ωM respectively. Combined with these weights, sometimes also called energy

penalties, these two terms ensure that solutions which are not valid lead to very high energy

levels. Therefore, a solution that minimizes the energy cost is always valid if the weights are

set correctly.

Page 25

Chapter 5 Solving Multi Query Optimization with Quantum Computing

Further following [9], EL is given by

EL = −
∑
p∈P

Xp, (30)

where P is the set of overall plans and Xp ∈ {0, 1} equals 1 if plan p is selected to be executed

and 0 otherwise. As the term reduces the overall energy due to a negative factor, it incentivizes

that a plan p is selected rather than not selected. This ensures that at minimum, one plan per

query is selected. However, in order for an MQO solution to be valid, exactly one plan per

query needs to be executed. This is achieved by additionally including the term EM , which is

given by

EM =
∑
q∈Q

∑
{p1,p2}⊆Pq

Xp1Xp2, (31)

where Q is the set of queries and Pq is the set of alternative plans for query q. This encoding

ensures that EM is greater than 0 once more than a single plan is selected for query q, in which

case the penalty weight ωM will be added to the overall energy. Assuming ωL and ωM are both

set to suitable values (as explained below), minimizing the energy will lead to valid solutions.

The remaining terms are import for finding optimal solutions. However, their impact on the

overall energy is comparatively lower as they lack weight factors. As a result, valid solutions

with high costs are preferred over invalid solutions with low costs. The term EC ensures that

a higher execution cost leads to a higher energy and is given by

EC =
∑
p∈P

cpXp, (32)

where cp denotes the costs of executing plan p. Finally, in order to take possible savings into

account, ES is given by

ES = −
∑

{p1,p2}⊆P

sp1, p2Xp1Xp2, (33)

where sp1, p2 are the cost savings that are possible when executing both plans p1 and p2. This

term ensures that savings will only be subtracted from the overall energy if both of its related

plans p1 and p2 are selected.

Penalty Weights. Finally, as mentioned above, choosing suitable values for the weights ωL
and ωM is essential in order for the terms EL and EM to have their intended effect. The weight

of a term has to be set in relation to the possible energy impact of the other terms in the

Hamiltonian. This is done for ωL by setting it to a value so that the inequality

ωL > max
p∈P

cp (34)

Page 26

Chapter 5 Solving Multi Query Optimization with Quantum Computing

holds. This enforces that selecting a plan always leads to a lower overall energy than not

selecting it to avoid its cost contribution to the overall energy. However, in order to not

incentivize the execution of all plans for all queries, the remaining weight ωM must be set

accordingly as well. More specifically, the following inequality must hold:

ωM > ωL + max
p1∈P

∑
p2∈P

sp1, p2. (35)

First, by setting ωM > ωL, this inequality ensures that the energy cost of selecting more than

one plan per query is higher than the energy savings achieved through EL by selecting more

than one plan. However, without any additional constraints, it would still be possible that

selecting more than one plan per query leads to a lower energy due to possible additional

savings coming from the term ES. This is prevented by adding the largest possible savings

value achievable by one plan to the right side of the inequality.

5.2 Implementation

This section will provide an overview on the implementation of the quantum computing ap-

proach for MQO. First, Section 5.2.1 will describe the frameworks used for the implementation

whereas Section 5.2.2 will explain implementation details.

5.2.1 Frameworks Used

For the implementation of the quantum computing approach for MQO for IBM-Q systems, the

Qiskit SDK has been used [34]. Qiskit enables the creation and execution of quantum circuits

either locally via simulators or remotely on IBM-Q machines, where both simulators or real

quantum processors can be run. Currently, only real quantum systems with up to five qubits

can be freely accessed. As such, the implementation makes use of the simulators in order to

solve MQO problem instances of more relevant dimensions. In this work, Qiskit version 0.27.0

has been used. Moreover, as recommended in the Qiskit documentation, the Anaconda

Python distribution (version 4.9.2) has been used to run Qiskit code via Jupyter [35].

Furthermore, the Qiskit SDK also offers implementations for the hybrid quantum-classical

algorithms, specifically VQE and QAOA (which were discussed in Section 3.4), that have been

utilized. Finally, the docplex library (version 2.20.204) has been used for modeling and formu-

lating the MQO problem [36], which can then be easily converted to the problem representation

required by the hybrid quantum-classical algorithms using the qiskit optimization package

(version 0.1.0).

5.2.2 Implementation Details

This section will explain the steps needed to solve an MQO problem on either an IBM-Q

simulator or a real quantum system. Typically, for optimization problems of this kind, most

Page 27

Chapter 5 Solving Multi Query Optimization with Quantum Computing

of the development time is spent determining suitable reformulations. In contrast, the actual

implementation size in terms of lines of code is limited, which is the case for solving MQO with

quantum computing [37]. In the first step, the docplex Model class is used for the problem

formulation. First, for each plan contained in the problem input, one binary variable is added

to the Model. Afterwards, the four QUBO terms discussed in Section 5.1 are formulated as

mathematical expressions. They are then added to the Model and their sum is specified as the

minimization objective of the Model.

Next, the docplex Model can be converted into an object of the QuadraticProgram class using

the from docplex() method. This object serves as an input for the solve() method provided

by the MinimumEigenOptimizer class. This class is particularly useful for using the hybrid

quantum-classical algorithms, as it converts the QuadraticProgram object to a QUBO problem.

Moreover, when initializing the MinimumEigenOptimizer, an instance of either algorithm class

can be provided as a solver, which is used by the MinimumEigenOptimizer to find an optimal

solution for the QUBO problem.

When initializing the VQE or QAOA algorithm, a backend needs to be provided in order to

specify in which way the circuit execution should proceed. It is possible to pass a backend

for local simulations or to specify a remote IBM-Q system or a remote simulator as a back-

end. Details on the simulation backend used for this work will be provided in Section 5.3.2.

For QAOA, the initial point has been initialized using zeros. Apart from this, both VQE

and QAOA have been initialized using the default parameters as specified by the Qiskit im-

plementation for the algorithms. As such, the number of operator repetitions p for QAOA

is 1. Higher values for p quickly lead to large circuit depths even for small problems. Af-

ter the execution of the algorithm has concluded, the optimization result is returned by the

MinimumEigenOptimizer. Moreover, the optimal QAOA or VQE quantum circuit is retrieved

via the get optimal circuit() method of the respective quantum algorithm object.

The depth of the resulting quantum circuit plays an important role when evaluating the appli-

cability of the quantum computing approach, as will be discussed in Section 5.3. Instead of real

quantum systems, simulators, which per default operate based on an optimal qubit topology

(i.e., each qubit is connected to every other qubit), are used in this work. As such, the depth

of the returned quantum circuits does, without further steps, not correspond to the depth on

a real system.

In order to determine the depth of a quantum circuit that can be executed on such a real

system, the transpile() function, which is included in the qiskit.compiler package, is used

to transform the quantum circuit into one that conforms to a specified topology representing

a real system. For the transpile() function, the default parameter settings have been used.

As such, out of the four circuit optimization levels 0 to 4, level 1 is used, which means light

optimization is performed on the circuits. More details on the utilized qubit topology will be

given in the next section.

Page 28

Chapter 5 Solving Multi Query Optimization with Quantum Computing

5.3 Evaluation

This section will evaluate the applicability of the quantum-classical algorithms on IBM-Q sys-

tems in comparison to quantum annealing on a D-Wave system described in [9]. In Section 5.3.1,

the scaling behavior of the required number of qubits will be described. Moreover, the impact of

certain properties of the MQO problem on the number of quadratic terms in the QUBO matrix

will be explained. Next, in Section 5.3.2 the applicability of the two hybrid quantum-classical

algorithms on MQO using IBM-Q simulators will be evaluated.

5.3.1 Scaling Behavior of the Qubits and the Quadratic Terms

Each plan in the MQO problem is represented by one logical variable in the QUBO problem [9].

As such, the number of plans is a lower bound for the number of required qubits. However, for

D-Wave systems, a chain of physical qubits is used to represent one logical variable in order to

enable the embedding of more complex problems. The D-Wave 2X system used in [9] has over

1,000 physical qubits. However, due to the use of qubit chains, the number of variables the

input problem may contain is typically significantly lower, depending on the specific problem.

This is not the case for IBM-Q systems, for which one physical qubit is sufficient to represent

one variable.

In [9], the D-Wave 2X system was able to solve different classes of MQO problems with varying

numbers of plans per query (PPQ). The class with the lowest number of PPQ included 1,074

plans while the class with the highest number of PPQ contained 540 plans. In contrast, the

largest currently available IBM-Q system in terms of qubit numbers offers 65 qubits. Therefore,

the upper bound for the number of plans is significantly lower on IBM-Q systems available at

the time of writing compared to the D-Wave 2X system.

Taking into account the newest D-Wave machine at the time of writing, which is the D-Wave

Advantage system offering over 5,000 qubits and having an improved qubit connectivity [8],

the MQO problem dimensions that can be solved on D-Wave systems have likely increased sig-

nificantly. This further widens the gap between current IBM-Q and D-Wave systems regarding

their applicability in regards to MQO problems. In summary, D-Wave systems can be used to

solve significantly larger MQO problems when compared to current IBM-Q systems.

The number of qubits is not the only limiting factor that needs to be considered for IBM-Q

systems. As explained in a previous section, the number of quadratic terms in the QUBO

matrix also influences the applicability of both quantum annealing and the gate-based QAOA

algorithm.

In case of the former, the task of mapping the logical QUBO matrix onto the structure of the

D-Wave machine becomes more complex due to the higher number of required connections. For

the latter, the depth of the quantum circuit increases due to the higher number of indirect qubit

connections. The simulation results illustrating the concrete negative impact of an increase in

Page 29

Chapter 5 Solving Multi Query Optimization with Quantum Computing

the number of quadratic terms on the applicability of two simulated quantum algorithms for

IBM-Q systems will be presented in Section 5.3.2.

With regards to the QUBO formulation of an MQO problem, quadratic terms appear in the

energy formulas EM and ES whereas EL and EC only contain linear terms. More specifically

and as explained in [9], EM requires connections between each pair of alternative plans for

a query while ES does so for plans that share results. The impact of the former has been

highlighted by the results for different MQO problem classes with varying numbers of PPQ

presented in [9]: The total number of plans the MQO problem may contain in order for it to

still be solvable on quantum annealers decreases with an increasing number of PPQ.

5.3.2 Evaluation for IBM-Q systems

In the previous section, we explained how a lower bound for the required qubits corresponds to

the number of plans in the MQO problem. For D-Wave systems, depending on the density of

the QUBO matrix, additional physical qubits are needed to represent all logical variables. Even

so, in comparison to current IBM-Q systems, they are still capable of solving significantly larger

problems despite this overhead in required physical qubits. However, in the previous section,

only the number of qubits was taken into consideration when analyzing the applicability of

IBM-Q systems.

