
Master Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science (M.Sc.)

Analysis and Evaluation of Quantum Compilers

Student Name: Vincent Gierisch

Student Number: 3347546

Primary Supervising Professor: Prof. Dr. Wolfgang Mauerer

Secondary Supervising Professor: Prof. Dr. Kai Selgrad

Submission Date: May 15, 2024

Master Computer Science

Stand: 21.09.2018/Abt. III

ERKLÄRUNG
ZUR MASTERARBEIT VON

Name:

Vorname:

Studiengang:

1. Mir ist bekannt, dass dieses Exemplar der Masterarbeit als

Prüfungsleistung in das Eigentum der Ostbayerischen Technischen
Hochschule Regensburg übergeht.

2. Ich erkläre hiermit, dass ich diese Masterarbeit selbständig verfasst, noch
nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und
sinngemäße Zitate als solche gekennzeichnet habe.

Regensburg, den

..
Unterschrift

Diese Erklärung ist mit der Masterarbeit (eingeheftet) abzugeben.

Abstract

Quantum computers have the potential to solve specific tasks faster than the classical

computational systems. There is currently a lot of effort to develop algorithms that take

advantage of this type of quantum speedup. Today’s quantum computers, often called

noisy intermediate-scale quantum (NISQ) hardware, are prone to noise and have too few

qubits for effective error correction. They also have restrictions on which operations can

be applied to which qubits. Quantum compilers are necessary to abstract the constraints

of NISQ devices.

This thesis presents an in-depth analysis and evaluation of quantum compilers. The study

focuses on three commonly used quantum compilers: Qiskit, TKET, and BQSKit, each

known for their unique approaches to compile and optimize quantum circuits. It is inves-

tigated how the quantum compilers behave depending on the chosen level of optimization.

In order to address this question, an evaluation framework is developed which allows the

evaluation of different quantum compilers by measuring circuit properties of the circuits

compiled for defined backends. The evaluation is conducted with varying optimization

levels of the compilers. It can be shown that the highest level of optimization does not

necessary produce the best circuits in terms of circuit depth and overall gate count.

