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Chapter 1 Introduction

1 Introduction
This thesis is based on a research topic within the BMW Group research department.

1.1 The Landscape In Automotive

The automotive industry is within a major transformation and a shift of values. After vehicles
would mainly differentiate themselves by their performance and driving characteristics, digital
services and features are now playing a major role in customers purchasing decisions. Whilst
range and performance of a specific vehicle is still perceived as important with the selection of a
Battery Electric Vehicle (BEV), the digital experience plays a key role for customer satisfaction.
This experience consists of a variety of digital features, that range from the integration of
personal devices, intelligent navigation, in-car entertainment and gaming to an integration of the
vehicle into a greater ecosystem [37], [157]. The Bayerische Motoren Werke (BMW) Group is
positioning itself as a manufacturer of premium mobility and is currently serving 20.2 Million
connected vehicles in 75 global markets, in which the customer journey is greatly dependent
on offered digital services and features of the vehicle [28]. Aside mentioned in-car services,
increasing levels of vehicle autonomy (ADAS), that is hoped to revolutionize the idea individual
mobility (like autonomous taxis like Volt in San Francisco) or at least make a drivers journey
more comfortable [52].

The addition of digital experiences, automated/assisted driving and ecosystem integration further
increase requirements on available computational power within the vehicle and connectivity to
the outside world [17]. The interest in Advanced Driver-Assistance Systems (ADAS) especially
is fostering this need, as understanding the surroundings of the vehicle requires a great amount
of sensing and data processing [265]. Adding additional computing power within automotive-
embedded system is no simple feat. It’s more complicated because of issues like limited space,
energy consumption and the heat generated. These problems mean that increasing power isn’t
straightforward and requires careful thinking and consideration for balancing processing-power
needed against energy-consumption and interior-design.

This need of greater computational offerings is long present within the automotive industry, just
like it is within the consumer and cross-industry landscape. The Original Equipment Manu-
facturer (OEM) industry is used to create an invitation of tenders for new vehicle generations,
where computational demand is going along with offerings by traditional chip-developers (as
far as known to public). Relatively new however is the rapid increase of computation in relative
numbers thanks to the use of machine learning within the vehicle [17] and the evolving concepts
in computation, that are being used to tackle an increasing demand for efficient computation. This
trend can be seen within Tesla’s own custom chip design, where two neuromorphic processing
unit (NPU)’s are used to accelerate machine learning use cases [254]. Another example is the
Mercedes EQXX concept car that uses an NPU for speech detection [277]. These examples
show the great interest of automotive in developing or integrating computational hardware, that
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Chapter 1 Introduction

is highly efficient for a specific use case, like low-energy accelerators for AI use cases or signal
processing [254], [277].

1.2 Trends in Computation

Ever since the first processor was introduced in the 1970s computational power as been a major
enabler for innovation across all industries [77]. The development of processors has become a
crucial factor in the advancement of both technology and society. The overall goal since then
remains faster processing, greater throughput and energy efficiency. Engineers have since then
use several concepts to enhance processors.

One of the key-changes on processors throughout the year is the size of hardware. The Intel
Pentium III Coppermine processor introduced in 1999, was manufactured on a newly introduced
180 nm node [112] for instance. The successive Intel Pentium IV has featured a smaller 90 nm
node just 5 years later. The year of 2023 features various processors manufactured on a 3 nm
node including the current generation of Apple Mac and Phone processors [154]. Production of
2 nm nodes are currently on the way with a market entry later in the 2020s [58]. A smaller node
offers for more transistors on the same area / die size, thus offering space to more Arithmetic
Logic Unit (ALU) or caches for increasing computational throughput per clock-cycle. The
increase of transistors per cheap is approximated through Moore’s Law being an empirical
observation that the number of transistors in an integrated circuit doubles approximately every
two years. It was first described by Gordon E. Moore, the co founder of Intel, in 1965. Moore’s
Law is not a law of nature, but rather a long-term trend in how technology is changing. The
observation has held true for more than half a century, driving exponential growth in the number
of transistors on integrated circuits and leading to significant advancements in computing power
and capabilities [167]. It is greatly discussed, when and if Moore’s Law will end. Past years
brought up several papers discussing, if a current node would be the commercially smallest
achievable node [282], yet even smaller nodes are now in mass market production [154]. Current
research suggests, that a physical minimum gate length is at 0,34 nm; the size of a single carbon
atom [208]. With challenges in both commercialisation and physical feasibility it is currently
unknown, how much smaller transistors can become [191].

In contrast to the development of processing power stands the increasing demand for digital
products, the increasing amount of data to process and the rising demand of such. Increasing
usage of and application of machine learning is a great example for the rising demand for
processing power. The usage of AI of industry and consumer markets is greatly increasing, while
the effort required to train and execute underlying Neural Network (NN) is increasing expo-
nentially [212], [222]. While increasingly well performing processors and GPU are countering
increasing demand, an increasing energy consumption is troublesome for battery run devices
(including battery electric vehicles for instance).

The evolution of computational capabilities stands in stark contrast to the burgeoning demand for
digital products, the exponential growth in data volumes, and the escalating requirements for data
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processing. A quintessential illustration of this growing demand for computational resources
is the pervasive adoption and integration of machine learning technologies. The application of
artificial intelligence (AI) within both industrial and consumer sectors is witnessing a significant
surge, paralleling an exponential increase in the computational effort required to train and
implement underlying Neural Network [212], [222].

As processors and graphics processing units (GPUs) evolve to offer superior performance,
they serve as a counterbalance to the increasing demands for processing power. However,
this advancement is accompanied by a notable increase in energy consumption, presenting a
significant challenge for devices reliant on battery power. This issue is especially troublesome in
the context of battery electric vehicles (BEVs) and other portable electronic devices, where energy
efficiency is paramount [245]. The trade-off between enhancing computational performance
and managing energy consumption necessitates a careful consideration of the implications for
sustainability and device autonomy.

Specialised hardware is found to be a chance to enable more sustainable growth of increasing
computational performance. The introduction and usage of optical components is considered
to be one option to achieve just that [159], [278], [302]. Interest into the use of photonics is
greatly increasing [156], [164], [260] and hopes are, that optical accelerators could increase
energy efficiency and performance greatly.

The ongoing research and introduction of specialised hardware [15], [218], [254] presents
a promising approach for enabling sustainable growth in computational performance. New
concepts like neuromorphic computation [61], biological computation (e.g. DNA compute) [76]
or optical computation are envisioned to accelerate processing power. The integration and
application of optical components specifically emerge as a possibility in this context, with high
hopes in its ability to increase computational power and efficiency [159], [278], [302]. The
growth in funding and investments on optical technology and its startups [156], [164], [260] is
indicative of the optimism surrounding optical accelerators, which are anticipated to significantly
enhance both energy efficiency and computational performance. This shift towards optical
technology not only aims to meet growing demands for processing capabilities but also aligns
with the imperative for energy conservation and environmental sustainability.

1.3 Objective and Conclusion

The growing proliferation of digital services and products within automotive environments,
coupled with the increasing complexity and energy demands of achieving higher computational
performance, renders the integration of hardware accelerators into the vehicular landscape both
compelling and opportune. In this thesis, I aim to provide a comprehensive overview of the
developments, potentials, and challenges associated with the theoretical implementation of an
OPU within vehicular systems. I will further explore the physical principles underlying photonics
and its application in data processing, review potential use cases within automotive contexts, and
offer insights into trends and advancements in processor technology. An examination of vehicle
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services will highlight areas where optical computation could facilitate enhanced processing
efficiency, followed by a detailed analysis of the algorithms and methodologies employed, to
deepen understanding of the specific requirements involved. Through a synthesis of knowledge
on photonic hardware acceleration and vehicular applications, this work will present a high-level
architectural proposal that delineates the feasible applications and constraints of an OPU. The
overarching objective of this thesis is to investigate whether photonic processing units represent
a viable option for achieving increased energy efficiency and improved performance in vehicles
of the future, while also addressing potential obstacles encountered in this endeavor.
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Chapter 2 State of Research

2 State of Research
This Section provides a comprehensive overview of the three principal motivations underpinning
the topic of optical computation for vehicle use cases. First examined is the burgeoning interest
and ongoing research into the domain of optical/photonic computation, as done so by startup
Lightmatter [278] and [67]. Within this context, I will conduct a comparative analysis of four
distinct methodologies for realising computation through propagation of light. Additionally, I
explore the current trends and concerted efforts aimed at enhancing computational capabilities.
Subsequently, it will assess the processing demands encountered within the context of a moving
vehicle for products of the next years. This evaluation aims to identify use cases that are presently
underserved or are anticipated to encounter performance bottlenecks. This inquiry not only
underscores the critical need for advancements in computational strategies, but also highlights
the potential application areas that could benefit from photonic acceleration.

2.1 Optical Computation

In the quest for computational advancements, photonics for the use within computing stands
out as an innovation alongside other novel concepts like neuromorphic computing [289] and
DNA computation [137]. Photonics, with its promise of leveraging light for processing, is
believed to offer a solution to the limitations of traditional, electron-based computing. This
approach is particularly relevant for energy intensive applications such as AI, where the potential
for enhanced performance with lower energy consumption could significantly impact future
technological developments.

This chapter provides an overview of optical computing, outlining its fundamental principles,
advantages, and current implementations. Optical computing utilises the properties of pho-
tons to perform calculations, enabling faster data transmission and processing with reduced
energy requirements and heat generation. These benefits are crucial for meeting the growing
computational demands in a sustainable manner.

Among the practical applications of this technology, the integration of optical accelerator chiplets
into vehicle architectures represents a forward-thinking approach to enhancing computational
capabilities in automotive systems. This integration aims at supporting-real time data analysis
and decision making, essential for autonomous driving and other advanced vehicle functions.

To summarise, this discussion sheds light on the significance of optical computing in pushing the
boundaries of current computing paradigms, offering insights into its potential to revolutionise
not just vehicle architectures, but also the broader landscape of computational technologies.

2.1.1 Introduction to using Photonics
Whilst the term of optical or photonic computation is generally not defined to be a specific
technology, it is mostly seen as an umbrella term for concepts, that use beneficial properties of
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light, to gain an advantage over state-of-art electrical processing units in more than one Key
Performance Indicator (KPI) that include energy efficiency, throughput and latency.

Some notable characteristics of light of advantage for improving computational performance as
a whole are [159]:

Bandwidth
Light, by nature, has a 100,000 times greater usable bandwidth (∼ 500 THz), when
compared to electronic circuits (µ5 GHz) [159, P. 5]. This offers optical computation and
data transfer to benefit from frequency multiplexing parallelism enabling transmission
of several signals on a single hardware medium through differentiation by wavelength
channels. A recent experiment demonstrates this principle by achieving a data rate of
1.84 Pbit/s by using 223 wavelength channels on a over a 7.9 km long, 37-core fibre
cable [120].

While academia and experiments points out the functionality of photonic computation to
be able to work across a wide range of wavelengths [302] (visible, near infrared, infrared
spectrum) current experiments and implementations are situated within a range of 1500 nm
to 1600 nm [70], [79], [149].

Compute by propagation
The utilisation of unidirectional light propagation through a medium as a mechanism
for data processing and computation represents a significant area of interest within the
field of optical computing. This approach facilitates operations such as matrix vector
multiplication (MVM) and Fourier transformations in linear optics, employing simple
optical components like a single lens [159], [181], [247]. The inherent simplicity of
one-way propagation offers distinct advantages in hardware design by obviating the need
to consider signal back propagation, thereby simplifying the architecture [159].

The concept of leveraging optical components for MVM has gained traction in both exper-
imental and research contexts, leading to the identification of four primary methodologies
for hardware implementation. These methodologies, each with its unique set of benefits
and challenges, include Multiplane Light Conversion, Mach Zehnder Interferometer, Wave-
length Division Multiplexing [302], and crossbar arrays. These options will be elucidated
in greater detail in the subsequent section of this document.

A particularly relevant application of these optical computing methods is in accelerating
inference tasks for AI. In such contexts, the efficiency of MVM operations is paramount,
given their substantial consumption of time and energy [86]. This exploration underscores
the potential of optical computing to revolutionise computational paradigms, particularly
in AI applications where speed and energy efficiency are critical.
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Energy efficiency
Optical computation and data transfers make use of two other advantages, that each
contribute to a reduced consumption of electricity.

One being reduced heat generation of optical components and circuits [159, P. 13] [294]
reducing the need for active cooling and allows for a weaker air- or water-cooling concept.
This is also having the side effect of a reduced room consumption for temperature control,
offering a more efficient use of space in areas, where of relevance (e.g. instrument panel
inside a car or laptops).

The other advantage being the low-loss transmission of optical signals [159, P. 10], that
allows for a more efficient use of energy on chip, keeping in mind the issue, that reflections
or scattering of light will result in higher losses and an increase of signal noise [159, P.
10].

Optical computation and data transfer technologies make use of two principal advantages
that contribute to the reduction in energy consumption. Firstly, the diminished heat
generation by optical components and circuits not only mitigates the necessity for active
cooling mechanisms but also facilitates the implementation of more subdued air- or water-
cooling systems [159], [294]. This effect concurrently diminishes the spatial requirements
for temperature regulation infrastructure, thereby enhancing the spatial efficiency in
applications where this is of paramount importance, such as within the reduced spaces of
vehicle instrument panels. Secondly, the inherent low-loss transmission characteristic of
optical signals ensures a more effective utilisation of energy on the chip [159]. It is crucial,
however, to recognise that the phenomena of light reflection and scattering can lead to
increased signal losses and an augmentation of signal noise [159].

Other beneficial properties of optical computation include:

• Clock speed increase up to several THz [69]

• Programmable and steerable optical beams [159, P. 12]

• Optical data-copying and summation through fan-in and fan-out [159, P. 13]

• Computation at the speed of light [159]

Introduced benefits are of use for different scenarios, that can overall be categorised into clusters
of communication or computation. The distinction between them stems from the inherent
characteristics and requirements of optical elements in different operational contexts. Data-
transfer scenarios emphasise the swift and reliable transmission of information over optical
channels, prioritising encoding schemes and modulation techniques that facilitate seamless
communication. Communication use cases are already long present with the introduction of
Fibre to the Home (FTTH), that were first introduced in 1977 [231] and gained a lot of momentum
since then with industrialisation and scaling happening over the world [183] [102]. Optical links
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are also common within Data Centres [43], where they are used to counter the rising demand of
data transfer [44], [121].

Computational use cases involve the integration of optical elements directly into computing
processes. With the aim to increase performance and efficiency, research papers and the startup
landscape show different methods to achieve a benefit. Efforts range from the idea of fully
optical general purpose computation [10] to demand specific accelerators, that use photonic
elements to improve a particular use case. Those include vector/matrix multiplication and
reservoir computing (within recurrent neural networks, that are yet again based on matrix-vector
manipulation) [97], [138], [278], [302] motivated by the increasing demand for performance
with increasingly large AI models [89].

The previously highlighted advantages of photonic computation also bring forth challenges in
terms of hardware integration and data processing utilisation. Analogue signals by nature are
subject to noise, that interfere with the precision of numeric results [63], requiring special care
in signal processing and eventually limiting potential use cases for analogue acceleration. The
process of encoding digital data onto an optical signal represents a significant challenge as well.
The encoding technologies currently utilised for FTTH and broader data communication appli-
cations have undergone extensive development and improvement. However, encoding a signal
for potential application in analogue computing cannot rely on traditional keying codecs [120].
Depending on their intended application, signal conversion must also be achievable within a
very small footprint to facilitate direct integration into a System on Chip (SoC), presenting a
formidable engineering challenge, as for processing data through. Signal conversion is evaluated
based on two primary performance indicators. Firstly, the precision with which a signal can
be read is critical, as it must accurately encode a digital value of x-bits onto the signal and
subsequently retrieve it for further digital processing. Secondly, the data rate of the signal
conversion is a crucial factor, as it inherently limits the capacity for analogue computation by
dictating the volume of data that can be encoded.

Although photonic chips have the potential to achieve clock speeds within the TeraHertz range,
incorporating multiplexed signals, practical data rates and clock speeds may be constrained
by the efficiency of data encoding and decoding processes. This limitation underscores the
importance of advancing encoding technologies to enhance the performance and integration
potential of optical computing solutions.

The mentioned challenge of noise is greatly dependent on the actual photonic implementation
used for computation making a further analysis of technologies introduced in section 2.1.1
before mandatory. I will briefly introduce the basic concept behind each of the four technologies
and address possible limitations of the technology along approximating its noise and effect on
precision. The three KPI of interest for implementation and analysis against use cases within
the automotive market are the possible numerical precision, bit depth and the method of data
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loading. The opportunities for integration onto an SoC and setup / load times of data are other
things for consideration for a specific service.

2.1.2 Detailed Overview of Concepts
This section gives an overview on concepts that use the idea of photonic computation to enable
an acceleration of matrix vector multiplication. Selection of presented technologies is based on
the amount of research or academia papers, presentations and usage within the startup landscape
and their respective technology readiness level. Noteworthy however, photonic accelerators are
still within a very early development phase with limited hardware implementations and a great
amount of proprietary information. Information referenced and accumulated within this paper is
based on an abstraction level requiring further experiments before implementation and caution
with theoretical performance metrics.

Multiplane Light Conversion MPLC

The concept of Multiplane Light Conversion (MPLC) refers to the idea of light propagating
through free space with several planes for signal manipulation. Particularly this means
modulating light across various planes, each encoded with distinct amplitude and phase
information.

Multiplane Light Conversion originates on the idea of Plane Lightwave Conversion (PLC)
shown in Figure 1. In the PLC process for optical processors doing matrix-vector multi-
plication, the incident vector X initially spreads along the x-axis of the system. This is
achieved through a cylindrical lens or similar elements, which also replicates X along
the y-axis. Next, each element of X (x1, x2, ..., xn)is independently modified at the
spatial diffraction plane (w11, w12, ...wnm), configured through the transmission matrix
W . Lastly, the x-direction beams are coherently combined, culminating in the output
vector y (y1, y2, ..., yn) along the y-axis. This output, y = wx, represents the product
of configuration-matrix w and input-vector x, showcasing the PLC’s ability to perform
complex computations through light manipulation [159].