This section will explain further limitations for IBM-Q devices by showing how the density

of the QUBO matrix also impacts the applicability of these systems. More specifically, the

impact of an increasing number of quadratic terms on the quantum circuit depths resulting

from the QAOA algorithm will be analyzed. In addition, the QAOA circuit depths will be

compared to the circuit depths for the VQE algorithm, which do not depend on the number

of quadratic terms. The quantum algorithms are applied by using the remote IBM-Q qasm

simulator. Moreover, results for simulations that are based on a state-of-the-art topology will

be compared to ones for the optimal qubit topology provided by the qasm simulator. Detailed

information about the specifications of the simulators and real systems can be found in [3].

The qasm simulator assumes an optimal qubit topology where each simulated qubit is connected

to all other qubits. In contrast, direct qubit connections are very sparse on state-of-the-art

topologies. The IBM-Q Mumbai system, whose qubit topology is shown in Figure 4, was used

as the state-of-the-art system for the simulations. As explained in an earlier section, connections

between qubits which are not directly connected need to be established indirectly via the use

of swap gates as a part of the transpilation process. However, this leads to an expansion of the

depth of the resulting quantum circuit.

QAOA Circuit Depths. Figure 8 shows two charts presenting simulation results for the

QAOA algorithm. For both charts, the x-axis denotes the total number of plans in the MQO

problem whereas the y-axis denotes the depth of the optimal quantum circuit returned by the

Page 30

Chapter 5 Solving Multi Query Optimization with Quantum Computing

4 8 12 16 20 24

20

40

60

80

100

120

Total number of plans

D
ep

th
of

th
e

Q
A

O
A

ci
rc

u
it Opt. Top., 4 PPQ

Opt. Top., 6 PPQ

Opt. Top., 8 PPQ

4 8 12 16 20 24

50

100

150

200

250

300

Total number of plans

D
ep

th
of

th
e

Q
A

O
A

ci
rc

u
it Opt. Top., 4 PPQ

SoA Top., 4 PPQ

Opt. Top., 8 PPQ

SoA Top., 8 PPQ

Figure 8: The MQO circuit depths for QAOA with respect to varying qubit numbers, plans
per query, and qubit topologies.

algorithm. Simulations have been conducted for randomly generated MQO instances consider-

ing up to 24 plans. Moreover, the charts depict mean circuit depths over 20 randomly generated

MQO instances.

The left chart depicts three graphs for varying numbers of PPQ. Furthermore, it shows sim-

ulation results when using an optimal qubit topology. It can be seen that, as the number of

PPQ increases, so does the resulting circuit depth. Comparing the mean circuit depth when

the MQO problem has 24 plans in total for 4 PPQ with the one for 8 PPQ, the latter is

approximately 65% larger.

The right chart likewise depicts simulation results for varying numbers of PPQ, however, it

also shows graphs for different qubit topologies including ones for the Mumbai state-of-the-

art topology. Comparing the circuit depth increases resulting from the usage of the Mumbai

topology for 4 PPQ and 8 PPQ at 24 plans in total, it is clear that the impact of using a

non-optimal topology becomes more drastic for denser QUBO matrices. For 4 PPQ, using the

Mumbai topology increases the mean circuit depth by approximately 116% at 24 plans in total,

whereas it increases by roughly 160% for 8 PPQ.

QAOA Versus VQE. In addition to QAOA, simulations have also been conducted for the

VQE hybrid quantum-classical algorithm. Figure 9 depicts two charts that show simulation

results for both algorithms. More specifically, the left chart depicts the results for the optimal

qubit topology of the qasm simulator whereas the right chart shows results for the Mumbai

topology. Moreover, both charts only show different graphs for varying numbers of PPQ with

respect to QAOA. For VQE, only the total number of plans in the MQO problem influences

the depth of the resulting quantum circuit whereas the density of the QUBO matrix does not

Page 31

Chapter 5 Solving Multi Query Optimization with Quantum Computing

4 8 12 16 20 24

20

40

60

80

100

120

Total number of plans

D
ep

th
of

th
e

q
u
an

tu
m

ci
rc

u
it QAOA (Opt. Top., 4 PPQ)

QAOA (Opt. Top., 8 PPQ)

VQE (Opt. Top.)

4 8 12 16 20 24

200

400

600

800

1,000

Total number of plans

D
ep

th
of

th
e

q
u
an

tu
m

ci
rc

u
it QAOA (SoA Top., 4 PPQ)

QAOA (SoA Top., 8 PPQ)

VQE (SoA Top.)

Figure 9: MQO circuit depths for VQE and QAOA and varying qubit topologies.

play a role.

Regarding the results for the optimal qubit topology, it can be seen that for both QAOA graphs,

the rate at which the mean circuit depth grows decreases with an increasing number of plans.

In contrast, the graph for VQE grows linearly with the number of plans. As such, as the total

number of plans further increases beyond the numbers shown in the charts, the use of VQE will

likely lead to larger circuit depths when compared to using QAOA on MQO problems with 4

or 8 PPQ.

However, when considering the results for the Mumbai topology, which are depicted in the right

chart, it becomes clear that mapping the VQE circuit onto a state-of-the-art topology leads

to a drastic increase of the circuit depth. For the optimal topology, the resulting VQE circuit

depth for 24 plans in total is 97, whereas the mean circuit depth over 20 circuit transpilations

is around 970 when using the state-of-the-art topology, thus increasing the depth by roughly

900%. This overhead in circuit depth is significantly larger when compared to QAOA, where

the usage of the state-of-the-art topology leads to an increase of around 160% for 8 PPQ and

116% for 4 PPQ when the MQO problem contains 24 plans.

Circuit Depth and Coherence Times. In order to evaluate the feasibility of executing the

quantum algorithms with regards to their corresponding mean circuit depths on real systems in

a more concrete way, the specifications of the system should be considered. More specifically,

the average coherence time as well as the average time it takes for a gate to be executed are

relevant properties. As explained in [26], the coherence time affects the probability of errors due

to decoherence depending on the time it takes to execute the circuit. Moreover, two separate

coherence times, T1 and T2, need to be considered.

As described in [26], T1 refers to the time it takes for a qubit in the high-energy state |1〉 to

Page 32

Chapter 5 Solving Multi Query Optimization with Quantum Computing

naturally decay to the low-energy state |0〉. On the other hand, T2 is connected to the time

it takes until the superposition state (|0〉 + |1〉 /
√

2) decays to |0〉 or |1〉. More specifically, as

described in [25], both T1 and T2 are constants calibrated for the quantum system so that the

probability of an error perr in relation to the respective coherence time T is proportional to

perr = 1− e−t/T , (36)

where t is the computation time. As such, once the execution time of the quantum circuit

reaches the coherence time, the probability for an error due to decoherence is approximately

perr = 1 − e−1 ≈ 0.63%, increasing further as the computation goes on. Based on the two

coherence times of the Mumbai system, which, at the time of writing, are 117.22 µs and 118.47

µs for T1 and T2 respectively, and the average gate time gavg given by 471.111 ns, the maximum

circuit depth dmax that can be executed within the coherence time can be calculated:

dmax =
⌊min(T1,T2)

gavg

⌋
=
⌊117,220 ns

471.111 ns

⌋
= 248. (37)

Taking this circuit depth as a threshold after which a reliable circuit execution becomes increas-

ingly improbable due to decoherence errors, it can be seen that the VQE circuit depths beyond

MQO problems with 12 plans in total are too large for reliable calculations on real systems,

as the circuit depths for the Mumbai topology exceed the threshold circuit depth by a large

margin. The same is true for the QAOA circuit for 8 PPQ and 24 plans in total, which also

exceeds this threshold. In contrast, all circuit depths for 4 PPQ can be executed well within

the coherence time.

Summary. In summary, it becomes clear that the number of quadratic terms in the specific

QUBO problem imposes further limitations on the applicability of quantum computing for

MQO on current systems. The set of MQO problems which can be reliably solved on current

gate-based systems is already very restricted due to the limited number of available qubits.

However, when also considering errors such as decoherence errors, the set of problems becomes

further limited as highlighted by the simulation results for MQO problems with a higher number

of PPQ.

Page 33

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

6 Solving the Join Ordering Problem with Quantum Com-

puting

This chapter shows how to solve the join ordering problem, which was described in Section 4.2,

via the use of quantum computing. First, a two-step approach for transforming the join ordering

problem into QUBO form is presented in Section 6.1. Next, implementation details for both

IBM-Q and D-Wave machines are explained in Section 6.2 and finally, the results will be

evaluated in Section 6.3.

6.1 QUBO Formulation

Figure 10: The steps of the join ordering reformulation approach.

This section will give a detailed explanation on a multi-step approach for solving join ordering

problems on quantum processing units (QPU). Figure 10 shows the general steps involved.

First, the initial join ordering problem can be formulated as an MILP problem. A brief overview

on MILP problems is given in Section 6.1.1 and the actual reformulation approach is explained

in Section 6.1.2. After some additional adjustments, which are described in Section 6.1.3, the

join ordering MILP problem can be expressed as a binary integer linear programming (BILP)

problem, which can be formulated as a QUBO problem as explained in Section 6.1.4. This

allows us to ultimately solve join ordering problems on QPUs.

6.1.1 Mixed Integer Linear Programming

The first transformation step involves the formulation of the join ordering problem as an MILP

problem. This section will give a short explanation on MILP problems before the actual trans-

formation of the join ordering problem will be explained in the next sections. MILP problems

are optimization problems with the goal of determining values for a set of variables such that

the output of a specified objective function is either minimized or maximized. As explained

in [16], reformulating problems as MILP problems and using state-of-the-art MILP solvers is

considered promising since these solvers have matured over a long period of time.

Page 34

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

As described in [38], an MILP problem is formally stated as follows:

max cx+ hy

subject to Ax+Gy ≤ b

x ≥ 0

y ≥ 0

MILP problems may contain both integer and non-integer variables, which are given by x ∈ Zn0
and y ∈ Rp

0 respectively. Furthermore, c ∈ Rn and h ∈ Rp are the coefficient vectors for the

objective function. Additionally, the problem contains m constraints which need to be satisfied

by the variable assignment for a solution to be valid. Both A and G are coefficient matrices

with A being a m× n and G being a m× p matrix. Finally, b ∈ Rm is a constraint vector.

6.1.2 Mixed Integer Linear Programming Formulation for the Join Ordering Prob-

lem

This section will describe how the join ordering problem can be formulated as an MILP problem

based on the explanations given in [16]. More specifically, it is shown in [16] how to model

the join ordering problem for finding left-deep join trees with the goal of minimizing the cost

metric Cout shown in [33] and defined in Equation 28. Furthermore, [16] also considers cartesian

products in addition to joins.

Preliminary Considerations. It is also described in [16] how to model more sophisticated

cost metrics. However, those require additional variables, some of which are continuous and

therefore require an even greater number of additional qubits. As the number of available qubits

on current quantum computing machines is very limited, this work only utilizes the more basic

model that minimizes the cost function given in Equation 28, which, as shown in [33], can be

achieved by minimizing the cardinalities of the intermediate join results.

One problem that needs to be considered for the transformation into MILP form is given by

the fact that the cost function as described in Equation 28 contains products, which cannot

be modelled by MILP problems. As such, it is suggested in [16] to use logarithmic values for

the intermediate cardinalities, making use of the fact that the logarithm of a product can be

expressed as the sum of the logarithmic values of its factors.