I

Acronyms

NISQ Noisy Intermediate-Scale Quantum

QAOA Quantum Approximate Optimization Algorithm

VQA Variational Quantum Algorithm

SABRE SWAP-based BidiREctional heuristic search algorithm

LEAP Larger Exploration by Approximate Prefixes

BQSKit Berkeley Quantum Synthesis Toolkit

PAS Permutation-aware synthesis

NISQ Noisy Intermediate-Scale Quantum

III

Contents

1 Introduction . 1

2 Background on Quantum Computing . 3

2.1 Information on Qubits . 3

2.2 Bloch Sphere . 3

2.3 Multi-Qubit Systems . 4

2.4 Circuit Models . 5

2.4.1 Quantum Gates . 5

2.4.2 Quantum Circuits . 7

2.5 Quantum Programming Languages . 8

2.6 Quantum Algorithms . 8

2.6.1 Variational Quantum Algorithm . 8

2.6.2 Quantum Approximate Optimization Algorithm 9

2.6.3 Max-cut Problem Overview . 10

3 Quantum Hardware . 13

3.1 Noisy Intermediate-Scale Quantum Systems 13

3.2 Physical Realizations . 13

3.3 Quantum Hardware Constraints . 14

3.3.1 Limited Qubit Connectivity . 14

3.3.2 Gate Sets . 15

3.3.3 Errors in Quantum Systems . 15

4 Functionality of Quantum Compilers . 19

4.1 Gate Translation . 19

4.2 Initial Mapping . 20

4.3 Routing . 21

4.4 Optimization of Quantum Circuits . 22

5 In-Depth Analysis of Quantum Compilers 25

5.1 Analysis of BQSKit . 25

5.1.1 QSearch . 25

5.1.2 Larger Exploration by Approximate Prefixes 27

5.1.3 SWAP-based BidiREctional Heuristic Search Algorithm 28

5.1.4 Permutation-Aware Synthesis . 29

5.1.5 Compilation Pipeline . 29

5.2 Analysis of TKET . 35

5.2.1 Graph Placement . 35

5.2.2 Routing Approach . 36

5.2.3 Peephole Optimization . 36

5.2.4 Macroscopic Optimization . 37

5.2.5 Compilation Pipeline . 37

5.3 Analysis of Qiskit . 37

5.3.1 Overview of the Transpiler . 37

5.3.2 Compilation Pipeline . 38

V

6 Design and Implementation of the Evaluation Framework 45

6.1 Description of the Analyzed Properties . 45

6.2 Description of the Analyzed Circuits . 46

6.3 Description of the Backends . 47

6.4 Description of the General Workflow . 48

6.5 TKET Compilation Pipeline . 49

6.6 BQSKit Echoed Cross-Resonance Gate . 51

6.7 Naive Compilation Pipeline . 53

7 Evaluation of the Quantum Compilers . 55

7.1 Optimization Levels Comparison . 55

7.1.1 Qiskit Optimization Levels Comparison 55

7.1.2 TKET Optimization Levels Comparison 57

7.1.3 BQSKit Optimization Levels Comparison 58

7.2 Compiler Comparison . 59

7.3 Compile Time Comparison . 60

7.4 Effects of the Approximation Degree . 61

8 Conclusion . 65

8.1 Future Works . 65

8.2 Summary . 65

Appendices . 67

A Flowchart of Qiskit’s Scheduling Stage . 67

B Connectivity Graphs of Backends . 68

C Results of the Quantum Approximation Optimization Algorithm 70

VI

1 Introduction

The field of quantum computing originated from Richard Feynman’s proposal in 1981 to

harness the principle of quantum physics in order to construct computers capable of ac-

celerating calculations to specific problems [1].

There are already quantum algorithms that in theory can solve certain problems more

efficiently than classical computational systems. A representative of these is Shor’s al-

gorithm, which is designed to solve the integer factorization problem and the discrete

logarithm problem [2]. Both problems can be solved by the algorithm in polynomial time

when running on a quantum computer [2].

Today’s quantum computers, are prone to noise and therefore introduce errors in the cal-

culation. In addition to the erroneous calculations, they have also a very limited amount of

available qubits. For both reasons, this devices are often referred to as Noisy Intermediate-

Scale Quantum (NISQ). There are various physical implementations of NISQ devices and

many providers of these systems, including IBM, Rigetti, and IonQ.

Since there is such a variety, there are also many different requirements for software that

can run on it. Some of these constraints are a limited set of operations that a quantum

computer is capable of executing as well as a constraint that some operations can only be

applied to specific qubits.

To abstract the limitations of the quantum hardware and to provide the developer with

the opportunity to concentrate more on the development of quantum algorithms, it is

possible to use quantum compilers. A quantum compiler seeks to overcome the restraints

described above by the modifying the algorithm to enable execution on specified hardware.

There are many different quantum compilers, all of which can handle many different types

of quantum hardware. Some of these compilers are IBM’s Qiskit, Google’s Cirq, Rigetti’s

Quilc, Microsoft’s Quantum Dev Kit, Quantinuum’s TKET, and Lawrence Berkeley Na-

tional Laboratory’s BQSKit [3–8].

It is likely that the majority of developers are not fully aware of the inner workings of these

quantum compilers. This is because their primary focus is on the development of quantum

algorithms. Also the compiler providers tend to less comprehensive documentation.

This thesis provides an overview of the functionality of quantum compilers and performs an

in-depth analysis of three selected compilers, namely Qiskit, TKET, and BQSKit. These

compilers are subsequently evaluated individually and compared with each other, taking

into account their parameters.