Figure 1: Plane Lightwave Conversion by Zhou et.al. [302]
Sketch of free space PLC implementation using an array of mirrors wnm to manipulate an input

vector xn and steer the beam towards the photodetector yn.
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MPLC builds upon the foundational principles of PLC by introducing the capability to
handle multiple optical signal paths concurrently, as depicted in Figure 2. This advance-
ment allows for more complex and efficient processing of data, leveraging the inherent
properties of light in an enhanced, multiplexed format.

The light, as it traverses these planes, undergoes transformations, effectively performing
large scale matrix operations for matrix sizes up to 490,000 (by using wavelength multi-
plexing with 700 channels) [302]. Configuring the parameters of used planes offers the
use for computation and enables large scale matrix manipulation [42]. MPLC, after its
first introduction in the early 1970s [302], is a proven concept in both test setups [238] and
experimental tape outs [249], [302]. Whilst large scale matrix multiplication is making
MPLC attractive, they require a setup time for reconfiguration of planes for computation
making them increasingly slower with changing data per compute.

Data (matrix and vector elements) is encoded through spatial light modulators, that use
amplitude, phase, or modulation for analogue representation of a value. The possible
bit-precision of each value is therefore dependent on the advancements of modulators,
noting that physical noise of the analogue signal (influenced by the medium it travels
through) is also limiting the maximum usable precision within an optical signal. An
on-chip integration proven to work has shown a precision of 8 bit [302], whilst recent
research present an integrated optical unitary processor enabling 12 bits of precision [251].

Figure 2: Multiplane Light Conversion by Fontaine et.al. [81]
Example of implementation of MPLC rearranging triangle arrays of Gaussian beams.

Tests for building MVM systems show, that the system noise is dependent on the size
of MPLC conversion planes in a linear manner. For a 14x14 matrix the precision of the
system was measured to be 98,3% [302].

A research team in 2018 has tested the MPLC method for implementing a purely optical
deep neural network and found that, the precision of the all photonic setup delivered worse
results, than an all electric conventional implementation. The photonic setup reached
a precision of 93.39%, whilst electrical counterparts are expected to reach 99.60% to
99.77% [146].

Page 12



Chapter 2 State of Research

Mach Zehnder Interferometer MZI

The idea of using a MZI is based on the concept of interference of optical beams, that
represent a unitary matrix-vector multiplication and were first introduced in 1994 before
gaining a lot of attention over recent years [302]. In greater detail, MZIs are used to
perform a rotation of a unitary 2x2 matrix and attentuators are used to scale a specific
signal. The concept of singular value decomposition (factorisation method) uses those
two concepts of rotation and scaling to enable matrix-vector multiplication, as depicted in
Figure 3.

Figure 3a shows how a MZI consists of two waveguides (taking the input signal x1, x2)
that, after signal manipulation through one phase shifter each (with value θ set from the
outside), interfere to result in a completed matrix multiplication [82].

UMZIx =

(
cos θ − sin θ

sin θ cos θ

)(
x1

x2

)

Whilst a single MZI is used for a linear multiplication of a unitary 2x2 matrix and a
2x1 vector, with the vector mapped to the two optical inputs (x1, x2). Building networks
requires further attenuators, Those - shown in Figure 3b - use a phase shifter for scaling
data values by a factor of cos(θ).

DattenuatorX = x1 cos θ

A combination or a network of several interferometers and attenuators allow for multipli-
cation of larger matrices, as seen in Figure 3c.

Whilst maximum sizes are significantly smaller than those used with MPLC [302], re-
search and startup landscapes currently present on-chip implementations of 8 bit precision
256x256 matrix-sizes [64], [236]. Building larger matrix multiplications through a larger
network of small multiplication however requires converting "an ordinary matrix into the
multiplication of several unitary matrices and diagonal matrices" before processing [149].

Figure 3c represents previously mentioned method of representing a matrix-vector multi-
plication through two rotations V T , U and scaling Σ, where the input matrix M is denoted
as M = V T ∗ Σ ∗ U . The vector to multiply with is an input signal on the left side of
this image with the number of input streams being defined through the size of the vector.
Shown network (Figure 3c) of MZI and attenuators enables multiplication of a 6 x 1 vector
with a 6 x 6 matrix [82].

Digital data is encoded onto an optical signal through phase shift modulators with current
technology promising eight [64], [104] or ten bits [221] already integrated on CMOS
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(a) MZI [82] (b) Attenuator [82]

(c) MZI array [82]

Figure 3: hardware schematics of MZI
Overview of hardware implementation of a single MZI (Fig. 3a), a single Attenuator (Fig. 3b) and

their implementation for a 6x6 MVM (Fig. 3c).

fabrications. For an optical signal used within MZI, the phase describes the state of a wave
oscillation at a particular moment. For instance, a phase of 0 degrees (or 0 radians) might
represent the minimum value and 180 degrees the maximum.

Like mentioned with MPLC before, optical signals used within this method are, due to
the nature of a physical signal, not free of noise. This once again reduces the precision of
the entire systems numerical correctness. Measurements and experiments on noise greatly
vary between different publications and are highly dependent of the specific hardware
configuration and materials used [223]. A measurement on implemented hardware of
company Lightmatter is demonstrating a <0.1% precision loss on an 8-bit 256x256 multi-
plication based on an array of MZI [279]. Lightelligence, employing a similar approach is
is demonstrating MZI-based MVM enabling dimensions of 64x64 [143].

Advancing the here discussed general idea of using a network of MZI for MVM can be
done by introducing microring resonator (MRR) to the approach. This enables greater
scalability and configuration of the model, potentially decreasing noise within the sys-
tem [177].
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Wavelength / Mode Division Multiplexing

The idea of enabling computation by propagation introduced in Section 2.1.1 is the core
concept of Wavelength Division Multiplexing (WDM). Its aim is to utilise different optical
wavelengths λ to encode and process information, making use of the inherent parallelism
of polarized light [159]. An array of of microrings can be used to enable multiplication
of information on optical signals with very little use of physical space and potential for a
large number of orthogonal channels [302].

Figure 4 displays a possible design of a WDM implementation. Different input signals
(A1, A2, ..., An), each with their own unique wavelength (λ1, λ2, ..., λn) are created and
multiplexed onto a single medium. This combined signal is then split into multiple paths,
that will each perform a part of the matrix vector multiplication [138].

An array of MRR is configured to modulate the intensity of a specific wavelength based
on each element of the matrix (B11, B12, ..., Bnm) to multiplicative with. Each row of the
MRR array manipulates the row of the array it corresponds to, whilst a single MRR will
modulate the signal corresponding to its own column within the matrix. The modulation
process effectively multiplies the vector elements (input signals at different wavelengths)
by the matrix elements (the modulation imposed by the MRRs). Each modulated signal
path represents a summation of these products, akin to the result of a matrix-vector
multiplication. Each output (C1, C2, ..., Cn) ultimately maps a result of the MVM being
the sum of the products of inputs and their matrix weights for that row [138], [159].
Performance of the overall system can, based on the described idea, be increased through
introduction of multiple data streams, that distinguish themselves through their distinctive
wavelength [138].

Figure 4: Wavelength Division Multiplexing by Li et.al. [138]
Overview of hardware implementation for MVM using wavelength division and microring resonaters.

The method of using WDM for matrix-vector-multiplication is relatively new in compar-
ison to the two other introduce concepts with first application in 2012. It has however
found several uses for various neural networks and accelerators [302]. A major advantage
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over both MPLC and MZI approaches is, that matrix multiplication requires no previous
decomposition of input data for computation.

An alternative idea to use wavelength for multiplexing is a concept proposed by Ling, Q.
et al., which instead is based on mode division of light. The improvement is a reduction in
hardware, as WDM requires multiple lasers for the amount of wavelengths multiplexed,
whilst Mode division multiplexing (MDM) is only relying on a single source of light [149].

A major challenge with wavelength or mode division multiplexing is the noise and dis-
tortion of optical signals when integrated on chip. Not perfectly tuned mirrors or slight
deviance in manufacturing can increase noise as far as making the signal irrelevant for
compute. Whilst a simulation of the physical layer yields a model accuracy of 94% in use
of the convolutional neural network on the MNIST data set - a decrease of 2% over the
standard model [259].

Precision of WDM and MDM approaches are greatly dependent on the detectors at
each output. Paper [149] proposes an accelerator of 2-bit precision, but summarises the
landscape and academic progress achieving up-to 9bits of precision.

Cross Bar Arrays

A fourth idea to implement MVM through optical processing techniques, is the concept
of building a grid of spatial light modulators (SLM). Reflective SLM and transmissive
SLM enable encoding of digital information and data manipulation through reflection or
transmission of light. The voltage of modulation for electrical crossbars can be denoted as a
greyscale mapped onto a bit-level precision. In its simplest form being 1 or 0 for maximum
or minimum voltage respectively [78]. The idea of building a grid, that combines vector
and matrix information for direct computation is already existent within purely digital
concepts with additions in each node of the grid, as seen in Figure 5a.

(a) electrical crossbar array [78] (b) optical crossbar array [78]

Figure 5: Crossbar MVM implementations [78]
Comparison of purely electric (left) and a photonic alternative (right) of crossbar based MVM showing

the mathematical operations realized within hardware.

Figure 5 depicts a sample cross bar array for multiplication of a [1 −m] matrix with a
[1 − m] Vector. The "input vector is encoded into a list of the intensity of light waves
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(I1 to Im) propagating in m optical waveguides" [78, P.2]. The matrix is defined through
configuration of the light-transmittance (Tnm) within electro-optic components. The
photocurrent (

∑m
i=1 li ∗ T1i) (electric current through a photosensitive sensor) at each

output wave guide is "proportional to the summation and multiplication of input light
intensities and tunable transmittance" [78] representing MVM operations. This method can
be used to create crossbar-grids to enable larger MVM. Paper [103] presents an simulation
of a 256x256 matrix dimension. Paper [178] summarises crossbar-array approaches of
dimensions up to a dimension of 100x100.

Hardware level precision (bit level) is based on the advancement of used spatial light
modulators’s, but can virtually be expanded through a closed-loop approach. Experiments
in free-space and in integrated circuits present a highest precision of 8 bit, whilst virtual
precision is expected to reach 128 bit without a greater loss in accuracy [31], [78], [103].

Whilst the technology is implemented with startup Neurophos [31] for instance, studies on
hardware level accuracy are very limited. A free-space experiment to implement a neural
network through cross-bar arrays by [79] showed a decreased model accuracy of 95.3% in
comparison to a calculated 96.1%, suggesting a relatively small hardware inaccuracy. A
simulation of a crossbar based MVM accelerator demonstrates a setup with a precision of
99% with the claim of measuring no effect on model accuracy or neural network [103].

The four introduced technologies each feature their own challenges and chances. One of the major
challenges is the integration into chiplets. Whilst MZIs for instance are already integrated into
Peripheral Component Interconnect Express (PCIe) expansion cards, like done by Lightmatter or
Lightelligence [67], [142], other methods are yet to be successfully integrated on a piece of fabric.
A promising example for integration of free-space-proven approaches relies within the company
Optalysys, which has integrated free-space Fourier-Transformation. This is achieved through
a vertical chip-extension, as shown in Figure 6. With a one-dimensional design announced in
2023, this integration may show potential for the here introduced concept of MPLC [181].

Figure 6: Integration of free-space optical hardware [181]
Example for integration of free-space MPLC within an integrated circuit as proposed by startup

Optalysys. First design was two dimensional with a vertical addition to the chip, whilst a new concept
promises the possibility to fully integrate MPLC on the PCB

Another element of the question of integration into greater computational architectures, is the
hardware size of possible photonic components. With some concepts still being in early research
phase with free-space experiment, this question is specific to each approach of photonic data
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processing further being dependent on the availability of manufacturing capabilities and hardware
materials chosen. This topic will further be evaluated in Section 4.3 after an in-depth comparison
of photonic approaches.

Noise and distortion of optical signals within waveguides is another major challenge, that impacts
the accuracy of the optical processing or MVM in particular. Wavelength Division Multiplexing
and Mode division multiplexing are highly dependent on distortion "free" systems, as the usability
of the signal depends on the specific wave or mode of the signal. This is especially challenging
with both WDM and MDM, as those systems are not re-configurable after manufacturing [138],
making integration more complicated due to its "fragility".

2.1.3 Summary on optical Computation
Previous analysis of four approaches to optical computation and held discussions with startups
show that optical computation can be beneficial for specific use cases. As presented by re-
search, those include data transfer (and related switching methodology) or specific mathematical
operations such as MVM. Optical accelerators may impose a great benefit to use cases, in which:

• Highly repetitive workload with similar / specific algorithms (with incorporation of MVM
operations). The knowledge of algorithms used enables the design of customised hardware
to gain a significant advantage over digital specialised hardware or digital general purpose
processors.

• High throughput by multiplexing of the analogue signal to enable multiple computations
on the same hardware in the same clock cycle.

• Energy efficiency through beneficial properties of light.

• Resilience to noise / reduced numerical precision.

Two drawbacks must however be considered in using optical components for computation.
Analogue signals are not immune to issues in numerical precision due to the medium they are
transferred through and the manipulation of such with modulators within processing chains. This
results in a negative effect on the numerical correctness of the result of a computation. In simple
terms, 4+4 must not return the value 8, but a result distributed around the correct value. Another
drawback is the representation of digital values on an analogue signal. Hardware development is
limiting the maximum achievable precision and might further increase the impact of analogue
noise on numerical precision.

Table 1 summarises of all four photonic approaches previously presented and depicts the major
KPI with the currently enabled bit-precision, matrix dimensions and accuracy of the system.
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Table 1: Different optical technologies and their performance

Method Precision
(bit)

Matrix Size Accuracy Data-
Loading

MPLC 12 490000 >99 Single-load
MZI 8 256 >99 Single-load
WDM <9 25 98 Single-load
CrossBar 8 (128)1 >2 >99 Single-load

1 virtual precision

A topic left out of previous considerations is the respective energy consumption of each tech-
nology. Whilst a significant improvement due to the inherent usage of photonics (instead of
electronics) is explained in numerous papers [64], [82], [159], [302], the effective gain is depen-
dent on the specific approach implemented and use case services. Zheng, S.N., Zou, J., Cai, H. et
al. compare the energy efficiency of MRR (35 mW each) and MZI (1.8 W each), showing how a
MRR achieves ∼ 5x greater efficiency [300] over an MZI approach (accounting for the direct
MVM part of the system only). An advanced and optimised combination of MZI and MRR are
reportedly able to realise a non-linear activation function (combination of an MZI, MRR and
two heaters) with a consumption of just 1.3 mW [116]. Additionally, paper [250] depicts an
MPLC approach with 8.4 mW for each phase shifter. These numbers give an insight into the
respective energy consumption of specific parts of the value-chain within a photonic accelerator.
With little knowledge on the amount of needed MZI or MRR components for realisation, those
will have to be put into greater context and comparison to purely electric hardware accelerators
in Section 4.4.

To summarise: The current landscape described in research, academia and the Startup landscape
leads to the overall assumption, that optical computation is expected to enable efficient compu-
tation with high throughput for use cases where an algorithm, that greatly uses matrix-vector
multiplication is used. A benefit can however only be realised when the service accelerated is re-
silient to noise and is not dependent on 100% numerical precision. The category of AI-inference
use cases for instance might be suitable, as a minimal reduction of accuracy may not make a
huge difference for its application [86]. Use Cases and the impact of hardware noise will further
be discussed within Chapter 4.1.

2.1.4 Ongoing Industrialisation and Integration
The concept of using beneficial properties of light for computation isn’t entirely new and been
around for several years already [78]. Improved possibilities for fabrication and the increasing
demand for AI computation use cases and energy efficient processing however have greatly
increase the interest in such [159]. Ongoing research has brought up several startups over the
last few years, that this Chapter is giving an overview on with the idea of giving an overview of
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current products on the market. Companies were identified through search-engines, conferences,
papers and journals.

United-States based Lightmatter and Lightelligence both follow a similiar approach after their
founders co-published a paper in 2017 proposing an optical neural network to accelerate AI
use cases and reduce heat generation [226]. Both startups build an array of MZI to enable
MVM on an accelerating chip and currently offer a ready-to-integrate product, that integrates
through the PCIe slot of a motherboard or comes as a 4U form factor server-module. Whilst
compute-able matrix-sizes differ, both advertise the benefits of energy-efficiency, throughput and
no heat-generation [82], [142], [144]. These claims directly link to earlier introduced benefits of
optical computation in Section 2.1.1.

Several other startups are delving into the usage of photonics, that include Akhetonics [10], [91],
Luminous [35], Cerebras [38], Celestial AI [9], Salience Labs [26], Cognifiber [51], 3E8 [1].
Public knowledge on product offerings and roadmaps of these companies is limited, but few
trends are visible, that include a great focus on data-transfer / interconnects, the acceleration of
AI use-cases and the goal of a new generation of chip-development. Akhetonics stands out with
a wider goal of enabling general (XPU) acceleration units.

2.2 Development of State of the Art Processors

Ever since the first processor was introduced in the 1970s computational power has been a
major enabler for innovation across all industries [77]. The development of processors has
become a crucial factor in the advancement of both technology and society, whilst the need for
more "power" is a constant ever since. The goal remains to enable faster processing, greater
throughput at a possibly small energy consumption. Several technological advancements over
the last years have led to the current state, in which everyday life is surrounded by handheld
computing supporting humans at all times.

This Section will give a short, high-level overview of advancements and trends in computing over
the past years to highlight different technological enhancements leading to a greater performance
overall. Those enhancements include, but are not limited to, the ongoing miniaturisation of
hardware, increased packaging and modularization and advanced architectures [167], [224]. An
understanding of such will then enable discussing current developments, ideas and limitations
for the upcoming years of processor development.

One of the key-changes on processors throughout the years is the sizing of hardware components.
The Intel Pentium III Coppermine processor introduced in 1999 was manufactured on a newly
introduced 180 nm node [112] for instance. A node refers to the technology used for fabrication
of integrated circuits indicating the smallest half-pitch of contactable features. The successive
Intel Pentium IV has featured a smaller 90 nm node just 5 years later being an example for the
pace of miniaturisation. Current times now feature various processors manufactured on a 3 nm
node including the current generation of Apple Mac and Phone processors [154]. Production
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of 2 nm nodes are currently on the way with a market entry expected in the later 2020s [58].
Smaller nodes enable more transistors on the same area / die size, thus offering space to more
ALU or caches for increasing theoretical computational throughput per clock-cycle. The increase
of transistors per chip is approximated through Moore’s Law being an empirical observation,
that the number of transistors in an integrated circuit doubles approximately every two years. It
was first described by Gordon E. Moore, the co-founder of Intel, in 1965. Moore’s Law is not a
law of nature, but rather an observation over a long-term trend in how technology is changing.
The observation seen in Figure 7 has held true for more than half a century, driving linear growth
in the number of transistors on integrated circuits and leading to significant advancements in
computing power and capabilities [167].