In order to approximate the actual intermediate cardinalities based on the logarithmic ones,

an arbitrary number of threshold values is used, as will be explained below. This approach

introduces a trade-off: The more threshold values are used, the more accurate the solution

becomes. However, more accurate solutions demand more binary variables. Due to the fact

that every binary variable in the MILP model needs to be represented by one qubit and taking

into account the limited number of qubits current quantum computing machines can offer,

Page 35

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

this trade-off is even more significant when using quantum computing for solving join ordering

problems with this method.

MILP Encoding. Further following [16], the MILP problem contains the following binary

variables:

• tii tj: Indicates whether or not relation t is contained in the inner operand of the j-th join

• tiotj: Indicates whether or not relation t is contained in the outer operand of the j-th

join

• paopj: Indicates whether or not the p-th predicate can be evaluated on the outer operand

of the j-th join

• ctorj: Indicates whether or not the logarithmic value of the r-th threshold value θr has

been reached by the logarithmic cardinality of the outer operand of the j-th join

Since this work only considers the basic cost function which aims to minimize intermediate

cardinalities, the objective function of the MILP problem is simply given by

min
∑
r

∑
j

ctorjδθr. (38)

The term δθr is defined in such a way that a threshold value is not added several times to the

objective function once it has been reached. One exemplary way suggested in [16] to achieve

this is to define the value for δθr as θr − θr−1 for r ≥ 1 and δθ0 = θ0. This definition for δθr is

applied in this work.

Further following [16], the constraints of the following types have to be added to the MILP

problem in order to enforce valid solutions to the underlying join ordering problem:

1.
∑

t tiot0 = 1.

2. ∀j :
∑

t tii tj = 1.

3. ∀j∀t : tiotj + tii tj ≤ 1.

4. ∀j ≥ 1∀t : tiotj = tii t,j−1 + tiot,j−1.

5. ∀p∀j : paopj ≤ tioT1(p)j, where T1(p) denotes the first relation the predicate p refers to.

6. ∀p∀j : paopj ≤ tioT2(p)j, where T2(p) denotes the second relation the predicate p refers to.

7. ∀j∀r :
∑

t log(Card(t))tiotj +
∑

p log(Sel(p))paopj − ctorj · ∞rj ≤ log(θr), where Card(t)

is the cardinality of the relation t, Sel(p) is the selectivity of the predicate p, ∞rj is a

sufficiently large constant for satisfying the constraint when ctorj is set to 1 and θr is the

r-th threshold value.

Page 36

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

The assignment of the tiot0 and tii tj variables expresses the solution to the join ordering prob-

lem, as it determines the leaves of the join tree and thus indicates the order in which the

relations are joined. Constraints of types 1 and 2 ensure that exactly one relation may be

chosen for any leaf while constraints of type 3 invalidate solutions where the same relation is

part of both the inner and outer operand of the j-th join. Constraints of type 4 ensure that,

once a relation has been an operand of a join, it will be contained in the outer operands of all

subsequent joins and will thus contribute to the cardinality of the intermediate results.

Constraints of types 5 and 6 enforce that a predicate can only be applied to a join if both of

the relations it refers to are already contained within the outer operand of the join. Finally,

constraints of type 7 ensure that the indicator variable for the r-th threshold value is set to

1 for the j-th join if the logarithmic cardinality of the intermediate result (consisting of all

relations that are contained in its outer operand) exceeds the logarithmic threshold value.

Example. The following illustrates the MILP formulation process for a small exemplary join

ordering problem. Let the problem input include three relations A, B and C, each containing

10 tuples. Furthermore, let the problem input contain one join predicate p with a selectivity

of 0.1 for the relations A and B. Moreover, let the input include one threshold value v = 10.

Then, for each of the three relations and for each of the two joins, variables tii tj and tiotj with

0 ≤ j ≤ 1 and t being a placeholder for the respective relation are introduced. In addition, for

the single predicate p, two variables paop0 and paop1 are introduced for the first and second join

respectively. Finally, the threshold indicator variables ctov0 and ctov1 are likewise introduced

for the single threshold value v and both joins.

For this small example scenario, an optimal solution which minimizes intermediate cardinalities

is obviously given by the join orders (A ./ B) ./ C or (B ./ A) ./ C. For the first join, the

logarithmic intermediate cardinality for the outer operand, which is log10(10) = 1, never exceeds

the logarithmic threshold value log10(10) = 1. As such, the respective type 7 constraint for

ctov0 is always satisfied without the threshold variable needing to be activated. For the second

join, the logarithmic intermediate cardinality for the outer operand is given by log10(10) +

log10(10)+log10(0.1) = 1+1−1 = 1 if variable paop1 is activated. Then, the threshold variable

ctov1 is also not activated, which leads to an optimal solution.

In accordance to constraint types 5 and 6, the predicate only influences the intermediate cardi-

nality of the second join if the relations A and B are both contained in its outer operand, which

requires tioA1 = 1 and tioB1 = 1. Otherwise, paop1 = 0 and the intermediate threshold value

becomes log10(10) + log10(10) = 1 + 1 = 2, which activates the threshold variable ctov1 due to

the type 7 constraint. As a result, the corresponding value δθ0 = 10 is added to the objective

function, which indicates that the accumulated intermediate cardinality for the non-optimal

solution exceeded 10. For any solution, the join order can be inferred from the assignment for

the variables tii tj and tiot0. For this specific example, the optimal join order (A ./ B) ./ C is

given by the variable assignment tioA0 = 1, tiiB0 = 1 and tiiC1 = 1.

Page 37

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

6.1.3 Elimination of Inequality Constraints

Instead of using an MILP solver to determine an optimal solution, the MILP problem is fur-

ther transformed into a form suitable for quantum computing for this work. Since the MILP

formulation does not contain any non-binary variables, it is also a BILP problem, which can

be transformed into an Ising Hamiltonian as shown in [20] and can thus be solved on current

quantum computing devices. However, in order to bring the BILP problem into this form,

every inequality constraint first needs to be converted to an equality constraint. This can be

achieved by adding slack variables to the inequality constraints [38]. The following shows the

transformed constraint of type 7, introducing a slack variable sl rj:

∑
t

log(Card(t))tiotj +
∑
p

log(Sel(p))paopj − ctorj · ∞rj + sl rj = log(θr). (39)

For any inequality constraint in the model other than those of type 7, one binary slack variable

is sufficient to turn it into an equality constraint. As such, one additional qubit is necessary

for those constraints.

However, for the seventh type, the slack variable sl rj needs to be continuous, which is not

possible for BILP problems. In order to circumvent this, the continuous slack variable can be

approximated with several discrete variables. As shown in [39], an integer variable with an

upper bound C can be expressed via n = blog2(C)c+ 1 binary variables. Utilizing this method

similarly to how it was done in [40], a continuous slack variable csl with an upper bound C can

be approximated in the following way:

csl = ω
n∑
i=1

2i−1bsl i, (40)

where n = blog2(
C
ω

)c + 1, ω = 0.1p with p ∈ N+
0 and bsl i ∈ {0, 1} denotes a binary slack

variable. The factor ω determines the precision of the approximation and introduces another

trade-off: the lower the value assigned to ω, the more precisely the continuous slack variable

can be approximated. In return, however, a larger number of binary variables and thus a higher

number of qubits is necessary. Explanations on upper bounds for the number of required binary

variables will be given in Section 6.3.1.

6.1.4 Bringing the BILP Problem into QUBO Form

The previous sections gave an explanation on the first step of transforming the join ordering

problem into a form suitable for quantum computing approaches, which involves the formula-

tion of the input problem as a BILP problem. In addition, it was shown how the inequality

constraints of the join ordering formulation can be turned into equality constraints via the

introduction of slack variables, which serves as a precondition for the second step of the overall

Page 38

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

transformation that will be described in this section.

Ising Model. Following [20], the formulation of a BILP problem with only equality con-

straints as an Ising Hamiltonian is given by H = HA+HB. The optimal solution to the problem

is encoded by the ground state of the Hamiltonian H. Furthermore, the Sub-Hamiltonian HA

is given by

HA = A

m∑
j=1

(
bj −

N∑
i=1

Sjixi

)2

. (41)

HA is formulated with the goal of invalidating each assignment of the binary variables xi that

leads to a violation of any of the m constraints in the BILP problem. S is a matrix of shape

m × N , which contains all coefficients for all N variables and m constraints, and b ∈ Rm is a

vector containing the values of the right hand side of the constraining equations.

Any violating variable assignment means that the term bj −
∑N

i=1 Sjixi will not be zero and

therefore, the energy penalty weight A will be added to the energy level of the Hamiltonian.

As such, invalid assignments should not lead to a minimization of the overall energy. However,

in order to achieve the desired effect, the value of A needs to be set specifically in relation to

the Sub-Hamiltonian HB, which is given by

HB = B
N∑
i=1

cixi. (42)

HA effectively encodes the constraints of the BILP problem. Similarly, HB encodes its objective

function. As such, c ∈ RN is a vector containing the cost values of the objective function.

Note that in the problem formulation given in [20], HB contains an additional negative factor

since the problem is formulated as a maximization problem. By omitting this factor, the

formulation becomes suitable for minimization problems like the join ordering problem, as both

Sub-Hamiltonians need to add to the overall energy of the overarching Hamiltonian (albeit to

varying degrees).

Penalty Weights. The task of determining suitable values for penalty weights such as A

and B can typically be a tricky problem and greatly affects the quality of the solution. As it is

desired to generate valid solutions rather than variable assignments that minimize cost while

violating constraints, the relation A � B needs to hold in the case of this particular QUBO

formulation. At the same time, setting the penalty weights too high also has negative impacts

on the solution quality. In quantum annealing, large penalty weights lead to a compression

of the energy spectrum of the system and thus to a small minimum energy gap [41]. The

result would be a large annealing time, which is inversely proportional to the minimum energy

gap between the ground state and the first excited state of the Hamiltonian as explained in

Section 3.5.

Page 39

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

Further following [20], the violation of even a single constraint by the smallest possible value

should add a sufficiently large energy penalty to the Hamiltonian so that such a variable as-

signment cannot correspond to its ground state. This is achieved by ensuring that any cost

saving with regards to HB that leads to a violation of a constraint is smaller than the energy

penalty that is added through HA as a result.

Postulating that the cost vector c only contains positive values (which is the case for the join

ordering problem), an upper bound for the cost that can be saved regarding the objective

function is given by

C =
N∑
i=1

ci. (43)

Assuming B is simply set to 1, C equals the maximum energy saving possible with regards to

HB. Thus, it needs to be ensured that the energy penalty for violating a single constraint by the

smallest possible value is larger than C in order to remove any incentive to violate constraints.

In this work, the coefficient values in the matrix S and vector b are rounded to decimal places

in accordance with the precision factor ω (which, as explained in Section 6.1.2, is needed

for approximating continuous slack variables). The smallest possible value which any of the

constraints that require continuous slack variables can be violated with is then ω, whereas for

any other constraint the smallest value is 1 and thus equal or higher. As such, the smallest

possible value a constraint can be violated with is given by ω.