The remainder of this thesis is structured as follows: Section 2 gives a brief introduction

to gate-based quantum computing. Section 3 provides an overview of the current physical

realizations and limitations of quantum hardware. In Section 4 the general functionality of

quantum compilers is described. Section 5 offers an in-depth analysis of three commonly

used quantum compilers. In Section 6 describes the design and implementation of the

evaluation framework. Section 7 presents the evaluation of these quantum compilers, ac-

companied by a discussion of the results. Finally, in Section 8, the results are summarized

and potential future research directions are identified.

1

2 Background on Quantum Computing

This chapter aims to provide an overview of the basics of quantum computing. The

Section 2.1 introduces the qubit and the concept of superposition. In Section 2.3 these

concepts are expanded to multi-qubit systems. Subsequently, in Section 2.4, the circuit

model together with quantum gates are introduced. The chapter concludes with the

presentation of a family of quantum algorithms in Section 2.6 that will be used later in

the evaluation.

2.1 Information on Qubits

Quantum computers use quantum effects like superposition and entanglement to speed up

calculations. Classical computers use classical bits to store information. In contrast, in a

quantum computer, information is stored in qubits. Unlike the classical bit, the qubit can

be in a linear combination of states, often referred to as superposition [9].

The Dirac notation, sometimes referred to as bra-ket notation, is used to represent states

in quantum mechanics and is denoted by |·⟩. In this representation, the ket |·⟩ corresponds
to a column vector, while the bra ⟨·| corresponds to the complex conjugate transpose of

the ket. Equation (1) depicts the dirac notation.

⟨u| = (u∗1, u
∗
2, ..., u

∗
n), |v⟩ =


v1

v2
...

vn

 (1)

The superposition of a qubit can be written as a linear combination of |0⟩ and |1⟩ using

the dirac notation,

|ψ⟩ = α |0⟩+ β |1⟩ (2)

,with α, β ∈ C. In Equation (2), α and β are called amplitudes and |0⟩, |1⟩ are known

as computational basis states. They form an orthonormal basis for the vector space in

which the representation of the qubit lies. When measuring the state of a qubit, the

superposition collapses into one of the computational basis vectors. The obtained outcome

is either |0⟩ with a probability of |α|2 or |1⟩ with a probability of |β|2. To make sure that

the probabilities add up to one, the amplitudes are normalized to satisfy the condition

|α|2 + |β|2 = 1.

2.2 Bloch Sphere

The state of a qubit can also be visualized by the Bloch sphere, which is a geometrical

representation. Equation (2) can be reformulated as

|ψ⟩ = eiγ(cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩) (3)

,with θ, φ, γ ∈ R [9].

The factor eiγ in front of the equation can be neglected as it is a global phase which

has, in general, no observable consequences[9]. The trigonometric function’s symmetry

determines a value range θ ∈ [0, π] and φ ∈ [0, 2π]. A point on a three-dimensional sphere

3

is determined by the values of θ and φ, as illustrated in Figure 1. This sphere is commonly

referred to as the Bloch sphere.

z |0〉

|1〉

y

x

|ψ〉

θ

φ

Figure 1: Illustration of the state of a single qubit in the Bloch sphere.

While the Bloch sphere can visualize the state of a single qubit, its not sufficient to

graphical display the state of a multi-qubit system [9].

2.3 Multi-Qubit Systems

In a multi-qubit system, the individual qubits are grouped together in a qubit register. A

two-qubit system, for example, has four computational basis states, namely |00⟩, |01⟩, |10⟩
and |11⟩. The linear combination of these states, outlined in [9], is described as follows:

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ (4)

In Equation (4), ax ∈ C with x ∈ {0, 1}2 are the amplitudes of each computational basis

state. As in Equation (2) the amplitudes must satisfy the condition
∑x

{0,1}2 |ax|2 = 1.