Figure 7: Transistor count over time known as Moore’s Law [211]
Overview of increasing amount of transistors on microchips over the year with a clear trend visible as

foreseen by Moore.

The prediction of Gordon Moore, that proved itself to be true for years, has become an increasing
topic of discussion and controversy over the past years. It is greatly discussed, when and if
Moore’s Law will end [167], [224], [282]. Whilst NVIDIA Chief Executive Officer (CEO) Jensen
Huang for instance has repeatedly mentioned Moore’s law to be dead arguing that "the method
of using brute force transistors and the advances of Moore’s law has largely ran its course" [50].
Intel CEO Pat Gelsinger is calling the law "alive and well" in 2022 before talking about a
decrease in the doubling rate time to 3 years (from previous 2 years) in a recent speech [11],
[50]. The question of an end of Moore’s Law is also present in research and academia with
past years bringing up several papers discussing, if the current produce able node would be the
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commercially smallest achievable [282]. Ironically, those papers have quite often already proved
themselves wrong with smaller nodes (3 nm) already being in mass-market production [154] and
with Intel recently announcing building a new manufacturing site in Germany for fabrication of
1.5 nm chips [229].

A common theme and reasoning for Moore’s Law ending amongst papers and conferences on
the possible end of increasing miniaturisation of transistors, is an inevitable physical limit [208],
[282]. Several suggestions of a physical limitation have already been proven wrong in either
experimental or commercialised state. Current research suggests, that a physical minimum gate
length might be situated at 0.34 nm; the size of a single carbon atom [208] - currently considered
to be a minimum viable size, whilst not proven for commercial use in millions of units just
yet [71]. While a physical limit to the pure size of chips may be coming up, ongoing engineering
efforts are expected to enable continuation of Moore’s Law for a few more years, with sub
2 nm nodes being in active research with hopes for commercialisation in the 2030’s [267].
Decreasing transistor sizes however implicate increasing challenges for manufacturing and
energy consumption making the discussion not just a technical but a business decision as well,
as size is not the only possible option for improving performance of processors [267], [282].

Two other major ideas in increasing computational performance are improved processing ar-
chitectures [135], [224] and 3-dimensional packaging of chips [224]. The term of a processor
architecture is a broad one, that can characterised by the orchestration of both hardware and
organisation of a processor, as described by Hennessy, and Patterson [100]. The organisation
thereby includes a high-level design of storage, processing and data transfer, with each of the
three being influenced by the Instruction Set Architecture (ISA) chosen. The ISA describes
specific operations executed on within the processor. They can be categorised into two types
of designs with an either more complex set of instructions Complex Instruction Set Comput-
ing (CISC)) or a more compact set (Reduced Instruction Set Computing (RISC). Whilst picking
one of two has an impact on the design of a processor, there are specific implementations of each
category introducing their own flavours like ARM and RISC-V for the category of RISC [25].

An option to further accelerate computational performance is the introduction of specialised
hardware accelerator chips. Accelerator chiplets are application-targeted hardware implementa-
tions, that instead of being able to universally compute, are meant to efficiently solve a specific
type of algorithm - a concept known as an application-specific integrated circuit (ASIC). This
enables higher performance for the same power-consumption of a chip. [83], [90]. This is further
motivated by the computational demand of battery-run devices and the increasing emergence of
compute-heavy applications like AI [83]. Using accelerators is now considered state of art and
has found its way into a variety of use cases and hardware-environments. Google for instance has
developed Argos as an accelerator for video encoding, that is core to the YouTube service [46].
Built to be integrated into existing server-racks, Argos is embedded on a PCIe expansion card and
features a total of ten custom video encoder cores specifically designed to encode input-videos
in H264 encoding enabling higher processing power and lower consumption of electricity [186].
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Similarly to the idea of Google to design an ASIC specifically for YouTube data-centres, other
chip-manufacturers have followed similar ideas for non-data-centre applications. Examples are
the introduction of an NPU into Apple devices [122] or Snapdragon [237] processors.

Mentioned processors make use of another trend, that began in the 1990s and has since then been
greatly accelerated through increasing numbers of mobile and battery powered devices [108],
[209]. A System on Chip (SoC) is considered as a combination of hardware blocks required for
processing data on a single integrated circuit. It consists of at least some sort of microprocessor,
but usually contains an on-chip memory and a communication link [219]. Already mentioned
Apple M chip-series for instance is a great example for a modern SoC made up of unified memory
and several computational units specialised for the use within a portable laptop. This can be
a GPU, NPU, specific I/O or other use-case specific accelerators, like previously mentioned
video-encoding unit [15], [122]. The increasing affordability of SoCs, their promise of enabling
low-power, high-efficiency and miniaturisation of hardware components have lead to them being
a state-of-art for domains such as mobile and automotive [16], [201]. The technical possibility
and advancement of multi-die integration and 3-dimensional stacking is further increasing
opportunities to SoCs [134].

The integration of diverse hardware components onto a single System on Chip and the strategic
inclusion of hardware accelerators embodies the essence of heterogeneous computing. This
paradigm advocates for the synergistic utilisation of specialised processing unit (PU) to optimise
task execution, leveraging the distinct capabilities of each unit tailored to specific algorithms
at a given moment. The principle underpinning this approach is the exploitation of the unique
strengths inherent in a individual processing unit, which are characterised through their archi-
tectural design and operational specifications tailored to a specific service to be used for. These
characteristics are significant in determining the suitability of each PU for various computational
tasks. When effectively orchestrated, this methodology can substantially enhance the overall
utilisation of hardware resources [163].

Mittal and Vetter underscore the critical role of adept scheduling and workload partitioning,
predicated on the comparative performance of each PU, in maximising processing efficiency and
energy conservation concurrently [163]. The primary challenge in employing multiple PUs for a
singular task or algorithm lies in the management of data transfer and synchronisation among
the involved hardware components. Inefficiencies in scheduling and memory provisioning can
render a hardware accelerator redundant in terms of performance (or at least significantly impact
their effectiveness), as demonstrated in their work.

The concept of deploying SoC with heterogeneous processing units, each complementing each
other’s capabilities, is not a novel notion in both consumer electronics and embedded systems.
The Apple M1 Silicon and its successors [15] illustrate the practical application of specialised
units within an SoC for distinct domains, such as AI inference and image processing. Sim-
ilarly, the Snapdragon 888 SoC, integrated into devices like the Samsung S21 series [200],
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amalgamates a CPU, GPU, digital signal processor for AI applications, and an image signal
processor, showcasing the effective use of hardware accelerators for specific use cases [199]. The
Tesla FSD chip or the integration on an NPU within a Mercedes concept are known examples of
the concept within the automotive sector [254], [277]. All previous examples are based on the
ARM architecture.

Intel’s introduction of the Lakefield processor at Consumer Electronics Show (CES) 2019 was
considered a significant step into heterogeneous processing for the x86 architecture, incorporating
specialised hardware components such as low-power cores [59]. Despite its considered lack in
performance (in comparison to similar x86 state-of-art processors) and premature discontinuation
two years post-launch, the venture into x86-based heterogeneous computing has garnered signifi-
cant interest [148]. This interest has been further propelled by chip manufacturer AMD’s recent
unveiling of a new SoC component (Ryzen AI) targeted at consumer and automotive sectors.
This SoC embodies the principle of hardware acceleration for AI and enhanced digital customer
experiences, marking a pivotal advancement in the domain of heterogeneous computing [19].

While heterogeneous computation was limited to using technology based on the same die-size
and therefore limiting the possibilities for integration of hardware -accelerators, ongoing research
show advancements for multi die size integration. This enables more flexible and efficient design
approaches being the foundation for the combination of different types of processors within a
single package, like photonics and conventional electronic processing [41], [134].

To summarise reviewed developments and trends in development of processors or SoCs in a
broader scope; Increasing effort, mandatory to continue improving computational performance
and overcoming dawning physical limitations in miniaturisation of processing hardware builds
growing interest in alternative methods to improve both performance and efficiency of next
generation processing units. Advancement in manufacturing thus enabled enhanced packaging
methods will complement superior processor architectures according to Gordon E. Moore in
2006 [167]. Both assumptions are now considered state of art and have greatly been improved
by the rise of mobile applications and battery-powered devices. System on chips are now
common for many types of devices and feature hardware accelerators to increase performance
and efficiency for specific domain computing.

3 Application within Automotive
This Section of the document will give a high-level overview of computationally demanding
services and features within a vehicle. This includes both passenger driven and safety driven
products. Whilst the list has no intention to be complete, it is meant to point out services of great
computational effort that could potentially be improved through optical hardware acceleration.
Standard workloads like UI loading, vehicle-switches (like window-openers) and such are not
included due to their low computational demand and their implementation status. The Section
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will then enable the identification of certain services within the vehicle that may gain most
advantage from acceleration.

With the rising demand for digital services and features within and around the car, efficient
computation and the distribution of workload is of rising interest for several years already.
A service within the vehicle can be defined as a piece of software, that offers some sort of
functionality of value for the customer throughout various domains. A certain requirement
of a specific service is known as a Service Level Requirement (SLR). The 5G Automotive
Association (5GAA) has proposed a classification of use cases within 7 groups for the purpose
of defining SLRs for Vehicle-to-Anything Communication (V2X) in efforts of discussing the
communication of vehicles [2] [3] [4]:

• Safety

• Vehicle Operations Management

• Convenience

• Autonomous Driving

• Platooning

• Traffic Efficiency and Environmental Friendliness

• Society and Community

Whilst this categorisation highly generalises infotainment (information and entertainment) use
cases into convenience and adds complexity to services around the software-controlled vehicle
movement and fleet orchestration, it is a reference to analyse possible applications of optical
computation by their SLR. To simplify analysis of use cases, I will refer to the following use
cases categories and then begin with a collection of sample services through interviews with
colleagues and an active scouting of existing vehicles:

• Infotainment

• Vehicle Safety

• Vehicle Control

Infotainment

The cluster of infotainment use cases summaries services, that serve both entertainment and
information of vehicle passengers and create value or convenience to customers. It encompasses
multimedia, navigation, custom applications, and other features designed to keep drivers and
passengers entertained and informed whilst on the road. Use cases of automotive infotainment
include in-vehicle entertainment (music, video, gaming), navigation services (traffic informa-
tion, directions), vehicle information, smartphone integration and more. They often rely on
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connectivity for communication with the back-end to enable streaming of data and handling of
customer-requests, dependent on localisation of information of interest.

Vehicle safety

Vehicle safety clusters use cases that ensure the well being and health of passengers without
software being in charge of vehicle control. These measures may go beyond conventional safety
features, incorporating solutions that contribute to accident prevention and mitigation. They
include Collision Avoidance, cross-traffic alerts, emergency response, traction and stability
control.

Vehicle control

Vehicle Control use cases are those, that take main responsibility over vehicle movement for
at least a short amount of time (i.e. ≥ 10s for level 3 ADAS). Those use cases range from
interventions in specific situations (like steering the vehicle back into its designated lane) to
the use of ADAS. ADAS must however further be distinguished in the five different levels
of software- or OEM-responsibility for the actions of the vehicle. At Level 0, there’s no
automation; the vehicle is entirely controlled by a human. Level 1, or Driver Assistance,
introduces systems like adaptive cruise control, where the car handles some tasks but still
requires active human supervision and takes no responsibility over vehicle actions enforcing
constant passenger readiness.

Partial automation in level 2, sees vehicles managing both steering and acceleration under certain
conditions, yet the driver must remain able to intervene within a second. Level 3, conditional
automation, advances partial automation, allowing the car to take full control in specific scenarios
(e.g. highway sections), with the driver ready to take over within a maximum of 10 seconds [75].
This means, that at any given time, the vehicle must be able to remain in control for the next 10
seconds moving responsibility for those seconds from driver or passenger to the OEM. Level 4,
high automation marks the stage in which a vehicle is capable of performing all driving tasks
in certain environments without human intervention or supervision. Finally, full automation
is achieved with level 5, where the vehicle is completely autonomous under all conditions,
rendering the need for a human driver and steering wheel within the vehicle obsolete [27]. The
specific level of automation of a vehicle is having a direct impact on the requirement in terms
of reliability onto the entire processing chain of the driving assistance systems, ranging from
hardware to software.

Using the service categories one can identify specific use cases to further analyse. Each of
these can be described by different SLR. Three requirements are particularly of interest for
determining the possible use of optical computation for each use-case.

• Service Availability
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• Service Latency

• Data processed / Throughput

The service availability is a measure, that describes the percentage (%) of time on a vehicle
journey, in which a service must be available. Percentages can be clustered into three categories
respectively. Services, that are a convenience to the customer, but not relevant for safety should be
available 95% of the time. An example for those would be the offering of video streaming - whilst
irrelevant to vehicle movement, it is considered as a minor issue or disturbance when not available.
Services, that impose a major inconvenience to the customer, when not available, but not relevant
for vehicle safety should be available at least 99% of the time. A great example for this scenario
is the offering of navigation, that greatly interferes with the customer satisfaction. Software,
relevant for the actual vehicle safety must be functional for the entire trip. The categorisation into
95% or 99% is derived from the 5GAA whitepaper [3] and conference presentations using this
schema for classification. As availability of 100% cannot be guaranteed [180], the requirement
for service crucial for safe operation of the vehicle must be available for at least 99,99999999%
of the time, as defined through ISO 26262 in Automotive Safety Integrity Level (ASIL) class
D [195]. This cluster includes all services that take control of the vehicle for a specific amount of
time. This can either be short-term like Dynamic Stability Control (DSC) or over greater amount
of time within level 3, level 4 or level 5 autonomous driving. The risk classification ASIL is a
great reference to specify service reliability, as the ISO 26262 categories vehicle features into
safety-criticality [232].

Latency refers to the delay in milliseconds (ms) for a service to respond to a certain request
or more. Generally spoken it describes the time passed between the "occurrence of the event
in scenario application zone [and] the beginning of the resulting action" [2, P. 7]. The exact
definition is dependent on the use case analysed. For infotainment purpose this can be seen as
the between user-input (actuation) and information displayed on a medium within the vehicle.
For ADAS this time can be identified as the processing time of data into information used for
further action. Latency requirements can result from various factors. In infotainment purposes
latency is critical to crate a seamless user experience that doesn’t feel "laggy" or unresponsive.
Vehicle movement services have a latency requirement, that is dependent on the situation of the
vehicle. Higher velocity requires smaller latency’s to allow a safe operation and response to
spontaneous events on the road ahead.

The requirement of data processed is outlining the data throughput of a specific service in
Megabit per second (Mb/s).

3.0.1 Infotainment Use Cases
Services in this cluster are mostly seen as non critical to customer satisfaction, but being
conceived an inconvenience. If they are unavailable for a small amount of time within a user
journey, they do not interfere with the users intention to drive or be driven from source to
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destination. Preparation of user information and the display of a graphical user interface is
not part of the list, as it is a very general use case without specific algorithms or applications.
A previously undefined criteria the positioning of computation (onboard vs offboard) is the
origin of content, that can either be produced on the fly, dependent on user input, or be pulled
from external sources or cloud providers. Video streaming for instance is a direct integration
of vendors external clouds, that serve a stream of data (like Amazon Prime, Netflix, YouTube
or Disney). Rendering of videos on the other hand might depend on live-data from the vehicle,
when taking ideas like Extended Reality (XR) into account.

Table 2: Infotainment services and their SLR

Service Name Availability (%) Latency (ms) Data Throughput (Mb/s)

Video Streaming 95 100 1 250 2 [3]
Music Streaming 95 100 1 1,5 3

In-Car Gaming 95 20 [3] 20 [162]
Navigation 99 1000 0.009 [74] 4

Video Rendering 95 100 >2000 [155]
Personal Assistants 99 <1000 0.673 5

1 latency of network stream assuming limited buffering

2 estimation of single 8k video stream

3 free lossless Audio Codec (FLAC) stream assumed

4 Assuming off-board route calculation. The datarate is assumed through GMaps network
requirements [74]. In-vehicle route calculation would enlarge data throughput and processing
time significantly and require the vehicle to store or pre-load the map for the entirety of the route
ahead.

5 Alexa, as a reference, is utilising a cloud based approach to language processing and response
generation [93]. Datarate is approximated with a high-quality microphone that records audio at a
sample rate of 44.1 kHz and a sample depth of 16 bits. Whist this quality is likely to exceed the
required quality of a vehicle.

3.0.2 Vehicle Safety Use Cases
Safety equipment and services of a vehicle are a vital part to ensure the well-being of a passenger
and are required for authorisation of sales. Services named below are therefore categorised as
ASIL-D through ISO 26262, meaning that they require a failure rate of less than 1E−10 /hr [206].
Accounting for an availability of 99,99999999% in percent.
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Table 3: Vehicle Safety services and their SLR

Service Name Availability (%) Latency (ms) Data Throughput (Mb/s)

DSC 99,99999999 100 <1 1

ABS 99,99999999 100 <1 1

Airbag Control 99,99999999 <25 <1 2

1 Antilock Braking System (ABS) and Dynamic Stability Control (DSC) use a variety of sensors
to compute action of engine control and braking system. Those sensors include wheel-speed,
yaw-rate, accelerometer, steering angle and brake pressure that provide a data stream each.
Assuming a representation per value in the size of a float16 and a rate of 50Hz per sensor would
result in a data rate of 800bit/s per sensor accumulating for 9.6 kBit/s for a setup of twelve sensors
within the vehicle. Whilst the exact number of sensors used for both systems are unknown
and greatly specific across vehicles and OEMs, it is expected, that the total data rate would not
outgrow 1 Mbit/s.

2 The perfect timing of airbag inflation requires great precision and accuracy for inhabitant
protection, thus creating the need for sensors with higher sampling rate compared to previously
mentioned sensors for ABS and DSC [107]. Using the assumption of a float16 for value
representation and figuring an increased sample rate of 400 Hz [5] yield a data rate of 6.4 kBit/s.
With an estimation of 4 sensors for vehicle sides and 3 sensors each for the vehicle front and back,
that would accumulate to 64 kbit/s for a simple sensor based collision detection. It is notable, that
the system calculated is a reactive system with the meaning of extremely fast response to a crash.
Enhanced systems for passenger protection would use a greater set of sensors to predict crashes
and take pro-active action, like increasing the force on seat-belts. This idea is, for simplicity
reasons, seen as part of environment perception in the next chapter.