The rounding of the coefficients is necessary due to the higher complexity of determining a

suitable penalty weight A if the values are not rounded. In the latter case, it is not guaranteed

that there exists an assignment for the slack variables so that bj −
∑N

i=1 Sjixi = 0 even if the

assignment of the logical variables is valid. As the upper bound for the resulting error depends

on ω, it would be possible to specify a value for A that leads to an invalidation of any variable

assignment that violates at least one constraint.

However, even for valid variable assignments, the possible errors for the affected constraints can

accumulate and induce a high energy penalty, which should only be the case for an invalidation.

In summary, enforcing that violating variable assignments are invalidated via sufficiently large

penalty weights while also ensuring that valid assignments are not unreasonably penalized adds

a lot of complexity to the problem of finding suitable penalty weights in case the coefficients

are not rounded.

Resulting from the above, the following inequality must hold in order to enforce valid solutions:

A >
C

ω2
. (44)

Squaring ω is necessary as the constraints are encoded within a quadratic term in HA. It can

be seen that, the lower the value for ω, the larger A has to be. Considering the negative effects

Page 40

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

of large penalty weights on the quantum annealing process as explained above, the benefits of

a higher precision through lower ω might be negated or even outweighed as a result.

Quadratic Contributions. It can be seen that HA is the source for all quadratic contri-

butions of the QUBO formulation. As such, all non-diagonal entries of the resulting QUBO

matrix are caused by the specific constraints of the BILP problem, which are encoded by HA.

More specifically, a quadratic term for two variables xi and xj needs to be added to the QUBO

matrix if those two variables appear together in at least one constraint.

As described in an earlier section, the more quadratic terms a QUBO matrix contains, the

more complex the task of embedding the matrix on a quantum annealing machine becomes.

The application of the QAOA algorithm on gate-based systems is likewise negatively impacted,

as quadratic terms require more connections between the qubits, which are sparse on current

machines. However, creating indirect connections via swap operations leads to higher circuit

depths. More details on the emergence of quadratic terms in regards to the specific properties

of the join ordering formulation will be explained in Section 6.3.3.

6.2 Implementation

The previous section explained a two-step approach for transforming the join ordering problem

into QUBO form, which is suitable for the application of quantum computing. Based on that,

this section describes the respective implementation for both the Qiskit and Ocean SDK.

First, Section 6.2.1 gives an overview on different frameworks used for the implementation.

Next, Section 6.2.2 explains the implementation details.

6.2.1 Frameworks Used

In this section, the frameworks which are used in the implementation will be explained. In order

to deploy QUBO problems on D-Wave systems or to use local solvers, the D-Wave Ocean SDK

can be used. A documentation for the SDK can be found in [42]. The SDK includes several

packages which were used for this work, such as the dimod package (version 0.9.15), which

contains classes representing quadratic programs such as the BinaryQuadraticModel class.

BinaryQuadraticModel objects serve as an input for the solvers offered by the Ocean SDK.

Additional solvers such as classical simulated annealing solvers are contained in the dwave-

neal package (version 0.5.7). Finally, in order to conduct simulations for embeddings for the

topology of real D-Wave systems, version 0.8.8 of the dwave networkx package is used. This

package provides tools for specifying objects representing Chimera or Pegasus topologies.

For the BILP formulation of the problem, the Gurobi Python interface gurobipy is used.

The Gurobi optimizer can be used for solving mathematical optimization problems including

MILP and BILP problems [43]. For this work, version 9.1.2 of gurobipy is used. Specific

methods provided by gurobipy classes can be used for extracting the resulting coefficient

Page 41

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

matrix as well as the coefficient and cost vectors, which serve as the input for the subsequent

parts of the transformation.

Moreover, for the formulation of the Ising Hamiltonians, the PyQubo library (version 1.0.12)

is used. PyQubo is a tool referenced in the D-Wave Ocean documentation that offers an

intuitive way for creating QUBO models from mathematical expressions [44]. It additionally

supports the generation of BinaryQuadraticModel objects, which serve as input models for the

D-Wave Ocean SDK. Further library packages that are used in the implementation include the

numpy package (version 1.21.0) as well as the math module which is included in the Python

installation.

6.2.2 Implementation Details

This section will describe the details of the Python (version 3.8.8) implementation of the quan-

tum computing approach for the join ordering problem. First, the input parameters for the

implementation will be explained. As described in Section 4.2, the input to the join ordering

problem consists of a query graph. More specifically, the input parameters include a list of

cardinalities referring to their respective relations that are to be joined, as well as an adjacency

list containing the edges of the graph, which represent the join predicates with each predicate

referring to two relations.

Moreover, the input parameters include a list of predicate selectivities corresponding to the

join predicates and a list of threshold values, which are used for approximating the actual non-

logarithmic cardinalities of the intermediate results as described in Section 6.1.2. Finally, the

input contains a parameter for specifying the number of decimal positions p which determines

the precision factor ω for the approximated continuous slack variables.

The following shows the overall steps included in the implementation:

1. Calculate the logarithmic values from the input cardinalities and threshold values.

2. Determine which variables can be pruned.

3. Create the Gurobi Model object and add all necessary variables to it.

4. Define the objective function for the Model.

5. Add all needed constraints and add slack variables where necessary.

6. Extract the coefficient matrix as well as both the coefficient vector and the cost vector.

7. Calculate the penalty weight for the invalidating Ising Hamiltonian.

8. Formulate the Ising Hamiltonian.

In the first step, the logarithmic values of the relation cardinalities and the threshold values are

calculated, as they will be necessary for the formulation of the BILP constraints. Afterwards,

Page 42

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

depending on the cardinalities and threshold values, it is determined which variables are actually

needed and which may be pruned. As will be explained in Section 6.3.1, a variable ctorj is only

needed if the r-th threshold value can be reached in join j.

Next, the Gurobi Model object is initialized and all variables that need to be present are

added to it. Note that a variable ctorj is only included for j > 0, as the objective is to minimize

intermediate relation cardinalities, which equal the cardinalities for the outer join operands.

However, the outer operand for the very first join is merely one of the input cardinalities. As

such, all ctor0 variables can be omitted, which reduces the number of required qubits. Likewise,

all paop0 variables are omitted, as the usage of a predicate requires the two relations it refers

to to be included in the outer operand of the respective join. However, for the very first join,

the outer operand consists of only one relation, which makes paop0 variables superfluous. As

such, they are pruned in order not to unnecessarily waste qubits.

Furthermore, the objective function as given in Equation 38 is defined for the Model and

all necessary constraints are added as specified in Section 6.1.2. For the transformation of

inequality constraints to equality constraints, additional slack variables need to be added to

the Model. As mentioned in Section 6.1.3, only one additional slack variable is needed for the

majority of constraints whereas in most cases, several binary slack variables are required for

the approximation of the continuous slack variables needed for constraints of type 7. Specific

details about the required number of additional slack variables are explained in Section 6.3.1.

The next step after completing the creation of the Gurobi Model involves formulating the Ising

Hamiltonian. For this, the coefficient matrix and both the coefficient vector and cost vector

need to be extracted from the Model. Fortunately, the Model class offers methods to extract

them either directly or to extract data which the matrix and vectors can be easily derived from.

As a last step before formulating the Ising Hamiltonian, the weight for the invalidating Sub-

Hamiltonian needs to be calculated based on the cost vector and precision factor as explained

in Section 6.1.4.

Then, with the goal of using the D-Wave Ocean SDK, the PyQubo tool can be utilized to

formulate the Ising Hamiltonian using mathematical expressions. After compiling the PyQubo

Model, it can be directly transformed into an instance of the BinaryQuadraticModel class via

the to bqm() method. As such, a direct input for the Ocean solvers can be generated using

the PyQubo tool. Alternatively, a docplex Model object may be created in the same manner,

which, as shown in previous sections, can be used to create an instance of the QuadraticProgram

class. The latter serves as an input for the solvers of the Qiskit SDK, which are initialized in

the same manner as described for the MQO simulations in Section 5.2.2.

The BinaryQuadraticModel object serves as an input for solvers such as the classical sim-

ulated annealing solver of the dwave-neal package. However, since the goal is to conduct

simulations for the Pegasus topology of the D-Wave Advantage system, the classical solver

object is not directly used but instead passed as an input parameter for creating an object of

Page 43

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

the dimod StructureComposite class. Moreover, objects representing the nodes and edges

of a Pegasus P16 topology are created with the dwave networkx package and additionally

passed as input parameters. The StructureComposite object can then be used for solving

a problem represented by a BinaryQuadraticModel object based on a real topology. Finally,

the object is moreover used as an input parameter for creating an object of the Ocean class

EmbeddingComposite, which automatically finds an embedding for the BinaryQuadraticModel

for the topology of the StructureComposite based on the minorminer algorithm.

6.3 Evaluation

In the previous sections, an overview on the two-step transformation of the join ordering prob-

lem into a form suitable for quantum computing was given and details on the implementation

were described. This section will evaluate the approach and present simulation results. First,

Section 6.3.1 will explain upper bounds on the number of required variables for a join order-

ing problem. Section 6.3.2 will show the scaling behavior for the required number of logical

qubits with regards to the dimension of the join ordering problem. Next, Section 6.3.3 analyzes

how different problem parameters influence the application of quantum computing approaches.

Section 6.3.4 will present simulation results for IBM-Q systems and finally, Section 6.3.5 will

likewise show simulated results for D-Wave systems.

6.3.1 Upper Bounds for the Number of Binary Variables

Section 6.1.2 gave an overview on all types of binary variables which are needed to formulate

the join ordering problem as an MILP problem. This includes the logical variables expressing

properties directly related to the join ordering problem (e.g., variables denoting whether or not

a relation is part of the inner or outer operand of some join). However, in order to further bring

the problem into BILP form that can be transformed into QUBO form, additional slack variables

have to be added to the problem formulation in order to eliminate inequality constraints as

described in Section 6.1.3.

Taking all of these variable types into account, this section will explain the upper bounds

for the number of variables needed for the complete problem formulation. The upper bounds

depend on problem specific parameters like the input cardinalities and the precision of the

approximated continuous slack variables. Since one qubit represents one binary variable, the

number of required qubits is equal to the total number of binary variables. As such, the

following will illustrate the qubit requirements by showing how the number of required binary

variables for formulating the join ordering problem in the manner described in previous sections

depends on the specific parameters of the join ordering problem.

Let n be the total number of binary variables needed to encode the join ordering problem as a

Page 44

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

BILP problem. Then, n is given by

n = nlog + nbsl + ncsl, (45)

where nlog denotes the number of logical variables consisting of all variables tii tj, tiotj, paopj
and ctorj. The semantics of these variables have been explained in Section 6.1.2. Due to the

aforementioned pruning of all unnecessary ctorj variables, an upper bound for nlog is given by

nlog ≤ T · J + T · J + P · (J − 1) +R · (J − 1) = J(2T + P +R)− P −R, (46)

where T denotes the number of relations to be joined, J = T − 1 is the number of joins, P

denotes the number of predicates and R is the number of threshold values. Note that the

calculation takes into account that paop0 and ctor0 variables are omitted due to the reasons

explained in Section 6.2.2.