The state of a multi-qubit system with n qubits can also be described in a vector notation

with a vector space of 2n dimensions. Two vector spaces can be described by the tensor

product. The elements of the two vector spaces V , W , are linear combinations of |v⟩⊗ |w⟩,
with |v⟩ ∈ V , |w⟩ ∈W . [9, 10]

Multiple states |ψ1⟩ , |ψ2⟩ , ..., |ψn⟩ can be represented by one vector space through the use

of the tensor product,

|ψ⟩ = |ψ1, ψ2, ..., ψn⟩ =
n⊗

i=1

|ψi⟩ . (5)

The state of a quantum register consisting of n qubits is therefore described by a vector

of a 2n-dimensional vector space. This exponential growth in complexity is one of the

indicators for a potential quantum advantage [9].

Another phenomenon that can occur in a multi-qubit system is entanglement. Entangle-

ment occurs when two or more qubits become correlated in such a way that the state of

one qubit cannot be described independently of the state of the other, regardless of the

physical separation between them [9].

An example for such entangled quantum states are the four Bell states [9]. The first Bell

state, namely |Φ+⟩, is defined in Equation (6) [9].

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) (6)

4

If a multi-qubit quantum system is prepared in state |Φ+⟩ and one qubit is measured, both

qubits enter the post-measuring state |00⟩ or |11⟩ with a probability of 0.5 respectively.

Entanglement is a key ingredient in many quantum algorithms and another indicator for

the potentials of quantum computing.

2.4 Circuit Models

The following section discusses the circuit model, which is a visual representation of quan-

tum algorithms. It is also the main component, a quantum compiler acts on.

Deutsch introduced the quantum circuit model in 1989 [11]. The quantum circuit model

is a description of a collection of qubits with gates that act on them in a fixed sequence.

Similarly, a classical algorithm can be described as a sequence of operations that act on a

given input. Given the input, these operations produce an output, which is the result of

the algorithm. The circuit model shares similarities with this aspect. A quantum register,

which is prepared in a specific state, serves as the input, while so called quantum gates

act on the qubits. An output can be produced by measuring the qubits.

There are other rivals to the circuit model, like cluster state quantum computing and

adiabatic quantum computing [10].

In the Deutsch circuit model, all qubits are organized as wires that run from left to right.

Gates can act on qubits by placing them on the wires associated with the desired qubits.

q0

q1

H

U

Figure 2: Example of a Quantum Circuit.

Figure 2 depicts an example of a quantum circuit, where a one-qubit gate H acts on qubit

q0, followed by the application of a two-qubit gate U to both qubits q0 and q1. Then,

a CNOT gate, another two-qubit gate, flips the target qubit q1 based on the complex

amplitude of the control qubit q0, before the measurement of both qubits.

2.4.1 Quantum Gates

As previously stated, a gate acts on a quantum state and manipulates it. The gates of a

quantum circuit can be represented by a unitary matrix. For example, the Pauli-X gate,

which is the quantum equivalent of a NOT gate, rotates the quantum state around the

x-axis. Its matrix representation is shown in Equation (7),

X =

[
0 1

1 0

]
. (7)

5

To apply the Pauli-X gate to the quantum state |ψ⟩ =
(
α

β

)
, the matrix is multiplied by

the state vector described in Equation (8),[
0 1

1 0

](
α

β

)
=

(
β

α

)
. (8)

In the new state |ψ′⟩ = α |1⟩ + β |0⟩, the complex amplitudes of |0⟩ and |1⟩ have been

swapped. In the analogy of the Bloch sphere, the state has been rotated around the x-axis

by 180°.

One restriction on the matrix representing a quantum gate is that it must be unitary. For

a matrix to be unitary, the condition

U †U = 1, (9)

must be fulfilled. U † denotes the transposed and complex conjugated of U . This constraint

ensures that the condition |α|2 + |β|2 = 1 is satisfied. [9]

Applying a gate to a quantum register works analogously. In Figure 3, a CNOT gate is

applied to q0 as the control qubit, and q1 as the target qubit. A CNOT gate flips the

target, based on the complex amplitude of the control qubit. The classical equivalent is

an XOR operation with the notation |A,B⟩ → |A,A⊕B⟩.

q0

q1

Figure 3: CNOT gate acting on q0 and q1.