3.0.3 Vehicle control use cases
Unknown latency requirements are approximated by calculation of the covered distance at a
velocity of 130 km/h. 20 ms at that speed account for 0.722 meters covered - 100 Milliseconds
would cover 3.6 meters. The maximum latency for ADAS use cases within the automotive
industry is commonly discussed at 100ms to enable sufficient time and distance to react to
unforeseen events [152, P. 17]. The required availability and reliability of a specific service is
dependent on the level of autonomy the vehicle will be in at a given moment of time. The level
of autonomy dictates the time, a user might need to take over vehicle control. The smaller the
time of manual intervention, the more situations must a car master and the less frequently should
a system malfunction or be unavailable, in general. With the drivers attention moving away from
actively monitoring the vehicle and the need to possibly take over control from level 3 onward,
the system itself must be fully reliable in the situations it is expected to master (e.g. controlled
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highway environments). This, similar to previously mentioned safety use cases, corresponds to
the ASIL category of failure rates and responsibility requiring ASIL-D failure rates.

Table 4: Vehicle control services and their SLR

Service Name Availability (%) Latency (ms) Data Throughput (Mb/s)

Environment perception 99,99999999 1 100 >18500 3

Vehicle Path projection 99,99999999 1 100 >6000 4

Lane departure warning 2 99 100 4600 4

Blind spot assist warning 2 99 100 4600 4

Traffic Sign Recognition 99,99999999 1 200 >4600 4

Driver Health Monitoring 99 200 2000
Lane Keeping / Assist 99,99999999 1 100 4600 4

Adaptive Distance Control 99,99999999 1 100 500

1 for ADAS level 3 and above due to responsibility of the system moving to the OEM of the
vehicle

2 as an optional customer service, that is not part of environment perception needed for autonomy
of the vehicle

3 This metric is based the amount of sensors on a car needed for a total perception of the
vehicle combining Light detection and ranging (LIDAR), RADAR and camera based vision
(with possibilities to further extend sensing setups through IR-cameras or V2X). An exact
number of sensors required for full coverage of a vehicle’s surroundings remains undefined
and differs greatly among various manufacturers. Tesla for instance, being perceived a market
leader for autonomous driving, is currently deploying its Full Self Driving (FSD) hardware with
a total of eight cameras featuring a resolution of 2896x1976 pixels and a maximum frame rate of
40 Frames per Second (FPS) each (with a 10 bit color depth) [57] [56] [55]. This results in a total
data generation of 2.28 Gbit/s (rounded) to be processed per camera and a total of 18.3 Gbit/s
for processing data from all cameras, needed to enable overall environment perception. Other
manufacturers, like BMW or Mercedes are including LIDAR and RADAR sensors within its
sensing setup to enable improved object detection in challenging environments. The metrics
of importance for such sensors are considered to be the amount of points per second (PPS)
and the information depth for each point usually consisting of at least relative position and
reflectivity. A sample radar introduced in 2023 offers the feed of 5,242,880 PPS with a data
rate of 254.3 Mbit/s [110]. The recent Life Cycle Impulse (LCI) of the BMW 7-series in 2023
has introduced a LIDAR with a data feed of 10 million PPS, potentially resulting in 550 Mbit/s
per LIDAR [202]. BMW is further fitting the mentioned vehicle with ultrasonic sensors, Radar
and an unspecified amount of cameras for level 3 ADAS readiness. With the minimum amount
of sensors unknown for level 4 automated vehicle control, I assume, that at least 2 LIDARs
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(forward and backward facing) and a combination of 8 cameras are needed to fully recognise
the environment around the vehicle. This assumption is based on conference presentations and
references as the NVIDIA setup proposals [22], [175]. Assumed sensors account for a total data
rate of 18.5 Gbit/s.

NVIDIA being a selected tier 1 supplier by several OEM (including Mercedes, Volvo / Polestar,
Hyundai, XPENG and Jaguar Land Rover) for ADAS systems [176] is proposing a larger setup
of sensors containing: 15 cameras (8x 8.3 MPx external, 4x 3.0 MPx external, 3x 5 MPx internal),
9 radars (mix of long and short range), 2 LIDARs for imaging [175]. Assuming previously used
40 FPS with the native raw bit-depth of each camera, the total data generation of all 15 cameras
would equal a total throughput 35.33 Gbit/s, marking a significant increase over the assumption
above.

4 Assumption, that two cameras and GPS / map data are used for service realisation. Map data
with detailed information of traffic lanes and speed limits can be used for proactive vehicle
steering and preparation. Cameras or LIDAR function as real-word reference and fall-back
solution if map-data is unavailable. Using the previously mentioned camera with a resolution
of 2896x1976 pixels at 40 FPS a data throughput of a minimum of (2.29 Gbit/s per camera) is
assumable.

3.1 Analysis of Use Cases

The collection of services and their SLR beckons the opportunity to identify potential candidates,
that might benefit from an integration of optical accelerators within the vehicle rather than
a potential offload to back-end services. Comparing previously analysed benefits of optical
components (in Chapter 2.1.3) with services, enables the direct detection of services, that might
benefit from optical computation.

Connectivity plays a major role in the offload of services to cloud architecture, as it acts as a key-
requirement for moving hardware computational resources for a service of specific availability
requirements.

When the vehicle’s connectivity status, measured in terms of availability percentage, exceeds
that of service availability, and the expected latency surpasses the actual latency experienced, it
becomes feasible to entirely host services offboard (i.e. cloud). Surveys from the European Space
Agency (ESA) show, that 92.9% of type A and B roads in northern Germany (federal motorways
and federal highways) are served with broadband connectivity (4G or 5G) [14]. The test setup for
this measurement however, was a smartphone placed within the vehicle and therefore represents
worse results, than high-gain antenna setups of the vehicle itself, placed outside of the interior
and experiences less distortion (due to infrared-shielding and metal components). Another
measurement on rural roads encompassed within the "Tour de France" in 2023 has shown, that
62,3% of the journey was experiencing "poor or lacking" (signal strength < −104 dbBm) internet
service [241]. This test was yet again conducted with a smartphone within a vehicle, that is also
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fitted with an Infra-Red (IR) coating further reducing the signal strength in comparison to vehicle
antennas. It is expected, that with current actions taken towards a better connected vehicle
through advancement in terrestrial connectivity and the ongoing development of satellite-based
connectivity [14], [28], [29], [240] an OEM reaches its customers on a global scale with a latency
of <200 ms and a mediocre data rate of >10 Mb/s with an availability >95%.

The previous Section enables insight into the three selected use case categories for infotainment,
safety and vehicle control. Table 2 lists five sample services with rendering of graphical videos
standing out from the rest with significantly larger data throughput, than simpler information
display (like navigation information) or streamed media Assuming a stable and reliable internet
connection of the vehicle enables offloading of navigation and personal assistants, as data rates
are low and latency requirements non-critical. Rendering video content marks an exception
with increasing amount of in-car displays and a great amount of pixels to be rendered, making a
possible acceleration interesting.

Services within the safety category summarised in Table 3 are categorised through their low data
rates and latency’s needed for safe vehicle operations.

Lastly, vehicle control services seen within Table 4, all feature high data throughput’s (con-
sidering raw sensor feeds) and low latency requirements due to safety aspects. Environment
perception is particularly standing out as an enabler for increasing levels of vehicle autonomy
and its great amount of sensor (i.e. camera, LIDAR, RADAR, ...) data to process.

The analysis above shows that optical computation, from a SLR viewpoint, might be helpful
for two use case clusters. One being, due to its data throughput and latency requirements, the
perception of a vehicle environment used in ADAS systems and the second one being rendering
of 3D-environments for eventually coming application of XR or already existent 2-content within
the vehicle.

4 Analysis of Opportunities for Integration of Optical
Components into Processors

4.1 Further analysis of identified Use Cases

This Chapter delves into a deeper exploration of services previously pinpointed for a potential
benefit from optical computation in Section 3.1. It provides a comprehensive analysis of selected
fields of interest, specifically environment perception and video rendering. Each of those areas
are examined in greater detail covering their requirements, potentials, and projected future
demand. This will offer a thorough overview of the algorithms and mathematical operations
used, as well as the method of data processing. Doing so will enhance the understanding of a
possible benefit from photonic computation and allow initial insight into design objectives for a
potential optical accelerator.
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4.1.1 Environment Perception
Use cases within the cluster of ADAS are standing out from other use cases within the category
of vehicle control because of their high data throughput and safety-requirements. Environment
perception, being an enabler for autonomous vehicles is particularly interesting because of the
great amount of sensor-data processed. Other features like path-projection, blind-spot warnings
or traffic sign recognition may be of similar importance for security but use a subset of the
sensors used for environment perception. Vehicle-to-vehicle communication is another potential
"sensor" for building a digital model of the vehicle surroundings, as other infrastructure users
could stream their location, metadata or own view of the world - this input will not be part of the
following overview for simplicity reasons.

The aim of a complete environment perception setup is to build a contextual understanding of
the vehicles surroundings. This includes both detection, segmentation and prediction of objects,
as well as the categorisation by semantic meaning of a tracked object [187]. A digital model
of the world and the knowledge of the position (distance, direction and dimension relative to
a vehicle) of other objects is a crucial element to enable planning of vehicle movement. The
context and the semantics behind a tracked object is particularly important, as different users
of the infrastructure have different behaviours, intentions and abilities. A great example for
semantic importance are cyclists, that are able to quickly change their orientation and cannot be
overtaken without a certain space given due to their high vulnerability. Context on the other hand
is crucial to derive correct actions from detected objects. If a vehicle in front is waiting for the
traffic-signals to change or parked incorrectly for instance are two completely different scenarios.
Sensors used for the overall task of environment perception may vary between manufacturers,
but can consist of a mix of LIDAR, radar, ultrasonic sensors and cameras that generate a large
amount of data as previously approximated in chapter 3.0.3.

The issue of detecting objects in the world around a moving object is nothing new within the
market and long researched for services currently sold in vehicles. Those features include
lane-departure warning, blind spot assist or lane-keeping for assisted driving use cases (below
level 3). Lane detection and blind-spot assistants for instance are a vital part for both assisted
and autonomous driving and explored for several years already [126], [158], [227].

There is two sides to the perception of an environment in terms of input. One being sensing
itself and one being the digital representation of measurements / signal inputs. Specific sensors,
like cameras or LIDAR, have strengths and weaknesses. Whilst LIDAR for instance delivers
information on distances, allowing for 3-dimensional representation and detection of objects, it is
not immune to noise and does not return any information on colour. Cameras on the other hand
do deliver colourful output, but do not deliver distances (without merging and combining multiple
camera feeds) and can become obsolete under bad weather conditions. Cameras however are a
substantial part of environment perception and the only sensor for perception onboard of current
Tesla (Model 3 and Y) vehicles [56].
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Plenty of algorithms were introduced over the past years to identify features and objects within
images. State-vector-machines and edge detection algorithms (through drastic pixel colour
change for instance) are prominent fits for such. Those methods are hand-tuned to detect
specific objects in an environment, but lack the option of multi-feature detection [299]. Simple
identification of specific objects (like lane markings) however is not enough for advanced assisted
driving (level 2 and beyond) creating a demand for advanced detection algorithms.

Neural networks have emerged as exceptionally suited for facilitating the extraction of contex-
tual, high-level, and in-depth features from images in real-time. This advancement is largely
attributable to the evolution of both software tools and hardware capabilities [299]. A diverse
array of approaches and architectures has been introduced, aiming to accurately identify objects
within video frames, each varying in terms of precision and computational demands [115]. A key
objective for applications in autonomous driving is the "speed" of analysing a frame or scene and
detecting objects in it, as "real-time" object detection is key to enable integration into moving
vehicles. Higher system latency could result in detection of a pedestrian on the road taking to
long for the vehicle to initiate protective actions.

The approach of using a recurrent Convolutional Neural Networks (CNN) architecture more
deeply explored later for RGB-video analysis for instance, resulted in a 17FPS detection rate in
2015 (measured on a Tesla K40) [115], [207] for instance. A different approach of framing object
detection a regression problem by Redmon et al. was later proposed in 2016 under the name of
You Only Look Once (YOLO) [204]. After the first model being improved and released in various
versions (newest version being v8) it became one of the most used models for two-dimensional
computer vision due to its accuracy and real time capabilities [170], [292]. The YOLO9000
release for instance performed >40 FPS for resolutions below 544x544 pixels (measured on a
Geforce GTX Titan X) in 2016 [205]. A more recent test in 2023 using the newer YOLO v8
versions, presents >1000 FPS for a 640x640 pixel image (measured on a RTX 4070 TI) [242].
Whilst these numbers are hardly comparable, due to the fact that they’re measured on very
different hardware, they outline the performance increase over the last few years. Notably
however, both example speeds are measured with pixel-dimensions greatly smaller than those
known within currently built-in cameras for environment perception within cars as shown in
Table 4.

Full perception of a vehicles environment must move beyond two-dimensional object detection
for a complete representation of a vehicles surroundings. Depth can come from either of three
possible approaches, as presented by Qian et al. [22], including cameras (image based through
stereo-camera setups [123] or two-dimensional approximation [262]), point-clouds of (LIDAR
or RADAR) [140], [202] or a fusion of both [8], [141].

Point-clouds from a LIDAR sensor can, similarly to camera pixels, be trained in a neural network
to detect objects. Approaches to enable perception of point-clouds include the transformation
of points to voxels (data format to enclose position in a 3-dimensional space), a simplification
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into a 2-dimensional space or a direct training on the raw point-cloud of the sensor [140]. Voxel
based neural networks are currently considered to be a state of the art solution to detecting 3-
dimensional objects with their depth. A sample model proposed in 2017 by Zhou and Tuzel [303],
that enables 3-dimensional detection from voxels was measured to deliver 2017 <4 FPS (225 ms
total latency) measured on a Titan X GPU. Point-based models like PointPillars following a
different approach promise greater performance of theoretical 104 FPS [133] and a measured
42 FPS [65].

Presented (high-level) approaches offer object detection for a specific sensor or sensor type
(e.g. VoxelNet for LIDAR data). An open question however relies in merging different data
from sensors into an overall environment model around the vehicle resulting in the question of
sensor fusion. The level of merging data influences the abstraction level of such and the ability
to possibly derive benefits from raw-sensor-data [285]. In a high-level fusion architecture, that
could directly make use of already known models, each sensor would deliver a list of tracked
objects, that can afterwards be combined in a central information processing device (to leave it
as general as possible) [6]. This approach of merging data on a high abstraction level has several
benefits. For once a neural network can be trained on a specific type of sensor data (like point
clouds our pixels), making the model more accurate for this specific type of data. On the other
hand, this also reduces the size of each neural network creating a benefit in both computational
demand and effort. This method also enables physically distributed computation without raw
sensor data flowing together in a single node. Fusion on late stage using already labelled data
may mean a reduced overall prediction accuracy and a challenge for training of the specific
fusion algorithm used [288]. The opposite to the idea of merging labelled data from various
sensors is the concept of merging raw data of each sensor in a single point of data aggregation
and perform detection on the combined data. Whilst this approach may need more computational
power, more precise sensor calibration and may show potential data redundancy, raw data fusion
may enable greater accuracy in tracked objects and reduce system latency [288].

Merging data on an early stage however presents several challenges to keep in mind for fusing
raw information from sensors of different types. Those include [203]:

• Data modality and the type of measurements

• Conflicting

• Imprecision and data imperfection

• Noise in some sensor data

The data modality and the specific types of measurements, that are to be fused for a specific
perception model is a crucial topic. Relying on a single type of sensor, like image data, reduces
the efforts of enabling data fusion and makes application of perception models simpler [8]. This
is due to the fact, that the representation of an image does differ from the representation of a
returned signal from LIDAR or RADAR for instance. Noteworthy as well, is the fact, that a
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model or architecture made to use the combined input from multiple type of sensors (e.g. LIDAR
and camera) must be resilient to one of both delivering unusable data. Harsh sunlight facing
a cameras sensor for instance limits the ability to use camera input, whilst extreme weather
situations might introduce too much noise into at least some frames of a LIDAR sensor [141].

Several approaches to fusing sensor data for perception are being proposed and researched
over the past years [288]. Paper [141] categorised concepts and their fusion methodology into
the three categories of point-level, feature-level and birds-eye-view fusion. Point-level and
feature-level approaches distinguish themselves through the order of introducing a sensor into
the object-detection and segmentation chain. Whilst point-level methods project features within
images onto a point cloud, feature-level processes project LIDAR features onto an image. Both
concepts lead to enabling detection of an object in a 3-dimensional space relative to the sensor
used for feature detection. This for instance would be each camera-view for point-level fusion or
the LIDAR generated point-cloud for feature-level fusion. Bird-Eye-View(BEV)-level fusion
on the other hand refers to the concept of fusing sensor data in a 3-dimensional space relative
to the vehicle to perform detection on a combined set of all data in a global space. This also
enables the opportunity to integrate cooperative perception through V2X communication, where
active elements of the same infrastructure can share their own sensor data for greater situational
awareness (e.g. a static sensor like a camera positioned on a traffic light) [39], [290] or the
inclusion of high-definition maps directly into the perception model [48]. Noteworthy though,
this categorisation is non-complete with further concepts that make use of partial early data
merging like the proposal of the TransFuser architecture [48].

Another approach, that is currently gaining interest is the concept of training end-to-end neural
networks. This is within active exploration or usage at OEMs like Tesla, Volvo and Mercedes
the proposition is to create a network, that is able to handle multi-modality sensing (e.g. camera,
LIDAR, ...) and deliver vehicle action recommendations as an output [68], [105], [136], [171].
While this approach reduces the insight into underlying decision-making and opportunity to
influence such on top of the detection-layer of a system, it is envisioned to enable general-use-case
autonomy.