The term nbsl denotes the number of slack variables added for all inequality constraints for

which a single slack variable suffices to transform them into equality constraints. This includes

all constraints of type 3, 5 and 6. Therefore, nbsl is given by

nbsl = J · T + P · (J − 1) + P · (J − 1) = J(T + 2P)− 2P . (47)

Once again, the equation takes into account that paop0 variables are omitted.

Finally, ncsl denotes the number of binary variables needed to express approximated values for

all continuous slack variables required for constraints of type 7. In order to determine ncsl,

an upper bound for the continuous slack variables that need to be approximated needs to be

determined as a prerequisite.

Following from Equation 39, for any threshold value r and join j the upper bound Crj for the

continuous slack variable sl rj is given by

Crj = log(θr) +∞rj ≥ log(θr) + ctorj∞rj − lcoj = slrj , (48)

where lcoj (as it is referred to in [16]) is the logarithmic cardinality of the outer operand for

join j:

lcoj =
∑
t

log(Card(t))tiotj +
∑
p

log(Sel(p))paopj. (49)

It can be seen that the upper bound for slrj depends on the term ∞rj, which is a sufficiently

large constant that fulfills a type 7 constraint in case lcoj exceeds log(θr) as ctorj is set to

1. Since the upper bound should be kept as low as possible for lower qubit requirements, the

minimum value that suffices in all cases when ctorj = 1 is chosen for ∞rj and needs to be

determined next. Let the term mlcj thereby denote the maximum logarithmic cardinality the

Page 45

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

outer operand of the j-th join may have. Specifically, mlcj is given by

mlcj =

j∑
t=1

log(Card(t)), (50)

where Card(i) ≥ Card(j)∀i < j. We consider only those cases where mlcj > log(θr), since

otherwise, the threshold value is never reached and as a result, variable ctorj is never activated.

As such, neither the variable nor the constraint are even necessary in those cases and can be

pruned, which also diminishes the necessity for the approximated continuous slack variable.

Therefore, the following will determine an upper bound for ncsl for the worst case in which

none of the variables can be pruned.

Following from constraint type 7, for any join j and threshold value r, the lower bound for∞rj

when ctorj = 1 is then given as

∞rj ≥ mlcj − log(θr) ≥ lcoj − log(θr). (51)

Setting ∞rj to its lower bound and inserting it into Equation 48 produces Crj = mlcj. There-

fore, the number of binary slack variables nbin necessary for the discretization of slrj as shown

in Equation 40 is given by

nbin =
⌊
log2

(
mlcj
ω

)⌋
+ 1. (52)

Following Equation 52, which expresses the number of additional binary variables for a single

constraint, an upper bound for the total number of required binary variables ncsl for all type 7

constraints is given by

ncsl ≤ R
J∑
j=2

(⌊
log2

(
mlcj
ω

)⌋
+ 1

)
. (53)

Like before, only the constraints for the corresponding ctorj variables for j > 1 are accounted

for. Finally, following from Equation 45, Equation 46, Equation 47 and Equation 53, the upper

bound for the overall number of binary variables is given by

n ≤ 3TJ + (J − 1)(3P +R) +R
J∑
j=2

(⌊
log2

(cj
ω

)⌋
+ 1
)

. (54)

It can be noted that the number of necessary qubits is at least quadratic in the number of

relations to be joined (as J = T − 1). In general, considering the above equations, it is clear

that the number of required logical qubits is highly dependant on the number of joins in the

join ordering problem.

Page 46

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

6.3.2 Logical Qubit Scaling Behavior

This section will give an overview on the scaling behavior of the number of required logical qubits

as the dimension of a join ordering problem increases. More specifically, it will first show how

the number of qubits increases with the number of relations in the input of the join ordering

problem while also considering the number of predicates. In addition, the scaling behavior for

an increasing number of threshold values and precision factors will also be described.

6 12 18 24 30 36 42

0.3

0.6

0.9

1.2

1.5

1.8

2.1
·104

Number of relations to be joined

N
u
m

b
er

of
lo

gi
ca

l
q
u
b
it

s

P = J

P = 2J

P = 3J

Figure 11: The qubit scaling behavior for the join ordering problem with respect to the number
of relations T and varying numbers of predicates P . Specifically, the chart shows graphs for
P = J , P = 2J and P = 3J where J = T − 1 denotes the number of joins.

Influence of the Number of Relations and Predicates. Figure 11 illustrates the scaling

behavior of the number of required qubits, which is denoted by the y-axis, in relation to the

number of relations in the join ordering problem, which is denoted by the x-axis. It should be

noted that Figure 11 refers to the number of logical qubits. As explained in earlier sections,

the actual number of qubits that quantum computing systems need to offer can be higher than

these numbers, which is typically the case for D-Wave systems. As such, the qubit number

shown here should be seen as a lower bound for a join ordering problem with regards to the

parameters which are explained below.

Moreover, Figure 11 shows a comparison between different predicate numbers P , specifically for

P = J , P = 2J and P = 3J where J is the number of joins. The remaining problem parameters

have been set in such a way that they only have a negligible impact on the number of qubits.

Specifically, the actual cardinality is approximated via only 1 threshold value. Furthermore,

each relation has a cardinality of 10 and the precision factor for the approximation of the

continuous slack variables is set to 1. Finally, in order to represent a more general join ordering

problem, Figure 11 does not take pruning of cto variables into account and thus depicts the

upper bounds for the number of necessary logical qubits.

Page 47

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

Figure 11 shows the qubit requirements for problem instances with up to 42 relations. The

largest problems that were solved with a classical MILP solver in [16] contained 60 relations as

an input. Looking at the required qubit number for a join ordering problem with 42 relations

if P = J , which is approximately 10,000 qubits, it becomes clear that neither current D-

Wave machines nor current IBM-Q quantum systems offer enough qubits to solve problems of

dimensions comparable to the larger ones solved in [16]. Evidently, the same is true for even

higher predicate numbers featured in Figure 11.

Figure 11 also illustrates the high impact of the number of predicates P on the overall number

of logical qubits. For 42 relations, doubling the number of predicates roughly leads to a 50%

increase in the number of qubits. Moreover, the graph for P = J represents the lower bound

for the problem dimension of a practical join ordering problem with regards to the predicate

number. Even fewer predicates would necessitate the usage of cartesian products, which are

not even considered by some query optimizers.

Influence of an Increasing Precision. This lower bound does so far not take the remaining

problem parameters, specifically the number of threshold values and the precision factor ω, into

account. For a practical join ordering problem, these parameters are important for determining

meaningful results and also influence the overall number of logical qubits as they impact the

number of cto variables as well as the upper bound for the number of binary variables needed

to approximate the continuous ones. This upper bound also depends on the cardinalities of the

relations which are to be joined. However, these only have a minor impact on the total qubit

number compared to other parameters even when dealing with relations of large dimensions,

as the worst-case intermediate cardinality mlcj for join j equals the accumulated logarithmic

input cardinalities and not the actual cardinalities.

Figure 12 illustrates the impact of tuning the approximation quality of the actual resulting

cardinality for increasing numbers of up to 20 threshold values, which are denoted by the x-

axis. Once again, the y-axis denotes the number of logical qubits. In addition, Figure 12

includes graphs for varying precision factors, specifically for ω = 1, ω = 0.01 and ω = 0.0001.

The remaining parameters are set as follows: the number of relations to be joined is 20 and the

number of join predicates is 19, equaling the number of joins. All relations have a cardinality

of 10. Finally, pruning is not accounted for, again with the goal to represent a more general

join ordering problem.

As the input of a join ordering problem contains a significant number of joins and join predi-

cates, the qubit number is already at a high level for 2 threshold values. It can be seen that,

even for ω = 1, an increase in the number of threshold values, which means more precision

for the approximation of the actual intermediate cardinalities, leads to a significant overhead

in required qubits. For ω = 0.01, increasing the number of threshold values from 2 to 14 ap-

proximately leads to a 94% increase in the number of qubits. However, the overhead in qubits

becomes even more drastic for lower ω. This can be seen when comparing the qubit numbers

Page 48

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

4 8 12 16 20

0.2

0.4

0.6

0.8

1
·104

Number of threshold values

N
u
m

b
er

of
lo

gi
ca

l
q
u
b
it

s

ω = 1

ω = 0.01

ω = 0.0001

Figure 12: The qubit scaling behavior for the join ordering problem with respect to varying
approximation factors ω. Specifically, the scaling behaviors for ω = 1, ω = 0.01 and ω = 0.0001
are compared.

for the join ordering problem with 20 threshold values for ω = 1 and ω = 0.0001. For the

former, approximately 4,000 qubits are necessary, whereas for the latter, over 8,000 qubits and

thus more than twice as many are required.

It can be seen that the impact of a high number of threshold values and low values for the pa-

rameter ω on the required qubit number is quite large. As stated above, even if these parameters

are neglected, as it was done in Figure 11, the number of qubits required to solve practical join

ordering problems exceeds the qubit numbers offered by current quantum computing systems

by a large margin. In contrast to the variables needed for the remaining problem parameters,

which ensure that a solution is valid, the additional variables for the number of threshold values

and ω merely influence the quality of the solution. As such, they can be freely tuned, which

should be done in a careful manner as to not unnecessarily waste qubit resources while still

enabling a sufficient solution quality.

6.3.3 Parameters Affecting the Number of Quadratic QUBO Terms

The previous section gave an overview on the required number of logical qubits in order to

solve join ordering problem instances of varying dimensions on quantum computing machines.

However, the number of qubits for a problem formulation is not the only relevant factor that

influences the applicability of quantum computing. As already explained in earlier sections,

the number of quadratic terms within a QUBO matrix also plays a major role for both the

applicability of the QAOA algorithm on gate-based systems and quantum annealing. For the

former, a higher number of quadratic terms leads to longer circuits, making them more error-

prone, whereas for the latter, the process of finding qubit embeddings becomes more complex.

Page 49

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

As already briefly explained in Section 6.1.4, the number of quadratic terms depends on the

structure of the BILP problem. Specifically, one quadratic term is necessary for every pair of

variables that appears in at least one constraint. In this section, the effect of different problem

parameters on the number of emerging quadratic terms is analyzed. The analysis also includes

the resulting circuit depth for the QAOA algorithm. However, only problem instances of smaller

dimensions can be considered, as the number of qubits available on IBM-Q quantum devices

and general simulators like the qasm simulator is very limited. Specifically, problem instances

with more than three relations to be joined already exceed these limits, so all three of the

compared join ordering problems will be limited to three relations.

Table 4: A comparison of different join ordering problem instances with regards to their input
parameters and resulting number of quadratic terms and circuit depths.

Problem 1 Problem 2 Problem 3

Number of predicates 3 0 0
Number of threshold values 1 4 1
Precision factor ω 1 1 0.001
Required logical qubits 30 30 30
Resulting number of quadratic terms 70 84 138
Resulting circuit depth (QAOA) 63 72 99

Table 4 shows the three problem instances with their respective parameter values as well as the

resulting number of logical qubits and the resulting number of quadratic terms. In addition,

Table 4 includes a row showing the depth of the QAOA circuit. Since it does not play a role

for this comparison whether or not the problems have one unique solution, all relations share

the same cardinality, specifically 10. Once again, pruning is not accounted for. As such, only

the number of threshold values is relevant, not their concrete values. Moreover, all problems

produce the same qubit requirements, specifically 30 logical qubits.