Equation (10) depicts the matrix notation of the CNOT gate. Assuming the qubit register

is initialized with |ψ⟩ = |01⟩, the matrix vector representation is shown in Equation (11).

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (10)


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



0

0

1

0

 =


0

0

0

1

 (11)

It can be seen that in the successor state |ψ′⟩ = |11⟩, q1 has been flipped, because q0 is in

the state |1⟩.

The size of the matrix is determined by the number of qubits that the gate is acting on.

A gate that operates on n qubits is represented by a 2n × 2n matrix [11].

Another commonly used set of quantum gates are the so called parametrized gates. These

kind of gates depend on one or more parameters [10]. A lot of quantum algorithms are

using parametrized gates, especially rotation gates. The rotation gates represent a rotation

along the x, y or z-axes of the Bloch sphere. Therefore, there are three rotation gates,

6

RX(θ) =

[
cos(θ2) −i sin(θ2)

−i sin(θ2) cos(θ2)

]
, RY (θ) =

[
cos(θ2) − sin(θ2)

sin(θ2) cos(θ2)

]
, RZ(θ) =

[
e−

iθ
2 0

0 e
iθ
2

]
,

(12)

where θ is the rotation angle [10]. With these three gates, every state of a single qubit

can be produced.

The functionality of the three rotation gates can be reduced to one gate, namely the U3

gate. The matrix representation of the U3 gate is given by

U3(θ, ϕ, λ) =

(
cos(θ2) −eiλ sin(θ2)
eiϕ sin(θ2) ei(ϕ+λ) cos(θ2)

)
, (13)

with θ, ϕ and λ as the rotation angles along the axes of the Bloch sphere [9]. Therefore

the U3 gate implements an arbitrary single-qubit rotation.

2.4.2 Quantum Circuits

After examining the mathematical representation of quantum gates and their application

to quantum states, the focus now shifts to the representation of quantum circuits.

q0

q1

H

Figure 4: Quantum circuit producing a Bell state.

Figure 4 depicts a quantum circuit producing a Bell state (see Section 2.3). A Hadamard

gate is applied to q0 followed by a CNOT gate with q0 as the control qubit and q1 as the

target qubit.

The Hadamard gate turns a state of |0⟩ or |1⟩ into a superposition of |0⟩ and |1⟩. More

precisely, it transforms a state of |0⟩ to the superposition 1√
2
(|0⟩+ |1⟩) and |1⟩ to 1√

2
(|0⟩−

|1⟩). These two successor states are called |+⟩ and |−⟩ respectively. In the Bloch sphere

analogy, the Hadamard gate is a combination of two rotation. First, it rotates the state

vector about the y-axis by 90°, followed by a rotation about the x-axis by 180° [9].

The mathematical representation of a circuit can be described using matrix multiplication.

The matrix for a calculation with multiple gates in parallel, results from the tensor product

of the individual gates [12]. Equation (14) shows the calculation for the circuit, which

Figure 4 depicts.

|ψ′⟩ = (CNOT)(H ⊗ I2) |ψ⟩ (14)

The identity matrix is used for wires in the circuit that have no gate on this position, en-

suring that all matrices have the same dimensions. It does not change the state of qubits

in a noise free representation.

The matrix representation of the circuit shown in Figure 4 is therefore (CNOT)(H ⊗ I2).

Note that the size of the matrix increases exponentially with the number of qubits used

7

in the circuit.

An important characteristic factor of a circuit is the circuit depth. The circuit depth is

defined as the number of gates that form the longest path from a qubit initialization to a

measurement.