Due to a large amount of proposed solutions for each of the three approaches to perception
and sensor fusion [39], [141], [235], [288], [290], I continue by identifying common concepts
within proposed solutions. This enables to derive information on the overall algorithms and
mathematical operations used and marks the basis to extract requirements for hardware. An
overview of possible solutions for merging different sensor modalities and their underlying
architecture is gained by studying papers and known solutions. These are summarised in Table 5
below and advances the overview in article [288].
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Table 5: Overview of solutions for perception with fusion

Solution Backbone Type References

YOLO CNN [96], [125], [147], [276]
VoxelNet CNN [234], [287], [303]
Other SSD CNN [150], [169], [297]
PointNet CNN [286]
Region-Based R-CNN, Faster R-CNN [84], [140], [207]
Transformer Network Transformer Model [48], [235]
State Vector Machines SVM [296]
End-To-End Systems CNN, DNN [68], [105], [136], [171]
Other NN architectures CLNN, DNN [23], [123]

The Table above underlines the current state of research in which several approaches are examined
and compared to each other. Each approach has its limitations and possibilities, that heavily
depend on chosen approach to sensor modalities possibilities of fine-tuning and the general
model size. As different models assume different SLR and target varying Operational Design
Domain (ODD) for their approach, like detection speed, a direct comparability of model accuracy
and performance is difficult. A major common ground however is the fact, that most approaches
heavily utilise a neural network of some sort. Convolutional Neural Networks or derivatives of
those build a ground foundation for mentioned approaches (see Table 5), that are almost all built
on a basic CNN architecture [147]. Transformer networks are the second major opportunity and
will further be explored as well.

Convolutional neural networks for perception

CNNs are well discussed and are a known approach for use cases within computer vision or
the detection of objects within images [47]. They are a commonly used as part of models
previously mentioned, when discussing non-fusion perception models like YOLO [205], [292]
or VoxelNet [303] and lay the foundation for larger end-to-end trained networks [105]. A CNN
consists of several layers as shown in Figure 8 and consumes an image of some sort as input.
"Some sort" in this case describing the values per pixel, that can be interpreted in various ways
like a specific colour-channel (RGB) or a grey-scale. Increasing image quality, in terms of
resolution or channels, therefore have a direct impact on the complexity of the convolutional
model and the processing involved [216]. The convolution layers to follow serve as a possibility
to apply filters to the input image with the goal of enabling favourable feature detection [60].
This is achieved by applying a kernel- or filter-matrix to the input pixel-matrix. Within each
convolution, a specific kernel matrix (size being a design decision commonly varying from 11x11
dimensions down to 3x3) is applied to the input image. The resulting matrix y is calculated
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through element wise multiplication and addition of each element in input matrix x and kernel h.

y[m,n] = x[m,n] ∗ h[m,n] =
∞∑

j=−∞

∞∑
i=−∞

x[i, j] · h[m− i, n− j]

Convolution layers can be expressed as a series of MVM by applying the concept of Toeplitz
matrix conversion [243].

The pooling layer plays a pivotal role within a Convolutional Neural Networks, as it reduces the
spatial dimension of the matrix resulting from the convolution before. This reduction in size,
achieved through the pooling process enhances the performance by decreasing the computational
load. Figure 8 illustrates an example, in which two pooling layers are applied after a convolution
each. This technique involves reducing a 2x2 section of the input matrix into a single output
element. The calculation of this value is determined by a specific pooling function; Options
are using the maximum (max pooling as seen in Figure 8), the minimum (min pooling), or the
average (average pooling) of the four input values in the 2x2 matrix.

The repetition of convolution and pooling within the CNN architecture enables progressive
refinement of data for enhanced feature extraction. This is steerable through conscious selection
of kernel-sizes, the respective filter itself (i.e. a specific filter for edge detection [295]) and a
definition of the amount of convolutions and poolings. This layered approach enables both better
detection rates through filtering and increasing performance of later stages of the architecture.

Figure 8: Basic structure of a CNN by [216]
Sample CNN used for detection of handwritten numbers, that makes use of two convolutions and

poolings before passing a flattened layer into a fully connected neural network.
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In order to feed neural networks’ input layer with the result of a convolutional layer-system,
multi-dimensional matrices should be transformed into a one-dimensional array first. This is
achievable by flattening the last two-dimensional matrix. A fully connected (dense) network
being a benchmark in neural network design consists of:

• input layer

• at least one hidden layer

• output layer

Each layer is composed of neurons connected across different layers [216]. A neuron computes
an output value by applying an activation function to the weighted sum of inputs from neurons
in the preceding layer, along with a bias value. Weights and biases are pre-computed values
derived from model-training in advance. Input values are propagated from upstream layers of
the network [213]. The underlying mathematical operation within a single neuron is expressed
as [217]:

A = f(WX+ b) (1)

Where:

• WX represents the matrix-vector multiplication, producing a vector where each element
is the weighted sum for a neuron

• b is added to each element of the resulting vector from WX aligning with vector addition.

• f(x) representing the activation function

The dimension of matrix W and vector X depend on the amount of fully connected neurons
within previous layers of the NN.

The last hidden layer propagates its result to the output layer of the network, in which all inputs
are once again used to compute a final numerical value. The output of neurons on the output layer
however correspond the a probability of a specific class. The neuron with the highest likelihood
indicates the networks overall prediction. A certain neuron for instance could be interpreted as
the "car"-neuron, meaning that with a high probability this neuron would label the input data as
a "car".

A Convolutional Neural Networks, as described above, is considered a crucial part of most
advanced perception models, like YOLO or VoxelNet. The amount of layers, size of matrices
and the specific pooling or convolution used, is subject to a specific use case and is impossible
to generally define. As discussed, CNNs are not the only part of the overall perception model,
but are part of the backbone architecture used within larger models. Applications include
region-based CNN (R-CNN), Fast R-CNN, Faster R-CNN, single shot multi-box detector (SSD)
and YOLO [147]. I will therefore briefly explore the architecture of the approaches previously
identified within Table 5, to increase the understanding on more specific algorithmic traits.
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Previously discussed YOLO framework is a commonly used model for object detection and
is known for its real-time application and the fact, that it utilises a single neural network for
bounding box prediction rather than a mix of networks trained for a specific feature class [170].
YOLO has been published in several versions over the past years and has since then varied in its
underlying architecture. Current versions of the model primarily use a CSPDarkNet53 backbone,
which is a convolutional network with 29 layers and a kernel size of 3x3 [30], [118], [160].
The YOLO framework also supports manual switching of the backbone to other models like
ResNet, EfficientNet or VGG [160], [198]. All three options are similar in terms of the overall
architecture, but use a different amount of convolutions and sizes for poolings, resulting in a
change in both model performance and detection precision. The ResNet framework exists in
several sizes, but is known for democratising skip-connections and residual learning [99]. Those
two elements are interesting in the context of chip-design as well, as they reuse a result of a
convolution-step x as an input in another convolution-step x+2, making a fast access to memory
necessary for high performance, thus making specialised caching interesting. The ResNet 50
architecture (being a comparable size to CSPDarknet53) features a total of 33 convolution layers
with a kernel size of 3x3 leading (first convolution uses 7x7 kernel) into fully connected NN
with 1000 neurons [99]. The VGG model in comparison features a smaller amount of just
16 convolutions (3x3 kernel size), but utilises a total of 3 fully connected layers with 4096
neurons (2 layers) or 1000 neurons (1 layer) [99], [233]. Lastly, EfficientNet incorporates several
opportunities of scaling in both model-depth and width to increase performance, but relies on the
same base architecture being a mix of convolutions (3x3 and 5x5 kernels) and 17 convolutional
layers in its first implementation [246], [248]. Further "neck" and "head" elements of the YOLO
architecture are needed for generating a final output or connecting parts of the overall model.
They primarily consist of further convolutions and feature pyramid networks (closing the gap on
different resolution levels through scaling and addition) [118], [145].

Voxelnet is based on a modified architecture, when comparing it to previously summarised
convolutional networks. Instead, it is based on a region proposal network, that is created on the
base of a region based convolutional network (R-CNN) [65]. Additionally to a CNN, a R-CNN
extracts region proposals, performs feature detection on each and merges features from various
regions to classify regions within the image [84].

PointNet is another option for handling three-dimensional point clouds. The underlying archi-
tecture is a deep neural network, that consumes raw data instead of relying on voxelization for
further work making it stand out from VoxelNet. A network consisting of input transformation,
feature transformation, point-feature aggregation and a segmentation network relying on matrix
multiplications of up to 1024 [196].

Single-Shot-Detection refers to the concept of performing object localisation and classification
in a single pass through the model, instead of proposing regions first and performing feature
extraction afterwards, as does VoxelNet. YOLO, as described in detail above, is a sample model
for the kind of single-shot detectors. Other architectures may utilise other backbones are models
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for detection, but are similar in their overall concept of using convolution, pooling and a fully
connected network [150].

Transformer models for perception

An alternative to already discussed CNN (in some way or another for R-CNN, VoxelNet,
Yolo), is the idea of using a transformer architecture, which is known for being a newer and
more promising approach [166]. Well used for building language models, transformer models
have shown to be more efficient in training and resulting performance [266]. The concept of
incorporating an attention mechanism enables modelling of dependencies throughout a large
number of input sequences. Figure 9 shows a basic structure of a transformer model, that consists
of an encoder (left) and decoder (right), which are each composed of a stack of identical layers
(N ). The model’s main characteristic is the Multi-Head-Attention block

Figure 9: Basic structure of a Transformer model by [266]
Transformer models make use attention models, that are part of 2 elements. The first element uses a

new input for processing whilst the second part receives the previous result as input.

(Figure 9), that consists of several matrix-vector, matrix-matrix multiplications and scaling
operations (proposed size of 64x64) [266]. Another key-element of the attention model is the
fact, that each attention uses the previous attention as an input on top to current-attention input
(making use of a feedback mechanism), as shown in Figure 9. This enables the network to do
better predictions by incorporating older steps impacting the current one. A great example for
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this is the generation of a sentence, in which words previous to the current one have an impact
on the next one. Using you X as an input for instance leaves open a great amount of possible next
words, whilst How are you X suggests a specific type of word (X) to follow next.

Transformers are now well known for their application in language processing and their benefits
over CNN architectures. They enable building dependencies over input and output elements,
allow for massive parallelism and require minimal inductive biases. Transformer networks are
also able to process multiple modalities using a similar architecture - thus eventually enabling
detection in point-net-spaces and pixel-spaces for 3 and 2 dimensional perception [124].

Aside from the great impact on language processing enabled by using transformer models,
it is also an opportunity to employ this kind of architecture to computer vision. An idea
proposed by Dosovitskiy et. al. is to feed a 2-dimensional image into a standard transformer
model by flattening the image into a single dimension; comparable to reducing the dimension
of the last convolution or pooling layer of a CNN to feed it into the fully connected neural
network [72], [216]. This approach of flattening an input is further supported by other papers,
like the introduction of the TransFusion framework [48], that makes use of earlier mentioned
intramodality of sensors and combines LIDAR and camera sensing into a single perception
framework.

Comparison of approaches

Reviewed paper landscape shows, how CNNs are seen as a state of the art solution for environ-
ment perception with ongoing challenges in combining different modalities or sensor viewing
angles. Using transformer models for computer vision tasks embodies a newer approach, that
promises smaller training cost and a simpler integration of varying sensor types. Both approaches
are a concept that can be modified to specific perception task or requirements (precision or
detection time), by scaling the model in its width or depth [48].

Analysing a commonly referred benchmark platform enables further understanding of the
relevance and effectiveness of previously described architectures. Close to the presented use
case of environment perception, of identifying objects on the street network, lies the KITTI
dataset (presented in [87]), often referred to in research articles [125], [141], [228], [288],
[303]. The KITTI dataset provided by the Karlsruhe Institute of Technology (KIT) consists
of real-world data captured within and around the city of Karlsruhe. A set of cameras (stereo,
monochrome and RGB) and a 360° laserscanner were used to collect data on a total trip length
of 39.2km. The resulting dataset is known to be close to reality being able to represent a close to
realism benchmark for newly proposed solutions for environment perception in the automotive
market [88]. Two metrics of the benchmarking suite are particularly of interest: The processing
power needed per inference and the accuracy of the model.

By examining the leaderboard (status January 2024) of the KITTI benchmark [129] and assessing
the architectures behind best performing models, one can achieve an overview of the role of either
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CNN or transformer models for "best performing" environment perception. Notably however;
the KITTI dataset is one possible opportunity for benchmarking and may, due to its nature of data
collection in Germany, not be representative for traffic situations or other infrastructure users in
other regions such as China or India. Table 6 below depicts a list of best performing models in
the KITTI 3-dimensional benchmark for car detection, that has a total of 416 entries. The list is
non complete and models without documentation (no paper, code or publication attached) are
left out, as they cannot be analysed for the specific architecture proposed. Performance metrics
not generated on the benchmark hardware (1 core clocking at 2.5 GHz), are also left out due to
its in comparability in terms of runtime per inference.

Table 6: Overview of best KITTI 3D-car benchmark performers [129]

Solution Accuracy (%) Runtime (s) Architecture

VirConv (-S, -T)1 87.20 (86.25 -T) 0.09 CNN [284]
UDeerPEP1 86.72 0.1 CNN&Transformer [70]
HPC-NET1 85.50 0.18 CNN [298]
PVFusion2 85.20 0.01 FPN&Transformer [274]
LoGoNet2 3 85.20 0.1 CNN&Transformer [139]
CasA++ 2 3 84.04 0.1 CNN&Transformer[283]
OcTr2 82.64 0.06 Transformer [301]

1 Model listed in position of overall best performers in terms of accuracy

2 Model listed in correct ordering but not correct position to showcase runtime difference

3 Model is also amongst the Top-10 for Pedestrian and Cyclist detection

Table 6 greatly shows, how the two previously discussed approaches to perception only minimally
distinguish each other in precision within the 3D-car-benchmark. The pure transformer-based
model OcTr stands out with a worse accuracy in comparison to outperforming other CNN-based
architectures in runtime. The Table further depicts how several approaches can be used to
create comparable performance in both runtime and accuracy, making a decision for a certain
technology difficult for these two metrics only. Best performing models however do include a
mixture of CNN and transformers. Notably, two models using transformers are also amongst
the best performers of pedestrian and cyclist detection. With the "perfect" algorithmic solution
to environment perception still being a question of research, it is difficult to name a specific
architecture to implement. Current research and benchmarks (see Table 5 and 6) suggest that
future models could be a combination of transformers, CNN and possible additional components
(FPN, fusion layers, ...). This makes it necessary for a proposed accelerator chip, to be multiverse
and not limited to a specific framework.
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Additionally, the specific level of fusion is a very individual matter that depends on the sensor
type used and the necessary accuracy for environment perception. Tesla for instance is known
to have dropped ultrasonic sensors from their vehicles and solely relies on a camera setup for
near-field observation. When questioned about the reasons for this elimination of sensors, the
former Head of Tesla AI cited the complex sensor fusion of two very different types of sensors,
which also increased the effort of calibration [253]. The fusion-stage and the localisation of such
does have an impact on processing power needed at a central stage. A late-fusion design could
make use of distributed computing and employ LIDAR sensors that each perform a detection and
serve a feed of bounding boxes. An early fusion design on the other hand, would use raw-input
data from each sensor for a central perception model. An abstraction level in between, where
raw LIDAR data for instance is cleaned within the sensor itself, is possible.

Impact of Noise

In the exploration of algorithms and models pivotal to advancements in computer vision, a
critical inquiry persists regarding the influence of noise afflicted hardware for the use within
neural networks. The potential degradation in model accuracy, precipitated by the integration of
photonic accelerators, warrants rigorous examination. This concern is particularly pronounced
given the high importance of reliable object detection for safety-critical applications. To deeply
understand the ramifications and potential benefits of incorporating photonic components, an
extensive series of simulations, coupled with free-space experimental investigations have been
undertaken. These efforts aim to provide a comprehensive understanding of the impact of
photonic technology on the performance and reliability of computer vision systems.

Ong et. al. serve a possibility for comparison through an experiment of integrating an MZI array
for a CNN [179]. The test uses a CNN for image detection on the MNIST dataset, which is a
test for image detection of hand-written numbers in an image of 28x28 pixels [66]. Whilst not
comparable to the complex situations of environment perception in real world traffic scenarios, it
outlines the impact of noise on convolutional networks. The performance test used for reference
in [179] achieves an accuracy of 99.6% on a purely electric hardware. A photonic model
simulation yields an accuracy of 99.2% being a decrease of a relatively small 0.4%. Other papers
following the same concept of a simulated MZI based accelerator show a larger impact of noise,
that reduce the overall model accuracy by 1% [64], [117] or 2% [185]. Experiments in free space
utilising the concept of Multiplane Light Conversion produce similar results. A relatively small
decrease (<4%) in model accuracy, that could further more be reduced by implementing the
concept in a more controlled environment (i.e. an integrated circuit). [33], [146].

Summary

This chapter analysed the complexity of environmental perception necessary for assisted or
automated driving, elucidating several critical aspects. A persisting open question is the deter-
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mination of a minimal sensor setup; encompassing their sensor type (modality), the volume
of data they generate, and their integration into possible sensor fusion essential for achieving
Level 4 automation in driving. This level of automation necessitates a vehicle’s capability to
perceive its environment sufficiently to operate without human intervention under specific condi-
tions, as previously stated. It is acknowledged that processing large datasets requires significant
computational power and a sophisticated level of data fusion, if not using an end-to-end trained
network.

The multimodality of sensors presents a formidable challenge in environmental perception and
the associated software methodologies, yet it is deemed indispensable for ensuring system
resilience in the face of variable weather conditions and road scenarios. Current research efforts
are focused on devising efficient and precise methods for the detection and segmentation of other
infrastructure users, with transformer architectures and Convolutional Neural Networks being
prominent contenders for this task. Both concepts serve as fundamental frameworks, extensively
employing matrix operations and data propagation techniques, whether through the sequential
layering of attention mechanisms in transformers or the interconnection of various convolutional
layers.

An open consideration in making use of photonic accelerators for computer vision tasks, is the
potential degradation of model accuracy attributed to hardware induced noise. Nonetheless, the
prospective benefits of photonics, such as a reduction in energy consumption and the decrease in
heat production, present a chance for its application within vehicle processing.