However, these qubit requirements have been caused by different parameters for each different

problem. The relevant parameters whose effects have been analyzed are the number of predi-

cates, the number of threshold values and finally, the precision factor ω. For each problem, one

of these parameters has been set in such a way that leads to an increase in the number of qubits

until 30 qubits are required, while the remaining two parameters are set in a way that leads to

otherwise negligible qubit increases. More specifically, for problem 1, the number of predicates

has been increased to 3, for problem 2, the number of threshold values has been increased to

4, and finally, for problem 3, ω has been set to 0.001.

It can be seen that the different parameter settings lead to varying numbers of resulting

quadratic terms. The difference is particularly striking when comparing problem 1, which

requires 70 quadratic terms, to problem 3, which needs 138 quadratic terms and thus roughly

twice as many. These differences can be explained when considering the effects of the pa-

Page 50

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

rameter adjustments on the structure of the resulting BILP problem, or more specifically, the

constraints.

Looking at problem 1, an increase in the number of predicates by one leads to one additional

variable of type pao for every join excluding the first one. With only two joins in total, this

means one additional variable per predicate is added. In addition, for each new pao variable,

two more constraints, specifically one for type 5 and one for type 6, need to be added (details

for the constraint types have been explained in Section 6.1.2). Each constraint of type 5 and

6 contains exactly 3 binary variables (including one slack variable), so 6 new quadratic terms

are added for each new predicate due to those two constraints.

Moreover, assuming no pruning is applied, each new variable of type pao appears in at least one

constraint of type 7. These constraints are particularly critical with regards to the number of

quadratic terms as they include significantly more variables than those of other types. Specifi-

cally, adding an additional pao variable to such a constraint leads to one additional quadratic

term for every relation, every already existing predicate and for the cto variable of the respec-

tive constraint. Furthermore, an additional quadratic term is necessary for every binary slack

variable that is used for approximating the continuous slack variable.

In contrast to problem 1, the parameters which are adjusted for problems 2 and 3 solely

influence constraints of type 7. For problem 2, one additional constraint of type 7 is added

for each additional threshold value as the problem includes only one relevant join. Due to

the low number of relevant joins, the increase in type 7 constraints and thus the increase in

quadratic terms for problem instance 2 is not that significant. In general, however, the number

of threshold values is a big impact factor on the number of quadratic terms, as the impact

increases further with each additional join.

Adding a type 7 constraint does, in general, not mean that new quadratic terms need to be

added for every pair of variables within those constraints, as many of these pairs already appear

in prior type 7 constraints and are therefore already accounted for. Moreover, for problem 2,

the number of variables within each of the additional type 7 constraints is still lower than

the number of variables contained in the single type 7 constraint in problem 3. On the other

hand, decreasing ω has drastic effects on the number of quadratic terms, as this parameter

adjustment leads to an increase of binary slack variables used for approximating the continuous

slack variables in every single constraint of type 7. The effect is drastic even for a low number

of joins.

In summary, especially the number of threshold values and the precision factor ω significantly

impact the number of quadratic terms. The purpose of lower ω is to increase the precision of

the solutions. However, this comes at the cost of a significant increase in quadratic terms. It

is thus possible that the benefits of lower values for ω are to some degree diminished or even

outweighed by the negative impact of the resulting higher number of quadratic terms on both

gate-based and annealing based quantum computing approaches.

Page 51

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

6.3.4 Evaluation for IBM-Q Systems

This section will evaluate the applicability of the hybrid quantum algorithms described in an

earlier section on an IBM-Q device for the join ordering problem. This is done in a similar

manner as in the previous chapter, which analyzed the applicability of IBM-Q systems for

MQO. Once again, the depths of the quantum circuits resulting from the application of the

hybrid algorithms are analyzed.

The simulations have been conducted using the remote qasm simulator provided by IBM-

Q. The qasm simulator is a general simulator that offers 32 qubits. Information about the

specifications of IBM-Q simulators and real quantum systems can be found in [3]. As described

in the previous section, this sets strict limits on the dimensions of the join ordering problem

for which simulations are possible. As such, only very small problem instances with merely 3

relations can be simulated. This circumstance already partially answers the question to which

extent current gate-based quantum devices can be used. However, analyzing the circuit depths

for such smaller join ordering problems provides additional insights.

21 24 27 30

50

100

150

200

250

300

350

Number of required logical qubits

Q
A

O
A

ci
rc

u
it

d
ep

th

Strategy 1 (Opt. Top.)

Strategy 1 (SoA Top.)

Strategy 2 (Opt. Top.)

Strategy 2 (SoA Top.)

21 24 27 30

200

400

600

800

1,000

1,200

1,400

Number of required logical qubits

C
ir

cu
it

d
ep

th

QAOA (Opt. Top.)

QAOA (SoA Top.)

VQE (Opt. Top.)

VQE (SoA Top.)

Figure 13: The scaling behavior of the circuit depth in relation to the number of qubits, the
applied algorithms and the properties of the join ordering problem.

Circuit Depth Analysis. Figure 13 depicts two plots which show the scaling behavior of the

circuit depths in relation to various properties. Once again, the resulting circuit depths for the

two algorithms QAOA and VQE have been analyzed. Moreover, similarly to the experiments

for MQO, both the optimal qubit topology and a state-of-the-art topology have been used for

the simulations. For the latter, the charts depict the average circuit depths for 20 samples

resulting from the heuristic transpilation process.

Moreover, different from the simulations for MQO, the topology for the IBM-Q Brooklyn system

was used for these simulations instead of the Mumbai topology. This was necessary because

Page 52

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

the qubit requirements for some of the simulations exceeded the number of qubits offered by

the Mumbai machine, which only provides 27 qubits. In contrast, the Brooklyn device offers 65

qubits. In turn, its calibrated coherence times are lower than those of the Mumbai system. The

average coherence times for the Brooklyn machine at the time of writing are 66.02 µs for T1

and 79.44 µs for T2 and thus significantly lower than the ones for the Mumbai device (115.83

µs for T1 and 104.86 µs for T2).

Finally, the QAOA circuit depth depends not only on the number of qubits, but also on the

number of required connections between qubits and thus on the number of quadratic terms in

the QUBO matrix. Therefore, join ordering problems have been created using two different

strategies which influence the number of quadratic terms. More specifically, for strategy 1,

join ordering problems with higher qubit requirements are created by increasing the number

of predicates, whereas for strategy 2, the same is achieved by decreasing the precision factor

ω instead. The latter strategy leads to significantly higher numbers of quadratic terms as

explained in Section 6.3.3. In all cases, the join ordering problem is applied on an input with

three relations, each containing 10 tuples, and only one threshold value.

Both charts depicted in Figure 13 show the circuit depths, which are denoted by the y-axis,

for increasing numbers of qubits, which are given by the x-axis. The left chart exclusively

depicts circuit depths resulting from QAOA and includes graphs for the two different strategies

described above. It also features graphs for both the optimal topology as well as the Brooklyn

topology. The right chart also shows graphs for the different topologies, however, instead of

different strategies it includes graphs for both QAOA and VQE. For the right chart, all circuit

depths for QAOA are derived using strategy 2. For VQE, the applied strategy has no influence

on the circuit depths.

Again, similarly to the MQO observations, looking at both charts it becomes apparent that

transpiling the circuits based on a state-of-the-art topology leads to a significant increase in

the circuit depth. This is, once again, especially true when looking at the graph for VQE and

the Brooklyn topology in the right chart. In addition, the negative impact of an increase in

quadratic terms can be observed in the left chart. While the overhead in circuit depth caused

by strategy 2 is small for low qubit numbers, it significantly increases as the number of required

qubits gets larger and is at roughly 57% for 30 qubits. However, this overhead increases even

more and is at roughly 68% when considering the results for the Brooklyn topology.

Circuit Depth and Coherence Times. Once again, as it was done for the evaluation of

MQO, calculating a threshold for the maximum circuit depth that can be reliably executed

on the state-of-the-art quantum device is useful for evaluating these circuit depths. It can be

calculated based on the lowest coherence time for the device and the average gate time. For the

Brooklyn device, the coherence times T1Br and T2Br are as stated above whereas the average

gate time is given by gavg = 370.469 ns. Based on these values, the threshold for the circuit

Page 53

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

depth dBr is given by

dBr =
⌊min(T1Br, T2Br)

gavg

⌋
=
⌊ 66,020 ns

370.469 ns

⌋
= 178. (55)

It can be noted that the threshold circuit depth for the Brooklyn system is approximately 28%

smaller than the one for the Mumbai system, which was used for the MQO simulations and

for which a threshold depth of 248 was calculated. As mentioned above, this is due to worse

properties such as lower coherence times which are likely caused by offering more qubits.

It becomes clear that applying VQE for reliably solving join ordering problems on the IBM-Q

Brooklyn machine or devices with similar properties is infeasible, as all resulting circuit depths

exceed the threshold depth by a large margin. On the other hand, using QAOA for solving join

ordering problems which have been created using strategy 1 can be reliably done until around

30 qubits (the depicted average circuit depth for 30 qubits and the Brooklyn topology very

slightly exceeds the maximum depth, however, the transpilation algorithm may sometimes still

output smaller circuits).

However, when considering the Brooklyn circuit depths for strategy 2, starting from 24 qubits,

all of them exceed the threshold depth, which further underlines the negative impact of quadratic

terms on the applicability of current quantum devices. On the other hand, assuming the tran-

spilation process for the Mumbai topology produces similar or even smaller circuit depths, a

join ordering problem with 24 qubits produced by strategy 2 can still be executed within the

coherence time of the Mumbai system, as its circuit depth is slightly below the calculated

threshold for the Mumbai system. It can also be observed that, even for strategy 1, join order-

ing problems with qubit requirements of more than 30 qubits cannot reliably be solved on the

Brooklyn machine.

6.3.5 Evaluation for D-Wave Systems

This section will be focused on evaluating the applicability of quantum annealing systems on the

quantum computing approach for the join ordering problem. In comparison to the gate-based

devices, D-Wave machines offer significantly more physical qubits. The currently largest device

in terms of physical qubits offered by D-Wave is the Advantage system, which features over

5,000 qubits [8]. This number exceeds the number of qubits offered by current IBM-Q machines

by orders of magnitude. However, typically not all physical qubits of annealing machines can

represent one logical qubit of a problem as opposed to the gate-based quantum machines.

Instead, several physical qubits form a chain to represent one logical qubit. The length of these

chains depends on the specific properties of the problem. More details about two different D-

Wave topologies have been explained in Section 3.6.2. Out of these, the Pegasus topology offers

a superior qubit connectivity and is used for the D-Wave Advantage system. More specifically,

the machine has a P16 topology [8]. For the following experiments, the EmbeddingComposite

Page 54

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

class included in the D-Wave Ocean SDK is used to heuristically find minor embeddings for

the P16 topology. Internally, this class uses the heuristic minorminer algorithm.