2.5 Quantum Programming Languages

Quantum programming languages usually consists of the definition of a quantum circuit,

therefore, they represent the operations being applied to each of the qubits in the quan-

tum computer [13]. There are also various graphical tools for defining a quantum circuit,

however they become impracticable once the circuit reaches a certain size [13]. Quantum

circuits can be described for example in Python using frameworks such as Qiskit, PyQuil

or Cirq. These frameworks typically come with packages for describing quantum circuits

as well as compiling and simulating them [3, 5].

Almost all frameworks are able to convert their representation into OpenQASM. Open-

QASM is a programming language for describing quantum circuits and is becoming a

de-facto standard for hardware-level quantum programming [14].

2.6 Quantum Algorithms

In this section a quantum algorithm and a specialization of it, namely the Variational

Quantum Algorithm (VQA) and the Quantum Approximate Optimization Algorithm

(QAOA) are described. These algorithms are used in this thesis for a more accurate

comparison of various compiler settings.

The VQA and especially the QAOA are promising quantum algorithm. The QAOA aims

to solve combinatorial optimization problems, which are typically NP-hard and therefore

intractable to solve in the classic way.

2.6.1 Variational Quantum Algorithm

As previously stated, the QAOA belongs to the category of VQAs.

VQAs are quantum algorithms which use a hybrid approach of both classical computers

and quantum computers to solve an optimization problem [15].

The algorithm uses a circuit, that consists of a sequence of parametrized gates (see Sec-

tion 2.4.1). A cost function is established to quantify the objective of the optimization

problem. It maps the parameters of the gates in the circuit to a real number and encodes

the solution to the problem. The parameters are optimized in a hybrid quantum-classical

loop.

Figure 5 depicts the hybrid quantum-classical loop. The quantum part of the loop es-

timates the cost function by probing the parametrized circuit with parameters from the

previous optimization iteration, while a classical optimizer trains the circuit parameters

based on the cost function.

8

Quantum Computer

Classical Computer

arg min C(𝜃)

U
pd

at
e

P
ar

am
et

er
s

Hybrid classical-quantum Loop

Optimizer
M

easurem
ent Values

Figure 5: A VQA Hybrid classical-quantum Loop. Input to a VQA is the circuit with
a set of parameters θ, as well as the cost function C(θ). The quantum computer executes
the circuit while the classical computer uses the measurement values to formulate the cost
function. A classical optimizer minimizes the cost function and updates the quantum circuit
with the resulting parameters.
Source: Adapted from [15]

The output of a VQA can have multiple forms. A common way is to sample the quantum

circuit once again with the resulting parameters of the hybrid quantum-classical loop.

This would give a probability distribution of the possible algorithm result.

2.6.2 Quantum Approximate Optimization Algorithm

The QAOA is a promising approach for approximating solutions to combinatorial opti-

mization problems, which was introduced by Farhi et al. in 2014 [16]. It has gained

popularity in recent years as it is a candidate for working on noisy hardware [17].

The QAOA tries to find a solution by approximating the ground state of a cost Hamil-

tonian HC by preparing a system with the ground state of a mixer Hamiltonian HM . A

Hamiltonian is an operator that represents the total energy of a quantum system. Here

the ground state of the cost Hamiltonian HC encodes the solution to the combinatorial

optimization Problem. Typically, the mixer Hamiltonian HM is a very simple Hamiltonian

with the ground state already known. The system is then prepared with the ground state

of HM . According to the adiabatic theorem, when the system transits slowly enough from

HM to HC it will end up in the more complex ground state of HC . [16]

The mixer Hamiltonian HM is often chosen to be −∑n
j=1X

(j). Hence, the circuit is

initialized with the mixers ground state |s⟩ = |+⟩
⊗

n = 1√
2n

∑
x∈{0,1}n , where n is the

number of qubits involved. In contrast, the cost Hamiltonian HC depends on the specific

problem. However, there are already predefined cost Hamiltonians in the form of Ising

Hamiltonians for a lot of NP-complete and NP-hard problems [18].