4.1.2 Video Rendering
Rendering graphical content is another use case standing out due, to its requirement of real-time
latency and high throughput for advanced scenes. Specific use cases can be two- or three-
dimensional, depending on the specific customer service. Sample graphical content relies within
animations on the infotainment screens or animated vivid representations of personal assistants.
Whilst animations could potentially be pre-recorded and played back when needed (if not specific
to vehicle context), virtual assistants need to be rendered to a specific text spoken at any time and
cannot be prerecorded. This last example is dependent on the visual representation of the avatar
and its complexity. Current BMW’s for instance, feature an abstract shape floating on a specific
screen [194], that stems little complexity. NIO as another example is using an abstract "smiley"
based character called Nomi with a limited amount of specific gestures [173]. An example of a
complex avatar, that must be rendered on the fly, is MINIs newly introduced Spike avatar - a dog
communicating with the user [193].

Three-dimensional graphical content (Augmented Reality (AR), Virtual Reality (VR)) has already
been introduced within latest vehicles across several OEMs and include AR content for navigation
and drivers assistance systems as seen in Figure 10. OEM publications, conferences and trade-
fairs give a glimpse of a trend, in which the automotive industry is increasing its development
within advanced entertainment use cases with virtual, three-dimensional environments [20], [94].
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Figure 10: BMW iX Traffic-Jam Assistant in AR
Modern vehicles may be equipped with AR content display, as shown within this image. Here shown
use case is a visualisation of assisted driving in traffic jam situations. Its highlighting tracked vehicle,

lane and freed emergency service lane to enable a drivers understanding of vehicle actions.

Building a scene in AR or Virtual Reality (VR), or Extended Reality (XR) as clustering name,
consists of a variety of steps that range from modelling three-dimensional objects to the transfor-
mation and lighting of objects for a specific two-dimensional output medium. The steps between
a list of polygons and a definition of specific pixels on screen can be summarised as a rendering
pipeline, being especially critical in the context of XR, as it not only ensures realistic visual
representation, but also enables the real time interaction necessary for user immersion.

Key elements of a rendering pipeline include rasterization of polygons onto pixels, transformation
between different object-spaces, computation of light and colour for each pixel [268]. All of
these functions rely on matrices for mutation of polygon-corner-points and pixels, which can be
represented as a vertex [131]. Each value within those vertexes or matrices can be represented by
different bit-depths dependent on their use case. Whilst the standard representation of a vector in
OpenGL for instance uses a float (32-bit floating point value) [271], specific applications may
reduce the precision to 8-bits (short) for an increase of performance [215]. The specific workload
and the amount of computation power needed for rendering a specific scene is dependent various
factors. With the amount of light sources and a desired level of detail in shading set, remaining
two factors are pixel-amount and object complexity. The amount of pixels linearly impacts the
amount of computation needed as shading must happen for each pixel. The amount of objects
within a scene and its level of detail is impacting computational workload exponentially [165].

Two-dimensional representations on vehicle-screens are bound by the display resolution they
are shown upon. Display resolutions, that are a basis for approximating rendering expense,
vary between OEM and models specifically. Example for high-resolution displays are the
BMW theatre screen (7680 × 2160 pixels) [192] or the Mercedes Benz MBUX Hyperscreen
(3,088 × 1,728 pixels) [252]. Additional examples are the Tesla 16:9 main screen (3000 x 2000
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pixels) [111] or Central Information Display (CID) within the Ford F150 (1200 x 1920 pixels).
With the exception of gaming services or video-streams (possibly more) specific rendered content
will most likely not fill the screen [194] [252] but will be limited to certain parts of the total
display. The rendering pipeline for 2-dimensional scenes specifically consists of various MVM of
a 4x4 Matrix with a 4x1 vector for transformation of fragments and vertices and rasterization [62].

Use cases in XR increase the need for rendering a world beyond the actual screen size and the
currently seen objects, to enable moving your head without any display lag or loss of quality
caused by eventual re-rendering of content. Displays within XR devices are in a similar resolution
range to displays mentioned before with examples being the Quest 3 (2,064x2,208 pixels) [109] or
the just released Apple Vision Pro (3,648x3,144 pixels) [172]. Indulging in virtual words further
workload beyond positioning, as positioning the viewing device within a three-dimensional room
is crucial for the experience. This is done by implementing a Simultaneous Localization and
Mapping (SLAM) method to localise and map existing objects in the real world to references
in a virtual word [190]. Just like the mentioned rendering pipeline for two-dimensional display
feeds, the SLAM functionality heavily relies on matrix (4x4), vector (4x1) multiplication, due
to its simplicity and efficiency [85]. Bit-level precision of each data point is not standardised
and may vary between different sensing setups. Nvidia’s Deep Learning Dataset Synthesizer
for instance states a maximum precision of 16-bit for generated scenes [210], whilst Amazon
Science presents a performance increase by adapting their SLAM methods from 32 bit-floats to a
precision of 16 bit float [197]. With little information found on 8 bit SLAM (apart from thermal
applications), this leads to the assumption of a minimum of 16bit precision for localisation and
tracking in AR use cases.

To summarise: With presented data at hand an optical accelerator for graphic use cases would
need to feature a bit-precision of at least 32-bit (for transformation processes) and a matrix
dimension of 4x4. Matching this with photonic hardware opportunities presented in Section 2.1.1,
leads to the observation, that to accelerate currently existing graphical pipelines one would have
to implement a CrossBar array. Neither MPLC, MZI nor WDM offer the bit-precision required.

An open question however relies in the impact of noise in optical accelerators onto rendered
content. I will use the standard 2-dimensional OpenGL rendering pipeline and analyse the
specific algorithms used and the implications of using a noise affected computation. I will first
analyse the mathematical operation of a transformation itself giving an outlook on the possible
implications to a rendered object and then simulate noise in a rendering program producing
objects of different size. It must be noted however, that noise is not equally distributed over the
whole signal range Instead it is measured to be normally distributed, as seen with experimental
implementations of previously mentioned optical integrations [149], [168]. Due to the fact,
that accurate tests of noise distribution a 4x4 MVM-accelerator based on the crossbar array
architecture are none existent, I will assume 99% numerical precision across the overall frequency
range and therefore across the entire spectrum of MVM.
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Transformation within Rendering Pipelines

Transformations of objects are a vital part of rendering and mutating content on screen. Those
transformations include scale, rotation, shearing or simply moving an object within a certain
space. Given a transformation matrix A and a translation vector t, the operation of translating a
point in a 2-dimensional space can be written as:

(
x′

y′

)
= A

(
x

y

)
+ t

where A =

(
1 0

0 1

)
and t =

(
tx
ty

)
are the parameters for a simple shift in both x and y direction

defined by the tx, ty.

This transformation is sensitive to noise in both matrix-vector multiplication and addition. This
results in not accurate transformations of objects affecting position, orientation and shape of
objects within the world. This can easily be demonstrated by an example calculation.
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=

(
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)

The formula above shows, how the result of the computation is not the expected numerical result

of

(
75

120

)
but anything in between a certain range dependent on the actual noise of the system.

Testing the impact noise to rendering pipelines can be done by simulating noise within a state
of the art rendering pipeline. This consists of various transformations and optional vertex and
fragment shaders, enabling further manipulation of objects. A vertex shader is a piece of software
executed for each vertex that is a combination of position and optional data (i.e. colour or texture
coordinates) for each corner of a fragment. A fragment is the simplest two-dimensional object, a
triangle, that is defined through 3 corners (vertices) each. A fragment shader respectively is a
piece of software executed for each fragment and the pixels associated to it and is executed after
the vertex shader.

A mandatory step in building complex scenes, is the transformation of objects (simple coordinates,
triangles, ...) into respective spaces needed for further use. Those, shown in Figure 11 consist of
the model-space in which a certain object is built and modulated in, a world-space to collectively
arrange all imported objects into a uniform 3-dimensional system, camera oriented space (and a
normalised version of it) and the actual screen, being a 2-dimensional system. Transformation is
based on mutating points (vertices) through the defining a transformation matrix of each space.
This is done mathematically through MVM of a 4x4 matrix and a 4x1 vector being a specific
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vertex with an added fourth element making it a homogeneous coordinate needed for correct
transformation.

Figure 11: Spaces within rendering pipelines (OpenGL)
Here shown five spaces give an insight into the five transformations needed for objects within a
rendering pipeline. Modelspace (a) refers to the individual space for each object. Worldspace (b)
refers to a global space to place individual objects within. Cameraspace (c), Normalised Device

Coordinates (NDC) (d) and screenspace (e) refer to intermediate steps towards displaying objects on
screen and rasterize them later on. Image is taken from a Computer-Graphics lecture at OTH

Regensburg held by Prof. Dr. Kai Selgrad

The pipeline shown in Figure 11 can quite easily be integrated within a small program using
OpenGL Shading Language (GLSL) and an interpreter. I build a small sample, that outputs a
simple yellow square. This is realised by implementing one fragment-shader, one vertex-shader
and a "main"-file for the overall logic needed. The transformation depicted in Figure 11 is
implemented within the vertex-shader, that receives all uniform matrices and the vertex position
as input.

1 gl_Position = projection * view * model * position;

This single command performs 3 MVM and returns the position (4x1 vector) as an output
for the further process of rendering (i.e. in fragment shader(s)). Depicted spaces and the
transformation amongst them, addresses an important factor in evaluating potential benefits of
optical accelerators as it contributes to the question of data loading and therefore, affecting setup
times and the speedup gained. Whilst the transformation from model to world-space is executed
per model, meaning that the transformation matrix is dependent on the specific model, all other
transformations are uniform amongst all elements within the world space. This means that the
elements of the transformation can be loaded once for a larger amount of computations greatly
reducing the setup time and enabling high-performance batch processing.

To simulate this, I modify a working GLSL program within WebGL [32], that displays a simple
square and extends this by simulating noise. The original version, without random error renders
the yellow square depicted in Figure 12a. Noise can then be simulated by adding a random error
to each of these multiplications. The book of shaders proposes using a combination of a fraction
and the sine function y = fract(sin(x) ∗ 10000.0) for creating a seemingly random number
within a shader [270]. This can be used to build a noise function, that adds a random error factor to
a specific value with a certain upper bound. In this case 1−crossbarprecision accounting to 1%
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potential error, using noise approximations as previously explored in Section 2.1.3. Rendering
the same object from before with an adapted calculation of the vertex position gl_position

returns an irregular rectangle instead of the expected square, as seen in Figure 12b. As noise has
only been simulated for the transformation of the object, the colour remains unchanged.

(a) Standard rendering (b) 1% error rate

Figure 12: Rendering of simple square in GLSL
Simple renderings of yellow squares of equal size. The right version (Figure 12b) is rendered with a

simulated noise of 1% within transformation.

The simulation of noise for rendering a simple object is coherent with the expectations from
the simple mathematical test above, proving that shape distortion may be an issue. As rendered
scenes however usually not consist of a single object, but are likely to consist of several thousand
polygons (500.000 polygons for a vehicle in a recent video game for instance [255]), the
importance of slight shearing of vertices of a single polygon is questionable and must further be
explored through another test. To approximate and get an understanding for the importance of
polygon distortion, I simulate rendering of a larger object consisting of a total of 292 polygons
representing a 3-dimensional bunny.

I will use OpenGL Mathematics, which is a library for C++ based on GLSL due to its simplicity.
The model of choice is a list of polygons, derived from the "Stanford bunny" greatly broken
down in its complexity. Similar to adding noise to rendering a simple square in Figure 12a, one
can simulate error within the OpenGL pipeline. For comparison of both no-error and 1%-error
hardware, a bunny is rendered twice with the same settings apart from noise simulation. The
result of rendering is a png file shown in Figure 13, displaying the bunny from the side with
a random colour for each fragment. Not applying a texture or an equal colour to all rendered
triangles is helpful in this case, as it enables an even clearer representation of triangle borders
and possible distortion. Figure 13a shows the rendered output without error and Figure 13c
depicts a greatly zoomed in part of the no-error bunny rendering. One can clearly see the borders
of each polygon, lining up with the ones next to it. Figure 13a shows the rendering result with an
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added noise of 1%. Whilst it is no subjective measure to compare two images visually, the object
(bunny) is still easy to make out and the overall shape looks good. However, whilst harder to spot
on the total image, zooming in on the image (like depicted in Figure 13d) shows, how polygons
no longer match up in every single instance resulting in a broken object with the background
and theoretically obstructed polygons shining through. This leads to the observation, how an
increasing size of polygons relative to the renderings display negatively impacts the fault created
by the noise in MVM. An observation to be further analysed with more complex scenes and
smaller fragments.

(a) Standard rendering (b) 1% error rate

(c) Standard rendering (500%) (d) 1% error rate (500%)

Figure 13: Renderings of bunnies with different error rates
Results of an OpenGL rendering pipeline to output a bunny. All fragments of the bunny use a random

colour for polygon distinction. Images 13a and 13c show the result of a standard implementation
without noise. Images 13b and 13d depict the result of a rendering with 1% random noise

Whilst the effect of distortion and unconnected polygons might not directly be noticeable for a
geometry with small polygons (in comparison to the total display size), they are directly apparent
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at some point, when zooming or scaling a specific object. To further analyse the behaviour of
noise and the implications on the appearance of objects, I tests an 3-dimensional model of greater
complexity. This is done by converting an .obj from John Burkardt [34] into a usable format for
OpenGLM and rendering further tests. A Cessna twin engine aircraft modelled consists of 7445
triangles of varying sizes, with the engine being particularly interesting due to its small polygons.
The code behind rendering this object, is applied from the previous example of rendering a
bunny, with the difference being resolution of the overall object (rendered in 2000x2000 pixels)
due to model size. Figure 14 shows a close-up of one of the planes engines depicting a more
complex scene (in terms of number of polygons) in comparison to the bunny shown in Figure 13.
Whilst the noise-afflicted rendering in Figure 14b shows distortion similar to the bunny above,
this example also shows how distortion can become increasingly irrelevant with decreasing size
(relative to the screen) of rendered triangles. The shape of the object is clearly identifiable, even
with slight errors in the image.

(a) Standard rendering (500%) (b) 1% error rate (500%)

Figure 14: Cessna renderings (500%)
Renderings of a Cessna 300 engine zoomed in at 500%. Each polygon is randomly coloured. The left

image shows the expected result, whilst the right image is simulated to be resulting from noise
afflicted processing.

Experiments with object transformation have shown a questionable usability for optical accelera-
tion. The impact of object distortion, can reduce the image quality to an unusable state. Several
approaches and techniques however could potentially increase usability of optical, analogue
accelerators as discussed with Prof. Dr. Kai Selgrad (Professor at OTH Regensburg for computer
graphics) . For instance, one could pre-compute the matrix-multiplication of different transforma-
tion matrices across different spaces introduced in Figure 11, to reduce the impact of noise. This
is possible due to the fact, that the same transformations are used for all elements of the object
after conversion into the world-space. Another possible idea is to include a hybrid approach to
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the pipeline and render objects out of frame with noisy hardware, but stick to common digital
computation for those polygons directly visible to the user.

Shading as Part of Rendering Pipelines

Another vital part of a rendering pipeline however are the shaders used for calculating light and
respectively the color of a pixel. Shadows and light (e.g. reflection of the sun, brightness of an
object space) are crucial to representation a virtual object on a 2-dimensional plane. There are
several approaches and concepts to compute lighting of a specific object. Both the perceived
realism and and needed computational performance are criteria to choose a specific model for
shading [98]. Shaders and lighting models are commonly based on evaluating, if a specific
pixel is hit by a beam of light and how much of that light it reflects towards the camera. This
is influenced by several parameters, like the shinyness of the material used or the intensity of
the light-source. This idea in its simplest form can use a single source of light or evolve into
hundreds of sources with light propagating throughout several planes of the object increasing
the perceived realism of a rendered scene. The computation involved however, is based on a
few general algorithms involved. Those include the calculation of normals, the mutation of
vectors (3x1) and the addition of floats [36]. To simulate the effect of hardware noise onto shader
programs, I use a sample WebGL project (as seen in Figure 15), that renders a moving wave
with light reflections caused by a single source of light. In this case a sun positioned outside of
the viewing plane. The sample project uses the Phong Shading model, which computes light
as an addition of three types of light. Specular, diffuse and ambient light. Each component
can be calculated through multiplication of different vectors. Notably for performance though,
different from previously discussed transformations using the same transformation-matrix for
a great amount of data, the vectors involved in shading differ from pixel to pixel. This is due
to the fact, that for each pixel on the screen, one calculates angles individually. This however
implicates that for each computation one must load both the weights and data for every single
computation having a large impact on setup times.

1 light = (diffuse * light) + (spec * specular * SPECULAR_COLOR) +
ambient;

This project can be enhanced with a simulation of noise by adding a noise factor to each
mathematical operation, as previously seen in rendering a simple square above. Adding a random
error to each multiplication and addition results in the rendered image seen below in Figure 15b.
It is noteworthy, that the project uses random noise for the generation of waves itself, making
each rendering somewhat unique and hard to compare on a pixel level. The introduced error
in computation however yields no visual decrease in quality of the image. This observation
makes sense, as the error in brightness of a specific pixel becomes noticeable through a big
difference between neighbouring pixels. The error of 1% per pixel is of minimal impact for the
absolute difference in pixel brightness and therefore has a relatively low impact on overall image
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quality. This simulation shows, how shading is quite resilient to hardware induced noise within
computation and leads to the assumption, that a photonic hardware accelerator could be of great
use for this specific step within the rendering pipeline.

(a) Standard rendering (b) 1% error rate

Figure 15: Wave renderings (animation)
Screenshots from an animated scene showcasing motion of waves and reflecting light. Movement and
position of a wave is generated with a random function. The right image is showing an image with a

simulated error of 1% within MVM operations.

Figure 15 shows, how noise has no or at least non noticeable impact on image quality in
an existing rendering pipeline, when introducing random noise into the shadering process.
Noise may however be considered beneficial to the realism of a rendering and is seen as a key
component for graphics rendering systems. It is used to help with creating natural looking
textures, improved realism for lighting and simulation of visual effects [132], [220], [239]. This
opens the question of the possibility to actively make use of hardware noise for improving visual
quality of renderings. An assessment of state of art noise simulators and an experimental test
of analogue error introduction as a replacement, may reveal a greater idea of the gains and
losses of this idea. Notably, the distribution of error for a certain photonic accelerator must be
considered for this experiment, as different implementation of optical technologies, introduced
in chapter 2.1.2 are subject to a specific distribution of error (i.e. normal distribution as measured
in experiment [168]).