6 8 10 12 14

0.5

1.5

2.5

3.5

4.5
·103

Number of relations

N
u
m

b
er

of
p
h
y
si

ca
l

q
u
b
it

s P = J

P = 2J

P = 3J

0 4 8 12 16 20 24

0.5

1.5

2.5

3.5

4.5
·103

Number of threshold values

N
u
m

b
er

of
p
h
y
si

ca
l

q
u
b
it

s

ω = 1

ω = 0.01

ω = 0.0001

Figure 14: The scaling behavior of the number of required physical qubits in relation to the
dimensions of the join ordering problem.

Figure 14 shows the results of the experiments. In both charts, the y-axis denotes the average

number of required physical qubits based on 20 heuristically found embeddings for join ordering

problems with varying parameters. The charts include only those problem dimensions for which

an embedding can be reliably found, excluding those for which an embedding can only be

determined in less than 50% of the cases. Once again, no pruning of cto variables is taken into

account for both charts.

In the left chart, the x-axis denotes the number of relations in the input of the join ordering

problem, ranging from 6 relations to a maximum of 14 relations. Moreover, it shows different

graphs for varying predicate numbers P with respect to the number of joins J . The remaining

parameters, specifically the number of threshold values and the precision factor ω, have both

been set to 1 and thus have a negligible impact on the number of required qubits. Since pruning

is not accounted for, the specific threshold values do not play a role.

As explained in an earlier section, the graph for P = J can be seen as a lower bound regarding

practical problem dimensions, as for even fewer predicates, cartesian products necessarily need

to be taken into account, which are not even considered by some query optimizers. As such,

the maximum number of relations a join ordering problem may take into account so that an

embedding can still be reliably found for the D-Wave Advantage system is 14 (again, considering

more general problems by not taking into account pruning). As the number of predicates

increases, the maximum number of relations for which an embedding can reliably be found

decreases. Notably, the maximum problem size for P = 3J is given by 10 relations in the

problem input and is therefore roughly 29% smaller than the one for P = J with respect to

Page 55

Chapter 6 Solving the Join Ordering Problem with Quantum Computing

D-Wave Advantage system.

However, these results assume a negligible number of threshold values and ω, which significantly

impact the number of quadratic terms as explained in Section 6.3.3, making the task of finding

an embedding even more difficult. The concrete impact of these parameters on the feasibility

of finding embeddings can be seen in the right chart. More specifically, it shows the impact of

an increasing number of threshold values on the number of required physical qubits for a join

ordering problem with 8 relations and P = J . Furthermore, it includes graphs for varying ω.

It can be seen that increasing the number of threshold values to improve the approximation

accuracy leads to a significant overhead in the number of required physical qubits. This overhead

becomes even larger for decreasing ω. For ω = 1, increasing the number of threshold values

from 1 to 7 increases the average number of physical qubits from 898 to 1845 and therefore by

roughly 105%. However, for ω = 0.01, merely adding 3 threshold values already increases the

average number of required qubits by around 116%. In the extreme scenario of ω = 0.0001,

the maximum number of threshold values for a join ordering problem that considers 8 relations

and P = J in order to still reliably find embeddings is 4, whereas the problem may consider

up to 21 threshold values if ω = 1.

Summary. In summary, it becomes clear that the D-Wave Advantage system can be used

to solve join ordering problems of a much higher dimension than what is possible on IBM-Q

systems. However, there is still a big gap between the dimensions of these join ordering problems

and the ones solved by a classical MILP solver as described in [16], which include queries with

up to 60 relations. For the D-Wave Advantage system, the highest number of relations practical

queries (with P = J as the minimum number of predicates) may include when heuristically

searching for an embedding is 14. However, also taking into account a non-negligible number of

threshold values further increases the difficulty of reliably finding embeddings, especially when

specifying lower values for ω.

Page 56

Chapter 7 Discussion

7 Discussion

The first goal of this work was to examine the applicability of the current gate-based IBM-Q

quantum systems on the MQO problem in comparison to the results of the quantum annealing

approach presented in [9]. It was found that the MQO problem dimensions which can presently

be solved using IBM-Q machines are considerably more limited when compared to all MQO

problem classes which were solvable on the quantum annealing device used in [9]. The main

limiting factor regarding the applicability of the quantum systems is the number of qubits,

since one logical qubit is required to represent one plan in the MQO problem input. Despite

the fact that several physical qubits offered by D-Wave systems are needed to represent one

plan, the number of remaining logical qubits still far outweighs the number of qubits featured

on current IBM-Q systems.

However, further limitations with respect to the specific MQO problem, in addition to the

required number of qubits, need to be considered for IBM-Q systems. More specifically, the

depth of the quantum circuit when using the QAOA algorithm depends on the number of

quadratic terms in the QUBO matrix and as such, on the number of alternative PPQ and the

number of possible cost savings. As the circuit depth increases, the occurrence of decoherence

errors becomes increasingly more likely.

The results after analyzing the QAOA circuit depths for the qubit topology of the Mumbai

system for different MQO problem classes made it clear that a reliable circuit execution without

decoherence errors is unlikely for specific MQO problem classes such as ones with 3 queries and

8 alternative PPQ. In contrast, the circuit depth for the VQE algorithm is not dependant on

the number of quadratic terms. However, for VQE, the results showed that the circuit depths

for MQO problems with more than 12 plans far exceed the coherence times for the Mumbai

system.

Summarizing the results for this research question, it is possible to utilize current IBM-Q

systems for small-scale MQO problems. However, these systems can currently not be used to

solve problems in similar dimensions to any of the problem classes discussed in [9]. This might,

however, change in the future, when the number of qubits offered by IBM-Q systems increases,

especially considering that one qubit is sufficient to represent one logical variable, which is not

the case for current D-Wave systems where several physical qubits are required. Moreover,

future IBM-Q systems also need to improve with respect to the coherence time so that the

QAOA algorithm can reliably be applied on more complex MQO problems, which lead to more

quadratic terms in the QUBO matrix.

The second goal of this work was to answer the research question of how the join ordering

problem can also be solved on current quantum systems and to which extent. Moreover, the

gate-based systems by IBM-Q were to be compared to the D-Wave quantum annealing machines

in terms of applicability. It was shown that it is indeed possible to bring the problem into a

Page 57

Chapter 7 Discussion

form which is suitable for current quantum machines. When compared to MQO, the approach

for solving the join ordering problem on quantum systems which was presented in this work

requires more reformulation steps. Instead of a direct reformulation of the problem, it was

shown how the problem can first be transformed into an MILP problem using the approach

described in [16]. It is then furthermore brought into BILP form by eliminating inequality

constraints and by discretizing any continuous variable depending on an arbitrary precision

factor. Following [20], the BILP problem can then be reformulated as a QUBO problem.

After conducting simulations for both current IBM-Q systems based on the Brooklyn qubit

topology as well as the topology of the D-Wave Advantage system, it was found that once

again, significantly larger problem dimensions can be solved on the quantum annealing machine

compared to the gate-based one. For the former, the minorminer tool was able to heuristically

determine embeddings for inputs of practical join ordering problems with up to 14 relations.

However, this number should be considered an upper bound, since it only considers negligi-

ble values for both the number of threshold values and the precision factor. Both of these

parameters influence the quality of the solution.

Compared to the D-Wave Advantage system, the problem dimensions which could be solved on

current IBM-Q devices are very limited due to the number of qubits offered on these systems.

More specifically, only very small join ordering problems with merely three relations to be joined

could be simulated using a general simulator which supports only up to 32 qubits. However,

even when considering real systems with up to 65 qubits such as the IBM-Q Brooklyn system,

only slightly larger problems may become solvable due to several circumstances.

For one, the steep scaling behavior of the number of required qubits with respect to increasing

problem dimensions, which was pointed out in Section 6.3.2, leads to high qubit requirements

even for small problems. Moreover, depending on the input parameters of the specific problem,

the likeliness of decoherence errors once again imposes further restrictions. This has been

highlighted by the fact that some of the investigated join ordering problems, which can be

solved with 32 qubits, already lead to circuits which cannot be executed within the coherence

time of the Brooklyn system, thus making decoherence errors likely.

The number of threshold values and the precision factor have a particularly negative impact

on the number of quadratic terms in the QUBO matrix and thus on the QAOA circuit depth.

The circuits for problems with a higher number of predicates but fewer threshold values and a

less influential precision factor were mostly found to be executable within the coherence time of

the Brooklyn system. In contrast, the circuit execution time for problems requiring 24 qubits

or more which have more threshold values and smaller precision factors exceeds the coherence

time. Finally, the results showed that none of the VQE circuits can be executed within the

coherence time of the Brooklyn system.

While the number of threshold values and the precision factor are highly relevant parameters for

the quality of the solution, they also contribute to the number of quadratic terms in the QUBO

Page 58

Chapter 7 Discussion

matrix, making both quantum annealing and gate-based quantum computing less feasible as

shown by the simulation results. As such, the manner in which these parameters should be

configured for specific join ordering problems in order to achieve a sufficient solution quality

remains an open yet important question and is a topic for future research.

In addition, future research should focus on expanding the join ordering MILP model by more

sophisticated cost functions and other extensions discussed in [16]. Obviously, the inclusion

of such extensions will lead to an additional overhead in the required qubits. However, as the

quantum systems which can be accessed become more mature, it might be possible to solve

even more extensive problem formulations on future devices.

Moreover, this work only considered the presented two-step transformation from join ordering

to QUBO problems. It might, however, be possible to find a direct conversion without first

transforming the problem into an MILP problem. Such an approach has the potential to be

more efficient in terms of required qubits and thus be more feasible for current and future

quantum machines. As such, future research should also focus on finding alternatives to the

proposed two-step approach.

Finally, this work only considered the minorminer tool for determining embeddings on D-Wave

quantum annealing machines. Finding different alternative algorithms for determining embed-

dings has been a topic of recent research. For instance, a method based on integer programming

was presented in [32]. Using potentially more effective algorithms for determining embeddings

can make it possible to solve join ordering problems of larger dimensions in comparison to the

results which were gained by using the minorminer tool.

Page 59

Chapter 8 Conclusion and Outlook

8 Conclusion and Outlook

This work addressed two research questions related to the use of quantum computing on prob-

lems in the field of query optimization. First, it analyzed the applicability of two hybrid

quantum-classical algorithms for the MQO problem. More specifically, it compared simulation

results for a current IBM-Q system with previous results achieved on a quantum annealer. It

was found that significantly larger MQO problems can be solved on D-Wave quantum anneal-

ing systems in comparison to current IBM-Q devices. Regarding the two quantum-classical

algorithms, the application of QAOA was found to be more practical than the VQE approach.

The second query optimization problem this work focused on was the join ordering problem. No

pre-existing, direct method of formulating the problem in a way suitable for quantum systems

was found after an extensive literature search. As such, the first goal was to identify a suitable

reformulation method. As a result, a two-step reformulation approach was found and presented

in this work. First, the problem can be formulated as an MILP problem based on an existing

approach. After further adjustments, the problem can be transformed into a BILP problem,

for which known transformations into QUBO form exist. The latter is suitable for current

quantum systems.

Next, simulations have been conducted to evaluate the applicability of this two-step approach

for an IBM-Q device and a D-Wave system. Again, the results showed that the latter can

solve significantly larger problems in comparison to the former. However, even the D-Wave

system does not come close to the possible problem dimensions classical MILP solvers can

handle. Again, when considering the applicability of the quantum-classical algorithms, QAOA is

superior to VQE as the latter produces circuit sizes which are too large for reliable computation

whereas the former can be used to solve very small join ordering problems.