The QAOA is constructed using an alternating approach of cost and mixer layers, labeled

as UC(γk) and UM (βk), where k is the k-th layer. The more layers a QAOA has, the more

9

accurately the result is approximated. The final state output of a QAOA circuit can be

written in the form

|ψ(γ, β)⟩ = e−iβkHM e−iγkHC ...e−iβ1HM e−iγ1HC |s⟩ . (15)

[16, 19] Using Equation (15), a circuit, depicted in Figure 6 can be created.

The set of parameters γ⃗, β⃗, are determined by minimizing a predefined cost function C(x),

in a manner of a VQA. The final solution of the QAOA is resolved by measuring the circuit

a final time with the calculated set of parameters.

|0⟩

|0⟩

...

|0⟩

H

e−iγiHC e−iβiHM

H

H

Layer i

Figure 6: General QAOA circuit representation with mixer and cost Hamiltonian.

2.6.3 Max-cut Problem Overview

In this section the Max-cut problem is introduced. It will be used in Section 7.4 as a

optimization problem for a QAOA to solve.

A commonly used combinatorial optimization problem for a QAOA to solve is the Max-cut

problem. The problem is known to be NP-complete [20]. The objective of the Max-cut

problem is to partition the nodes of a graph into two sets such that the number of edges

between these two sets is as large as possible. Figure 7 depicts a graph describing the

solution to the Max-cut problem.

Figure 7: Graph to which the Max-cut Problem is applied. Left: A graph with six nodes
and eleven edges. Each edge has the same weight. Right: Two sets of vertices. These are
colored green and yellow, respectively. The edges between those two partitions build the
cut set. The cut in this example has a size of eight.
Source: Adapted from [19]

Given a non-weighted graph G = (V,E) where V = (0, 1, . . . , n) is a set of vertices and

E ⊆ (V ×V) a set of edges, the problem can be described by finding a subset S ⊆ V such

10

that
∑

(u,v)∈E
u∈S,v∈N−S

1 reaches a maximum among all possible subsets [20].

This can also be described as a quadratic binary program, with a variable xi ∈ {−1,+1}
associated with every vertex vi ∈ V . For an arbitrary subset S, xi = 1 if vi ∈ S and −1

otherwise. The resulting equation is given by

max :
1

2

∑
(i,j)∈E

(1− xixj), (16)

with xi ∈ {−1,+1},∀vi ∈ V,∀(i, j) ∈ E. [21]

11

3 Quantum Hardware

This chapter presents an overview of the hardware approaches used to implement quantum

computers, along with their limitations and errors. In Section 3.1 and Section 3.2 today’s

physical realizations of quantum hardware are presented. The Section 3.3 discusses the

constraints and limitations these realizations have.

3.1 Noisy Intermediate-Scale Quantum Systems

In 2018 Preskill introduced the term Noisy Intermediate-Scale Quantum (NISQ). NISQ

systems are the current generation of quantum computers. They have a limited number

of qubits and high error rates. [22]

Noise is a major challenge for today’s quantum computers. This noise is caused by the

imperfection of qubits, which result in unstable states decaying over short periods. Also

the gates used to manipulate the state of qubits introduce errors in the system. A detailed

description of the faults in a gate or in a circuit can be found in chapter 3.3.3.

According to Preskill [22], ”intermediate scale” refers to a number of qubits between 50

and a few hundred. The behavior of this amount of qubits cannot be simulated by classical

computation systems. However, the number of qubits is too small for a full error correction

[22].

3.2 Physical Realizations

Currently there are several promising hardware approaches for gate-based quantum com-

puters. The following is a list of a selection of different physical realizations of a quantum

computer, each with a brief description and their respective advantages and drawbacks.

Superconducting Transmon Qubits: Superconducting transmon qubits utilize macro-

scopic quantum phenomena. This quantum behavior is due to Cooper electron pairs

that form in superconductors at extremely low temperatures.

This approach can be scaled effectively and the gate execution time is very fast.