The remaining question and the incentive of this Section relies in the usability of optical
components for rendering pipelines or the rendering of graphical content in a broader term. An
analysis of the amount of pixels and the associated workload suggested a great potential for
optical components due to the high quantity of data processed and latency requirements for
a seamless user experience. Analysing the algorithms behind graphical rendering processes
has shown a great match for already discussed photonic implementation MVM and yields no
imminent issues for an implementation with a crossbar array setup on a theoretical basis. The
practical use however remains questionable, as the experiment of simulating noise within a
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current state of the art rendering pipeline has shown. Distortion of polygons shown in Figure 14b
might reduce the quality of visuals by so much, that optical components aren’t seen as good
enough for object transformations. Experiments with scenes of different complexity lead to the
assumption, that fragments further away from the camera-position are more resilient to noise.
In contrast, simulations on hardware noise within the shadering process have shown, how the
impact of numerical error is not visible in actual results, as seen in Figure 15. This does however
open up the question, if optical or noise-afflicted hardware in general is suitable to general
graphical renderings or if at least certain parts of the rendering process must happen with greater
precision to enable a high quality image of large polygons. If only parts (i.e. the shaders) of the
pipeline are able to run on an optical hardware accelerator, this arises the question of the overall
achievable speedup and efficiency gain, as a partial offload to an accelerator increases the effort
of managing parallelism and data movement.

As previously noted, issues related to the implications of hardware noise and the resulting
distortions in object transformations could potentially be mitigated through post processing or go
as far as become a quality-increasing factor for realism in the shader process. An examination of
different filtering techniques and their effect on noise-afflicted mathematical operations relies
outside of the scope of this thesis. Simulations however have shown, that application of analogue
accelerators for transformation processes is troublesome and requires further tests with in-depth
processing or a modification of state of the art processes. Whilst this opens up an interesting
field for investigation, it makes the photonic acceleration of graphic-rendering-pipelines a greater
effort of hardware-software co-design.

4.2 Mapping automotive Use Cases on Optical Computation
The research Section 2.1.1 of this thesis comprehensively examines three pivotal areas, offering
a detailed overview of the current advancements in photonic hardware, particularly emphasising
its role in facilitating matrix vector multiplication. It highlights the emergence of four promising
technologies within the research and startup ecosystem, each distinguished by its unique features
and potential applications. The analysis further delves into the advantages and disadvantages
associated with each technology. Specifically, it questions the feasibility of using Wavelength
Division Multiplexing in automotive settings due to its non-reconfigurable beam steering capa-
bilities, which could lead to diminished precision over time because of continuous vibrations
and impacts experienced during vehicle operation. Similarly, the integration of Multiplane Light
Conversion into SoC platforms is identified as challenging and cost-intensive, primarily because
MPLC has been predominantly validated in free-space contexts with only recent experiments
suggesting small matrix-sizes on integrated circuits. The thesis also evaluates the prospects of
employing Mach Zehnder Interferometer and crossbar arrays for photonic MVM implementation.
While crossbar arrays are recognised for their significant potential in noise and throughput,
their scalability to larger matrix sizes and limited applicability in current products are noted
as constraints - being at least a topic for further research and engineering effort. Conversely,
MZIs are acknowledged for their ongoing integration into startup products and the advantage
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of economic scalability, attributed to their widespread use in other domains such as network
switching [45]. This comprehensive analysis not only sheds light on the technical intricacies and
application prospects of these technologies, but also underscores the need for further research to
address the identified challenges and optimise their integration and functionality in real-world
settings. As of writing this thesis, an application of MZI is considered to be the best performing
and best integrate-able solution for a photonic accelerator to use for MVM.

Contrary to a proposed processing unit for improving computational offering, stands the pro-
cessing demand within an offered vehicle. Section 3 analysed a variety of use cases within the
vehicle in regards to certain Service Level Requirement. After identifying possible areas for
beneficial use of photonic in Section 3, two selected areas were further analysed for their specific
algorithms and architecture in previous chapter 4.1. It depicted that directly apparent wins of
applying a photonic accelerator lie within the overall use case of environment perception and
rendering virtual content for displays. Those services have greatly distinguished themselves
through the need to run locally, to enable a smooth user experience, in case of video rendering
or safety manners, in case of perception. Whilst graphical content, in the case of entertainment
features is not safety relevant, the correct and reliable detection of other road users is a critical
service, categorised as ASIL-D. This means that a photonic accelerator must not "fail" or be
unavailable for larger portions of time when in active use. Photonics must further be as noise-free
as possible to not negatively impact the accuracy of underlying algorithmic approaches, as seen
in analysing the impact of noise on CNN. While the impact of hardware noise on graphical
rendering-pipelines is to be fully understood and tested in terms of image quality, first tests with
shading yield great hope in possible use of a photonic accelerator. Notably, both identified use
cases are highly utilising matrices for processing and representation of data.

Employing a Mach Zehnder Interferometer as an accelerator necessitates a reduction in the
numerical bit-precision of data, currently utilised for both rendering and neural network opera-
tions. For neural networks, quantization techniques allow for the adaptation to 8-bit precision
during inference, following model training with conventional 32-bit precision, as highlighted in
the work by NVIDIA (2020) on quantization aware training [174]. This adaptation facilitates
the direct implementation of models on photonic MZI hardware accelerators enabling the here
discussed precision of 8bit as seen in Section 2.1.1. Similarly, graphic pipelines could potentially
reduce bit precision for shading processes to 8 bits, albeit transformations of objects must remain
capable of exceeding the 8-bit numerical range of [0-255]. Reducing the precision or depth of
lighting may however reduce the perceived quality of a rendered image. This does remain as an
open question and is dependent on the specific rendered content.

Another critical factor for consideration is the dimension of processed matrices. Rendering
pipelines conventionally utilise matrices of maximum dimensions of 4x4 for transformations
and 3x3 for shading. These dimensions are well supported by current photonic hardware
implementations, which have demonstrated capabilities for matrix dimensions up to 256x256,
as discussed in Section 2.1.1. In contrast, matrix dimensions for fully connected layers within
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CNNs and elements of attention-based transformer models, often exceed 1,000, a scale beyond
the current hardware scaling capabilities of photonic MVM implementations.

To address this limitation, the concept of matrix partitioning or tiling can be employed. This
approach involves decomposing a given matrix-operation into multiple operations of smaller
dimensions [114], [161]. This method enables the utilisation of hardware accelerators that support
smaller matrix dimensions than those required by the processing tasks within environment
perception models.

Integrating quantization and tiling techniques makes it possible to facilitate neural network
processing on hardware accelerators with limited hardware capabilities. Although, this may
result in a partial sacrifice of the speedup provided by photonic acceleration, the implementation
of an MZI based framework becomes a viable solution for processing larger neural networks.
This approach underscores the potential for innovative hardware solutions to overcome the
constraints of traditional computational models, offering a pathway towards more efficient and
scaleable neural network processing. The use and benefit of using noise afflicted hardware for
rendering processes must further be explored in experiments. The limited precision (<10 bit)
offered by MZI (and other possible photonic approaches) forbids a direct usage for object
transformations and limits the use of photonic accelerators to shading processes, where the
limited precision might be less noticeable and noise to be less of a problem.

Overall, those considerations and observations lead to a thorough understanding of the require-
ments for a potential optical accelerator from a service or algorithm point of view. The following
key-elements have been identified:

• An accelerator must be able to calculate matrices of different sizes ranging from 3 x 3 to
1,000 x 1,000 and beyond, for usage in larger neural networks. (refer to Section 4.1.1)

• Data-transfer must be fast, as MVM, whilst being a substantial part of algorithms intro-
duced, are used throughout the entire processing chain requiring other (likely digital)
calculations throughout.

• Hardware noise should be kept as low as possible to reduce the impact on model accuracy
or rendering of images.

An integration into a moving vehicle adds up on those requirements, as hardware within a
vehicle is subject to a changing environment and subordinate to security requirements [206].
Electronic components must further be resilient to vibrations and possible shocks, caused by
either road or other mechanical components of the vehicle itself (such as an internal combustion
engine). As a vehicle is sold across several markets and climate zones and as it is exposed to the
nature around it whilst being operated, components must withstand environmental challenges.
Whilst assumable, electronic components are shielded from rain or wind, heat and humidity
must be withstood by an integrated hardware. A requirement classification of the automotive
electronics council (AEC) suggests, that a processing unit enclosed within the vehicle should be

Page 57



Chapter 4 Analysis of Opportunities for Integration of Optical Components into Processors

able to withstand temperatures of −40C to +125C [21]. MZI and micro-ring-resonator based
systems are already proposed with heating-elements within, as minimal noise is achieved above
30 degrees Celsius. Each heater however is adding up to the overall energy consumption of the
accelerator (10 mW per heater [302]). This means, that a photonic accelerator within a vehicle
must be heated before its use in cold environments or cooled in very hot situations, that can
occur when a vehicle is stationary in direct sunlight in hot climate regions [64], [73], [275].
Managing temperature will increase the boot-up delay of a vehicle before safe driving is possible.
Embedding heating elements into the photonic accelerator itself, as proposed by Duan et.al. [73],
may keep this time within an acceptable magnitude.

The impact of vibration on a photonic accelerator remains an open question. Current hardware
implementations are demonstrated within a static context and no known tests have been done,
that enable to derive information on this matter. Known however is, that even within a static
context, MDM and WDM can suffer from higher noise due to slight imperfections within
manufacturing. Their lack of reconfigurability is another indicator, that those technologies might
not be perfectly suited for this application. MZI however are known to be quite robust suggesting
a good possibility to work in this context [64].

On the positive side of things stands the photonic resilience against electromagnetism. As light
does not interfere with magnetism [130], reduced shielding for purely optical elements of the
system might be possible. As however only small parts of the full SoC systems are realised
photonically, this impact may be little.

A major requirement, especially for the service cluster of autonomous or assisted driving is the
fail safeness described within previously mentioned ASIL classifications. Processing power for
vehicle operations are classified as ASIL-D [206], requiring a failure rate of less that 1E− 10 /hr.
The fail rate of a system is dependent on a great variety of factors as described by Vigrass
in [269]. Those include hardware degradation or possible unforeseen environmental impact. A
noise afflicted processor must also ensure to deliver a maximum amount of noise within ASIL
specifications to ensure, that not only a mathematical operation is executed, but that it is executed
with a minimum precision needed for safe operations.

While some of the requirements, such as the resilience to hardware degradation over the vehicles
operational time, being difficult to compare with the current phase of first hardware implementa-
tions of photonic accelerators, the paper landscape suggests, that a model of MZI is most robust
and has the best chances for an application within the automotive sector.

4.3 Basic Architecture of an integrated Optical Accelerator

The emergence of heterogeneous computing and the evolution of SoC technologies described
previously in Section 2, enables advanced computational models that integrate diverse processing
modalities and capabilities. The proposition to embed a photonic hardware accelerator within
a SoC, as illustrated in Figure 17, reflects an approach that seeks to harness the advantages
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of photonic technology in semiconductor frameworks. This concept draws inspiration from
the currently evolving integration of specialised NPU into SoC by corporations such as Apple,
Qualcomm, and Tesla [15], [56], [199], [200], [254]. Introducing an OPU is another opportunity
to increase processing performance through introduction within an SoC.

The high level architecture outlined in Figure 17 aims to synergize traditional electronic compo-
nents with a photonic analogue accelerator, incorporating at least a unified memory, a CPU, an
input/output controller, and a data transfer method to be specified. This integrated approach is
poised to leverage the speed and bandwidth of photonic computations, addressing the growing
demands for enhanced computational throughput, energy efficiency, and device miniaturisation.

The extension of a SoC architecture with an OPU represents a strategic fusion of photonic and
electronic computing. This Section will further discuss the architectural, functional, and practical
aspects of the OPU, contributing to the discourse on advancing computing technologies through
photonic integration.

An analysis of the underlying concept of an MZI has already been explored in Section 2.1.2. A
single MZI can be used to compute MVM of a 2x2 unitary matrix. The amount of MZIs needed
for a unitary input matrix of dimension NxN can be computed through: N(N − 1)/2 [80]. The
algorithmic analysis of potential services to run on an accelerator span greatly from a minimum
of 3x3 (shading) to a size greater >1,000 x 1,000. A minimum size for neural networks relies
with 64x64 attention mechanisms. Known and already realized matrix accelerators are a potential
point of reference for a decision on optimal hardware-enabled matrix sizes. The Google TPU in
its first iteration for instance, features a 256x256 matrix-multiply unit (MXU) [218], whilst a
more current version is made up of smaller 128x128 units [49].

The dimension of to be processed matrices has a direct influence on both the physical size
and energy consumption of the OPU. A single MZI takes up roughly 8, 000µm2 [256] of die
size. Considering the 256x256 dimension of input matrices, as promised by Lightmatter [144]
and introduced within Google TPU [218], an accelerator would need a total of 32,640 MZI
accounting for a die size of 261.12mm2. This is without accounting for any signal-converters,
additional attenuators, caches et cetera. Figuring a mean power consumption of 10 mW per
MZI [256] this accelerator would consume 326.4 W for its photonic part. Assuming its feasibility
for production, using newer approaches to MZI implementation, with a consumption of around
2 mW [153], an accelerator could perform at 65.280 W. Reducing the to-be processed matrix
size to 128x128 reduces both the energy consumption and area footprint with 8,128 MZI used.
This results in an area of 65.024mm2 and a 16 W power consumption. A broader overview
of matrix dimensions can be found in Table 7 and graphically in appendix 6, which greatly
shows the exponential growth of MZI needed for realisation of a linearly increasing input-matrix
dimension.
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Table 7: Overview of matrix dimensions and energy consumption

Matrix dimension Amount of MZI Chip area (mm2) 1 MZI Power consumption (W)2

256x256 32,640 261.12 65.280
128x128 8,128 65.024 16
64x64 2,016 16.128 4.032
32x32 496 3.968 1.984

1 Chip size of MZI only without signal conversion and caches

2 Energy consumed by MZI and respective heaters only with 2 mW assumed per MZI. This metric is to indicate a

dimension of power consumption, as the overall SoC power draw is dependent on a great amount of factors like

lasers, Analogue Digital Converter (ADC), preprocessing and more.

The basic architecture of a MZI based accelerator is shown in Figure 16. The MZI array itself
is defined by two inputs and one output as previously explored in chapter 2.1.2. One being the
input vector and the second one being the configuration of each phase shifter within the MZI grid.
Data should be pipelined for performance reasons, as reduced data loading time increases the
setup time for each clock cycle. The input vector is created through a series of Digital Analogue
Converter before encompassed into the MZI-grid. A Digital Analogue Converter (DAC) refers
to a light emitter, that takes a digital value as an input and encodes it onto an analogue optical
signal.. The analogue output (light) of this is interpreted through an Analogue Digital Converter,
before it can further be made use of. A DAC is a photo-detector, that receives an optical, analogue
signal and outputs a digital value electronically. Figure 16 shows how three caches are proposed,
with each cache serving as a pipeline for either use of the MZI grid or output handling. Notably,
the input data must first be converted into a unitary matrix before processing.

Figure 16: Basic schema of an integrated MZI array
This figure represents the broad concept of a photonic MVM accelerator, that exists of two input

caches for matrix and vector, one Digital Analogue Converter, the photonic MZI grid, a photodetector
(ADC) and an output cache.
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To put required chip size for a certain matrix dimension into perspective, one can compare such
with existing accelerators and SoCs. The Tesla FSD 4.0 SoC for instance consumes an area of
260mm2 in total, with 12.8mm2 being consumed by an ARM Cortex A72 quad-core cluster
and the majority of the space being used by two NPUs [280]. A photonic accelerator enabling
256x256 MVM on hardware would consume a die area of 261.12mm2 surpassing the entirety
of the compared Tesla chip in terms of sizing. This comparison outlines how large optical
processing units can become in comparison to electrical hardware.

Comparing an OPU to digital accelerators, such as the Google Tensor Processing Unit (TPU)
enables an outlook on the energy efficiency of optical components. The TPU in its fifth generation
consumes approximately 40 W for its MXU [49]. Photonic implementations of MVM below
256x256 dimensions could reach significantly lower power consumption, as approximations
listed in Table 7 show.

Energy efficiency, while being an important factor, is only comparable, if similar performance
is achieved. The performance of the entire photonic system is limited by several items within
the processing chain. Whilst the optical components themself can be clocked to speeds up to
several THz [159], its input and output greatly limits such capability. A full clock-cycle must (in
a simplified overview) offer enough time for:

• Hardware configuration (t1)

• Input signal stabilisation (t2)

• "Processing" (t3)

• analog digital conversion (t4)

Hardware configuration (t1) refers to the time needed to configure each phase shifter of the MZI
grid to enable the shift needed for desired MVM. Similarly input signal stabilisation (t2) is the
time needed for an input, created by the DAC to become stable and representative of the input
needed for ongoing computation. Hardware configuration (t2) is greatly dependent on the actual
material and composition of each phase shifter implemented within the MZI. These two steps
may happen in parallel, with each initialisation timing not affecting the other. Processing time
(t3) is described by the time needed from finished setup time (t1 and t2) to a stable output signal
at the end of the MZI grid. Computation is realised through propagation of light through the grid
of MZI at the speed of light (299792458m/s), accounting to a time of 34ps (assuming a total
photonic distance of 1cm, approximated through chip area of a 128x128 dimension). This shows,
how the matrix dimension of an accelerator and the associated growth in size already limits the
possible maximum clock frequency. With a travel time of the light of 34ps, a maximum clock
cycle of 29.41 GHz is possible with the assumption of fitting an entire computation within a
single clock cycle. Lastly, ADC (t4) refers to the time needed for output conversion.
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Research papers for proposed MVM accelerators greatly vary in expected time wise delay for
a configuration on a scale from few microseconds [258] to 10 ms [293]. Configuration time
however, has a direct impact on the maximum frequency of the overall photonic accelerator, con-
sidering a worst case scenario of a changing input matrix for every single clock cycle. Analysing
MZIs used for transceivers for optical communication systems reveals faster configuration times,
within the lower pico-second (∼ 10ps) dimension, thus enabling 100 GHz frequencies [95].
Notably however, picking a photonic phase shifter for MZI design does have an impact on energy
consumption and noise. The last elements of the overall structure proposed in Figure 16 is the
signal conversion from digital to analogue and vice versa. Similar to the selection of a specific
phase shifter, ADC and DAC are selected with a trade-off in energy consumption and speed.
Tian et. al. propose a 25 GHz converter [256], whilst Tsirigotis et. al. propose 128 GHz [263](for
a smaller 4x4 dimension accelerator).