The limitations of the current era of NISQ quantum systems have once again been highlighted

by the results of this work. Not only are the problem dimensions which can be tackled on

current quantum systems very limited by the number of available qubits, additional limitations

such as decoherence errors, which become more likely as the problems become more complex,

need to be accounted for as well. However, as recent years have shown, quantum technologies

are rapidly evolving and are steadily reaching a more mature state. In addition, the quality of

the execution of quantum algorithms on future quantum systems will hopefully further increase

with the prospect of quantum error correction.

As such, it might not be too long until systems become available which are suitable for solving

problems of more practical dimensions. These problems include MQO as well as join ordering

problems, which were discussed in this thesis, but may also include other database optimization

problems so far not considered for quantum computing. Therefore, future research should focus

on both identifying further problems suitable for quantum computing as well as determining

proper reformulation approaches.

Page 60

Bibliography

Bibliography

[1] L. K. Grover, “A fast quantum mechanical algorithm for database search”, in Proceedings

of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, New

York, New York, USA: ACM, 1996, pp. 212–219.

[2] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring”,

in Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe,

NM, USA: IEEE Comput. Soc. Press, 1994, pp. 124–134.

[3] IBM Quantum, Cloud access to quantum computers provided by IBM, 2021. [Online].

Available: https://quantum-computing.ibm.com (visited on 08/30/2021).

[4] J. Preskill, “Quantum computing in the NISQ era and beyond”, Quantum, vol. 2, p. 79,

2018.

[5] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory of variational

hybrid quantum-classical algorithms”, New Journal of Physics, vol. 18, no. 2, p. 023 023,

2016.

[6] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-

Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a photonic quantum pro-

cessor”, Nature Communications, vol. 5, no. 1, p. 4213, 2014.

[7] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algo-

rithm”, 2014. [Online]. Available: arXiv:1411.4028.

[8] C. McGeoch and P. Farré, “The D-Wave Advantage system: An overview”, D-Wave Sys-

tems Inc., Tech. Rep. 14-1049A-A, 2020.

[9] I. Trummer and C. Koch, “Multiple query optimization on the D-Wave 2X adiabatic

quantum computer”, Proceedings of the VLDB Endowment, vol. 9, no. 9, pp. 648–659,

2016.

[10] G. Moerkotte, “Building query compilers”, 2020, unpublished. [Online]. Available: https:

//pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf.

[11] M. Schönberger, “Applicability of quantum computing on database query optimization”,

in SIGMOD’22: International Conference on Management of Data, Philadelphia, NY,

USA: ACM, in press.

[12] T. K. Sellis, “Multiple-query optimization”, ACM Transactions on Database Systems,

vol. 13, no. 1, pp. 23–52, 1988.

[13] T. Kathuria and S. Sudarshan, “Efficient and provable multi-query optimization”, in

Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems, New York, NY, USA: ACM, 2017, pp. 53–67.

Page 61

https://quantum-computing.ibm.com
arXiv:1411.4028
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf

Bibliography

[14] M. A. Bayir, I. H. Toroslu, and A. Cosar, “Genetic algorithm for the multiple-query

optimization problem”, IEEE Transactions on Systems, Man and Cybernetics, Part C

(Applications and Reviews), vol. 37, no. 1, pp. 147–153, 2006.

[15] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and randomized optimization

for the join ordering problem”, The VLDB Journal, vol. 6, no. 3, pp. 191–208, 1997.

[16] I. Trummer and C. Koch, “Solving the join ordering problem via mixed integer linear

programming”, in Proceedings of the 2017 ACM International Conference on Management

of Data, New York, NY, USA: ACM, 2017, pp. 1025–1040.

[17] M. A. Nielsen, I. Chuang, and L. K. Grover, “Quantum computation and quantum infor-

mation”, American Journal of Physics, vol. 70, no. 5, pp. 558–559, 2002.

[18] E. Rieffel and W. Polak, Quantum computing: A gentle introduction, ser. Scientific and

engineering computation. Cambridge, MA: MIT Press, 2011.

[19] V. Choi, “Minor-embedding in adiabatic quantum computation: I. the parameter setting

problem”, Quantum Information Processing, vol. 7, no. 5, pp. 193–209, 2008.

[20] A. Lucas, “Ising formulations of many NP problems”, Frontiers in Physics, vol. 2, p. 5,

2014.

[21] Z. Bian, F. Chudak, W. Macready, and G. Rose, “The Ising model: Teaching an old

problem new tricks”, D-Wave Systems Inc., Tech. Rep., 2010.

[22] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, “Quantum computation by adiabatic

evolution”, 2000. [Online]. Available: arXiv:quant-ph/0001106.

[23] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, “Adiabatic

quantum computation is equivalent to standard quantum computation”, SIAM Review,

vol. 50, no. 4, pp. 755–787, 2008.

[24] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis,

and M. Troyer, “Evidence for quantum annealing with more than one hundred qubits”,

Nature Physics, vol. 10, no. 3, pp. 218–224, 2014.

[25] P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari, “Software mitigation of

crosstalk on noisy intermediate-scale quantum computers”, in Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Programming Languages and

Operating Systems, New York, NY, USA: ACM, 2020, pp. 1001–1016.

[26] S. S. Tannu and M. K. Qureshi, “Not all qubits are created equal: A case for variability-

aware policies for NISQ-era quantum computers”, in Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and Op-

erating Systems, New York, NY, USA: ACM, 2019, pp. 987–999.

[27] L. Burgholzer, R. Raymond, and R. Wille, “Verifying results of the IBM Qiskit quantum

circuit compilation flow”, in 2020 IEEE International Conference on Quantum Computing

and Engineering (QCE), Denver, CO, USA: IEEE, 2020, pp. 356–365.

Page 62

arXiv:quant-ph/0001106

Bibliography

[28] P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, A. J. Berkley,

R. Harris, J. P. Hilton, T. Lanting, A. J. Przybysz, and J. Whittaker, “Architectural

considerations in the design of a superconducting quantum annealing processor”, IEEE

Transactions on Applied Superconductivity, vol. 24, no. 4, pp. 1–10, 2014.

[29] D-Wave Systems Inc., Documentation for the architecture of D-Wave quantum annealers,

2021. [Online]. Available: https://docs.dwavesys.com/docs/latest/c_gs_4.html

(visited on 09/23/2021).

[30] S. Zbinden, A. Bärtschi, H. Djidjev, and S. Eidenbenz, “Embedding algorithms for quan-

tum annealers with Chimera and Pegasus connection topologies”, in High Performance

Computing, Cham: Springer International Publishing, 2020, pp. 187–206.

[31] D-Wave Systems Inc., Minorminer library for embedding Ising problems onto quantum

annealers, 2021. [Online]. Available: https://docs.ocean.dwavesys.com/en/stable/

docs_minorminer/source/intro.html (visited on 10/04/2021).

[32] D. E. Bernal, K. E. C. Booth, R. Dridi, H. Alghassi, S. Tayur, and D. Venturelli, “In-

teger programming techniques for minor-embedding in quantum annealers”, in Integra-

tion of Constraint Programming, Artificial Intelligence, and Operations Research, Cham:

Springer International Publishing, 2020, pp. 112–129.

[33] S. Cluet and G. Moerkotte, “On the complexity of generating optimal left-deep processing

trees with cross products”, in Database Theory — ICDT ’95, Berlin, Heidelberg: Springer

Berlin Heidelberg, 1995, pp. 54–67.

[34] IBM Quantum, Qiskit: An open-source framework for quantum computing, 2021. [Online].

Available: https://qiskit.org/ (visited on 08/31/2021).

[35] Anaconda Inc., Anaconda software distribution, 2021. [Online]. Available: https://docs.

anaconda.com/ (visited on 08/31/2021).

[36] IBM, IBM decision optimization CPLEX modeling for Python, 2021. [Online]. Avail-

able: https : / / ibmdecisionoptimization . github . io / docplex - doc/ (visited on

10/04/2021).

[37] M. Schönberger, M. Franz, S. Scherzinger, and W. Mauerer, “Peel | pile? Cross-framework

portability of quantum software”, in 19th IEEE International Conference on Software

Architecture (ICSA), Honolulu, HI, USA: IEEE, under review.

[38] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer programming, ser. Graduate Texts

in Mathematics. Cham: Springer International Publishing, 2014, vol. 271.

[39] C. S. Calude and M. J. Dinneen, “Solving the broadcast time problem using a D-Wave

quantum computer”, in Advances in Unconventional Computing: Volume 1: Theory,

Cham: Springer International Publishing, 2017, pp. 439–453.

[40] C.-Y. Chang, E. Jones, and P. Graf, “On quantum computing for mixed-integer program-

ming”, 2020. [Online]. Available: arXiv:2010.07852.

Page 63

https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://docs.ocean.dwavesys.com/en/stable/docs_minorminer/source/intro.html
https://docs.ocean.dwavesys.com/en/stable/docs_minorminer/source/intro.html
https://qiskit.org/
https://docs.anaconda.com/
https://docs.anaconda.com/
https://ibmdecisionoptimization.github.io/docplex-doc/
arXiv:2010.07852

Bibliography

[41] B. O’Gorman, R. Babbush, A. Perdomo-Ortiz, A. Aspuru-Guzik, and V. Smelyanskiy,

“Bayesian network structure learning using quantum annealing”, The European Physical

Journal Special Topics, vol. 224, no. 1, pp. 163–188, 2015.

[42] D-Wave Systems Inc., Documentation for the Ocean SDK for solving problems on D-Wave

quantum computers, 2021. [Online]. Available: https://docs.ocean.dwavesys.com/en/

stable/ (visited on 10/15/2021).

[43] Gurobi Optimization, LLC, Gurobi optimizer reference manual, 2021. [Online]. Available:

https://www.gurobi.com (visited on 08/25/2021).

[44] D-Wave Systems Inc., Pyqubo package for creating QUBO models from mathematical

expressions, 2021. [Online]. Available: https://docs.ocean.dwavesys.com/en/stable/

docs_pyqubo.html (visited on 08/25/2021).

Page 64

https://docs.ocean.dwavesys.com/en/stable/
https://docs.ocean.dwavesys.com/en/stable/
https://www.gurobi.com
https://docs.ocean.dwavesys.com/en/stable/docs_pyqubo.html
https://docs.ocean.dwavesys.com/en/stable/docs_pyqubo.html

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Related Work
	Background on Quantum Computing
	Qubits and Superpositions
	Quantum Gates and Circuits
	Encoding Optimization Problems as Ising Hamiltonians
	Variational Hybrid Quantum-Classical Algorithms
	Adiabatic Quantum Computing
	State of Current Quantum Systems

	Background on Query Optimization
	Multi Query Optimization
	Join Order Optimization

	Solving Multi Query Optimization with Quantum Computing
	QUBO Formulation
	Implementation
	Evaluation

	Solving the Join Ordering Problem with Quantum Computing
	QUBO Formulation
	Implementation
	Evaluation

	Discussion
	Conclusion and Outlook
	Bibliography