To enable a 128x128 matrix to vector multiplication an input of 128 lasers (DAC), an output of
128 ADCs are mandatory and three respective caches as mentioned. With a bit-precision of 8 bit
per signal, the input and output cache must be at least 1,024 bit large. The third cache feeds the
configuration of all embedded phase shifters within the MZI array. This accounting to a size of
130,048 kBit.

Imaging a MZI network for the acceleration of 128x128 matrices, that operates at 28 GHz
(limited through size of the MZI grid) enables a performance estimation in Tera operations per
second (TOPS) by:

TOPS =
f · o · p
1012

Where:

• f is the operational frequency in Hertz (Hz)

• o represents the number of operations performed per cycle

• p indicates the number of parallel processing units

Utilising this specified formula, the performance of the proposed solution can be calculated to
reach 227.58 TOPS without multiplexing and parallelisation. The energy consumption of the
chip consists of contributions from both photonic and electronic segments of the accelerator.
The photonic components are made up of MZI, input lasers, ADC, and attenuators, cumulatively
accounting for an estimated power draw of around 20 watts. This estimate includes a power
usage of 16 watts for the MZIs, approximately 768 mW for the ADCs [256], 1152 mW for the
lasers [256], and 2 watts for the attenuators embedded within the MZI grid. It is imperative to
highlight however, these figures are extrapolated from experimental observations conducted on
configurations with smaller matrix dimensions and variable noise levels, rendering the projected
energy consumption substantially theoretical. Beyond the optical components, additional power
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is consumed by electronic elements such as caches, controllers, and any pre-processors, further
contributing to the overall energy footprint of the system.

The throughput of the chip is an interesting metric, that is important to keep in mind for further
design for integration of such accelerator within an SoC. A single cycle of the photonic hardware
consumes a 128x1 vector and a 128x128 matrix with 8 bit precision for each value - 132,096 bits
total.

Assuming a clock speed of 28 GHz, this results in a total bitrate of 3,698,688 Gbit/s needed for
full utilisation of the proposed hardware accelerator. The bitrate for data transfer could potentially
be reduced through previous encoding of data and decoding within the accelerator. The high
clockrate of the processor could further be used for running the same computation multiple
times, thus reducing the impact of hardware noise through building a mean average result of
>1 computation. With a theoretical datarate of >3 Terabit/s for processing it is questionable, if
this high clock rate can be utilised at all. The question of possible memory connections will be
answered within Section 4.4 with a focus on possible memory integration using examples from
other hardware accelerators.

Memory throughput and data transfer rates present a crucial parameter to design and integration
of a possible optical accelerator. Within a singular operational cycle (assuming no parallelism),
the photonic hardware is used to process a vector of dimensions 128x1 and a matrix of 128x128,
each value represented with 8 bit precision. This culminates in a total data volume of 132,096 bits.
Predicated on an operational frequency of 28 GHz, this computational demand translates into a
requisite data throughput of 3,698,688 Gbit/s to achieve full utilisation of the proposed hardware
accelerator’s capabilities. It is conceivable that the requisite bitrate for data transmission could
be effectively mitigated, through the implementation of advanced data encoding techniques prior
to input and subsequent decoding processes within the accelerator framework, thereby enhancing
data handling efficiency and effective data rates [291].

4.4 Integration of photonic Accelerator

An open question after proposing a general architecture of the photonic accelerator itself,
remains within its integration. Due to the fact, that a grid of MZI are only able to process
unitary matrix-vector computation, several pre-processing steps are needed to enable the use
of such. According to the concept of singular value decomposition (SVD), a matrix A can
be decomposed as A = UΣV ∗ [244]. This decomposition is found within previously shown
MZI grid in Section 2.1.2. If the objective is to enable Matrix Matrix multiplication on the
hardware accelerator, a decomposition into several vector matrix multiplications is needed.
As the decomposition of a matrix into a unitary representation for usage within a photonic
MZI accelerator is needed for every single computation, it makes sense to add this step to the
accelerator hardware itself. This could be realised through the implementation with specialised
hardware such as a Field-programmable Gate Array (FPGA) setup for instance, as also proposed
by Agrafiotis et. al. [7].

Page 63



Chapter 4 Analysis of Opportunities for Integration of Optical Components into Processors

With the data-rates needed for full utilisation of the proposed optical accelerator, a major question
for integration relies on the memory integration. Currently known hardware accelerators in the
optical and digital domain serve as examples for technical possibilities.

Within the optical domain, both startup Lightmatter and Lightelligence offer an extension card
for matrix operations, that is connected through PCIe [142], [279]. In its latest version (6.0),
PCIe promises a maximum throughput of 64 GigaTransfers/s and up to 256 GB/s through 16
lanes [188]. Devices supporting this standard however have yet to appear on the market, but
are expected to arrive within the year of 2024 [53]. Lightmatter is known to be using PCIe 4.0
enabling better compatibility with state-of-the-art hardware available on the market [67], which
limits transfer speeds to 32 GB/s [127] and therefore negatively impacts the theoretical speed
of the photonic accelerator. Similarly the Coral AI SoC offered by Google uses PCIe 2.0 for
integration of the TPU-Edge further limiting maximum transfer speeds [54].

An alternative seen within the FSD-Chip built into Tesla vehicles, that uses 2 NPUs for accelera-
tion is the data transfer through a Network on Chip (NoC) [281], as depicted in Figure 17. For
complex SoCs, a NoC can provide a scaleable and efficient solution for data transfer between
storage and processing units, as they are able to use a shared hardware architecture for routing
data. The on chip integration of a NoC, with direct memory access of multiple cores, is proven
to provide greater speeds through higher data throughput and a reduced number of memory
accesses in comparison to PCIe solutions [40], [257], [261]. Known implementations of NoC
deliver connection speeds of several GB/s. AMD manuals [13] propose throughput of 34 GB/s
per memory controller, enabling horizontal scaling effects when sacrificing chip-area. Park et.
al. promise a theoretically achievable data rate of 892 Gb/s (111,5 GB/s) [184]. The beneficial
properties of photonics are also being introduced to NoCs to further increase throughput and
reduce energy consumption [24], [189]. A photonic realisation enables beyond terabit datarates
with a significantly reduced energy consumption. Paper [24] proposes a crossbar array, as already
introduced within Section 2.1.2 with a bandwidth of 1.92 Tbit/s (240 GB/s). The concept of
photonic Network on Chip is already proven within the Lightelligence optical accelerator that,
whilst relying on PCIe for Server integration, uses a photonic NoC for on-chip communication.
Another option for memory integration is the usage of High Bandwidth Memory (HBM), that
enables direct integration of an accelerating processing unit with high performance memory.
Chip manufacturer Micron has announced production of a HBM iteration 3 memory, that en-
ables throughput of >1.2 TB/s (9600 GBit/s) with plans to increase bandwidth beyond 2 TB/s
in upcoming years [230] and marks best ranking performance. HBM is already used for AI
accelerators such as the Google TPU [119].

Figure 17 shows a block-diagram of a high-level architecture of an SoC, that uses a NoC for
combining multiple parts of different modality within the chip. Those include a (or many) CPU
core, a (or many) GPU core, an OPU, an input/output controller and unified memory. The exact
amount of each core and the sizing of used memory remains open for the possible adaption to
further Hardware / Software codesign.
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Figure 17: High-level overview of OPU chiplet integration
As per example by current SoC implementations, one could eventually integrate an OPU into a single
die. This image represents a possible high-level block diagram for a possible SoC, that could be used
for environment perception. It features a unified memory, an input / output controller, a CPU, GPU,

NoC and proposed OPU

Further options for connecting a hardware accelerator to memory are to utilise a BUS-system, like
ARM’s Advanced Microcontroller Bus Architecture (AMBA), direct memory access (DMA), or
serial interfaces (Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C)). Realisations
of a bus system for ARM systems have been around for several years with the AMBA protocol
family first being released in 1996 [151] and being updated in several revisions since then.
Current implementations of such a bus-system are proposed with throughput of up to 6,152 Mb/s
(0.769 GB/s) [214], [273]. Serial interfaces are enabling a possible throughput significantly below
those of bus-systems, and therefore do not make any sense for consideration [225]. Another
option to connect proposed hardware accelerator with memory, is the usage of DMA. This
enables a direct connection of the OPU with the memory offering data transfer with speeds up
to 248 Gbit/s (31 GB/s) [101]. Currently available ARM NPUs are equipped with DMA for
memory access [18], whilst upcoming designs are proposed with NoC data transfers [106]. The
Tesla FSD 4.0 chip once again marks a great example, as it shows how within the automotive
sector an SoC is already integrated with a NPU interconnected with a NoC.

With the data throughput needed to feed a previously theoretical OPU exceeding possible
maximum throughput of known hardware possibilities to connect it to memory, there are two
possibilities to overcome such issues. Parallelisation of memory connections is one way to
enhance the overall throughput. This could be realised by combining multiple DMA connections
to different caches within the OPU, that do however make the architecture of such more complex.
Another option is to decrease the clock rate of the hardware accelerator reducing the theoretical
throughput and enable application of known memory connectors. This approach is supported
by the fact, that both Lightelligence and Lighmatter are employing greatly lower system clock
speeds, of sub 2 GHz [64], [143]. This is also reasoned with complications of ADC at the time
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of paper release in 2021, when referenced technology would fail to deliver accurate results above
2 GHz [64], even though used components would theoretically be able to perform at up to 10
GHz. Table 8 summarises the effect of a decrease of clock speeds on TOPS (performance),
memory throughput and efficiency, which is graphically represented in Appendix 6 Notably
however, here depicted throughput represents a worst-case scenario of ever changing input data
for each clock cycle.

Table 8: Computed TOPS and Memory Throughput for various Clock Frequencies

Clock-Frequency
(GHz)

TOPS Memory Throughput (Gb/s) TOPS/W

28 227.584 3,698,688 14.22
20 162.56 2,641,920 10.16
10 81.28 1,320,960 5.08
5 40.64 660,480 2.54
2 16.256 264,192 1.02
1 8.128 132,096 0.51
0.1 0.812 13,209.6 0.051
0.05 0.406 6,604 0.0254
0.01 0.081 1,320.96 0.005

Comparing the worst case required memory throughput of the OPU with previously identified
maximum data transfer rates of different memory connectors shows, how the reduction of the
accelerators clock cycle enables a feasible integration onto a SoC. A frequency of 10 MHz
reduces throughput to a dimension serve able with a direct HBM integration. Even advanced
photonic NoCs would only allow for clock rates of <10 MHz due to bandwidth limitations.
Noteworthy, using decreased OPU system clock speeds (in terms of data loading) enables to
make use of the concept to compute the same numbers more than once and calculate the mean
average above those, thus reducing the noise of the MZI grid. The photonic detection rate is
however still limited to the maximum frequency of integrate able ADCs.

To assess the efficiency and performance of computational units, a comparison between the
proposed OPU and Google’s TPU version 4, which was introduced last year, is insightful [49],
[264]. The Google TPUv4 boasts a computational capacity of 275 TeraFLOPS (TFLOPS) at a
power consumption rate of 170 watts, operating at a frequency of 1050 MHz. This configuration
yields an efficiency of 1.62 FLOPS per watt. Additionally, each TPU is equipped with high-
bandwidth memory, capable of achieving a data transfer rate of up to 9600 Gb/s [119]. In
contrast, a variant of the TPU designed for edge computing applications enhances efficiency to 2
TOPS per watt, albeit at a reduced overall performance of 4 TOPS [113].
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Table 8 presents information on the performance capabilities of an OPU, specifically focusing
on MVM operations. Notably, the OPU achieves approximately 0.8 TOPS at a clock speed of
0.1 GHz, with a power consumption of 16 watts, resulting in an efficiency of 0.5 TOPS per
watt. This marks a significant decrease in efficiency compared to the TPU. However, the direct
comparison of TOPS as a metric for performance is contentious, given that it requires a uniform
definition of an operation. TPUs utilise a systolic array architecture for MVM operations, which
necessitates twice the number of operations for a single MVM compared to the MZI array used
in OPUs [218]. Notably, the energy consumption of an OPU is greatly static due to used heaters
that are used independently from the system clock speed. Taking this into consideration, OPUs
may exhibit superior performance relative to TPUs, but lack an energy-efficiency with current
limitations. Furthermore, the TPU’s design is not limited to MVM tasks alone. It incorporates
additional on-chip logic, further augmenting its operational capabilities.

A notable difference in the comparison held before is the high delta between the maximum
possible data transfer rate of a Google TPU and (worst case) assumptions on data rates needed for
an optical accelerator. As mentioned within analysing the impact of clock rates on performance,
the data rate is a worst case extrapolation for the case, when each clock cycle would require new
data to process. Realistically weight matrices (NN) or transformation matrices (for graphics) are
used more than once and therefore significantly reduce the needed data transfer for each clock
cycle of the OPU.

5 Conclusion
The objective of this thesis has been to grasp an understanding of the underlying physics of
photonic computation for an eventual usage as an OPU and to analyse its potential in increasing
computational performance for vehicle use cases.

The research Section has highlighted the ongoing interest into optical matrix vector multipli-
cation (MVM) and analysed four approaches to enabling this within hardware. Mach Zehnder
Interferometer are a concept already proven for an integration within SoCs that, whilst mostly
still being in an early research phase within startups, beckons great aspiration for fulfilling
both automotive and usability requirements, that include sufficient bitwise precision, matrix
dimensions and resilience to hardware noise. A photonic accelerator promises great performance
and throughput with a relatively low energy consumption, as presented within this thesis. An
OPU however is used best to its potential at higher clock rates. The introduction of multiplex-
ing is another major chance for increasing performance of up to 500x over compared Google
TPUs [182].

An investigation of vehicle services, relying on computational performance for either safety,
vehicle autonomy or customer use cases yields two services, that seem like a great chance for
acceleration, due to their high data throughput and processing demand. The perception of a
vehicle environment that is based on the processing of several sensors, such as camera or LIDAR,
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input is one of these use cases. Promising approaches to do so are the use of NN-architectures
or transformer models. Both heavily utilise MVM operations. Rendering graphical content for
in-vehicle displays marks the second use case identified, due to the algorithmic complexity and
pixel dimensions of content. Once again, underlying algorithms heavily employ MVM. An open
question to application remains with the resilience of an algorithm to a loss of precision and the
introduction of seemingly random noise. Simulations for the use within rendering processes
have shown limited use for transformations, but promising results for shader processes, requiring
further research into possible post processing. The research landscape greatly describes the
impact on the use for NN consisting of a relatively small decrease in model accuracy. Once again
asking for enhanced model specific experiments.

With great hope and possibility for MVM based acceleration through optical hardware acceler-
ators, the thesis delivered a deeper insight into ongoing trends of heterogeneous computation
and SoC integration, highlighting the benefits in efficiency and performance. Theoretical per-
formance of an OPU is limited by various factors, that include the setup time of the MZI grid,
detection speed of signals (the ADC) and data transfer speeds ,ultimately limiting the amount
of data to be processed by an integrated hardware accelerator. A summary of technological
possibilities highlights the advancement of applying a NoC for integration of an OPU due to
its direct connection with other processing units and transfer rates. Notably, even data rates
promised within currently ongoing research for application of photonic NoC concepts, would
limit an OPU to a clock-rate below its theoretical capabilities. An Optical Processing Unit (OPU)
is achievable and can be integrated with HBM for data transfer. This feasibility is supported
by comparisons with already integrated hardware, and the OPU could operate at a clock speed
of less than 0.1 GHz.. This would result in a performance of <1 TOPS (MZI operations). The
critical point to consider however is, that this low performance is approximated for a worst case
scenario in terms of changing data per operation.

Lastly, the possible utilisation of an OPU is dependent on the hardware-software codesign that
is meant to best make use of hardware capabilities. This includes considerate pipelining and
reduction of setup times through aggregation of same matrix to changing vectors MVM, as it
is the case with using the same transformation matrix for changing objects within rendering
pipelines.

Overall: The benefit of integrating an OPU is questionable with electonic hardware accelerators
achieving great efficiency and performance. The inherent hardware noise associated with
analogue, photonic signals poses challenges for transformation processes within rendering
pipelines. However, this noise does not significantly impact AI use cases or shaders, where the
unique attributes of OPUs could offer advantages.

Despite these potential benefits, photonics technology remains largely in the experimental phase.
Moreover, with the current limitations in memory bandwidth, integrating OPUs as a superior
alternative to existing NPUs presents a formidable challenge. The bottleneck created by memory
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bandwidth constraints complicates the effective utilisation of OPUs, making their comparative
advantage over traditional NPUs less clear in current applications.

6 Outlook
This thesis has greatly summarized the possible advancements of integrateable hardware ac-
celerators, that could become part of state-of-the-art vehicle hardware, as represented with the
integration of NPUs within Tesla vehicles and Mercedes concepts. It is also a good example
for an ongoing trend towards custom chip design for application specific domains attributing
the prediction of Gartner, that a large amount of best performing OEMs would delve into such
endeavour by 2025 [92]. Increasing possibilities for SoC integration is likely to further push
this trend through opportunity of multi-die size and three-dimensional packaging. As of now,
photonic accelerators and its underlying components remain within a low technology readiness
level. Ongoing experimental tape-outs and first products launching, are a great sign for enabling
and improving optical technology while data transfer and optimized usage of hardware remain a
significant bottleneck for its effective use. Selection of a specific software architecture to tackle
environment perception will enable more considerate cache design and pipe-lining processes,
as a transformer based approach yields different optimization than a deep NN for an end to
end training concept. Questionable remains, if a photonic accelerator is able to outperform
electric ones like the Google TPU improving in efficiency and performance within every release.
Potentials do however lie in ideas such increasing memory transfer rates with improvements
in HBM. Possibly, optical memory or optical data transfer within systems [12], [128], [272]
may eliminate the need for ADCs and enable more performance and greater efficiency, whilst
increasing the amount of purely photonic components of the processing chain.
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Appendix

Power Consumption And Sizing Of Photonic MZI Accelerators
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Figure 18: Power consumption and sizing of photonic MZI accelerators
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Appendix

Impact Of Clock-Frequency On OPU Performance
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Figure 19: TOPS against clock-frequencies for OPU
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Figure 20: Impact of clock frequency on memory utilization
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