However, a qubit is only coupled to other qubits in its direct neighborhood. Also for

the quantum phenomena to occur, extremely low temperatures are needed. [23]

Noise may be caused by imperfections in the building material as well as from ex-

ternal sources like heat [24].

Trapped Ion Qubits: In trapped ion qubits the quantum information is encoded in the

electronic energy levels of ions which are suspended in a vacuum.

Great advantages are, that the overall system can operate at room temperature

and that two-qubit operations are possible between any two qubits. The two main

drawbacks of quantum computers using trapped ion qubits are that gate execution

times are large compared to systems using transmon qubits, as well as its relatively

poor scalability. [23]

Noise can occur by external electromagnetic fields disturbing the system [24].

Photonic Qubits: In a photonic quantum computer, a qubit is represented either as the

polarization or location of a single photon.

The generation of a single qubit as well as the application of a single-qubit operation

is relatively easy. However, multi-qubit operations are very inefficient and produce

13

a large resource overhead. Also the gate-set is very limited.

Noise in photonic quantum computers can occur due to photon loss, imperfect optical

components or external environmental disturbances. [25]

Trapped ion quantum computers as well as quantum computers that are realized using a

superconducting approach are the most common ones yet [23]. The noise as well as the

other disadvantages associated with the physical implementations will persist in the NISQ

era.

3.3 Quantum Hardware Constraints

The following chapter describes the constraints of a physical realization of a quantum com-

puter in a more abstract way. A quantum compiler seeks to overcome these constraints.

Here a collection of hardware constrains is introduced, namely the limited connectivity

of qubits, the support for only native gates and inaccuracies in the circuit introduced by

noise. There are other sources of hardware constraints, including timing constraints and

other vendor-specific constraints like frequency dependent limitations.

3.3.1 Limited Qubit Connectivity

One of the most crucial factors in quantum computing that affects the architecture and

operational capabilities of quantum processors is the qubit connectivity.

A developer usually assumes an all-to-all connectivity. This would mean that every qubit

can participate with any other qubit in a multi-qubit operation. Although an all-to-all

connectivity layout would be preferable, this type of connectivity would introduce errors,

especially in quantum computers using superconducting qubits, like chance of frequency

collision, cross-talk, and spectator error [26]. Therefore, a compromise is used by limiting

the possible interactions between qubit pairs.

The possible interactions between qubits are commonly specified by the vendor with a

connectivity graph or coupling map [26, 27]. Qubits in the connectivity graph are often

referred to as physical qubits [27]. Because they are real implementations in the physical

realizations of a quantum computer.

Figure 8 depicts a connectivity graph of the IBM Quantum Falcon processor. This family

of quantum processors was introduced in 2020 and consists of 27 superconducting qubits

[26].

14

Q0

Q1Q2Q3

Q5

Q8Q9

Q11

Q14

Q4

Q7
Q6

Q10

Q13 Q12

Q15

Q18 Q17

Q21

Q16

Q20 Q19

Q22

Q25

Q26

Q24 Q23

Figure 8: Connectivity graph of the IBM Quantum Falcon processor.

The way to interpret the connectivity graph is that all nodes represent a specific physical

qubit. If two physical qubits share an edge in the connectivity graph, they can take part

together in a multi-qubit operation.

With respect to the connectivity graph of the IBM Quantum Falcon processor (depicted in

Figure 8), qubit Q6 can just be part in a multi-qubit interaction with qubit Q7. Therefore,

qubitQ6 can just perform a one-qubit or a two-qubit operation. Note that this connectivity

graph has no directed edges, which means that the assignment of the target and control

qubit in a multi-qubit operation is irrelevant.

3.3.2 Gate Sets

Every quantum programming language provides a large-scale collection of quantum gates

to use in an arbitrary algorithm [28]. However, physical realizations of a quantum com-

puter can just offer a limited set of gates. These gates are often referred to as native gates

or gate set.

The native set of the IBMQuantum Falcon processor, for example, consists of the Controlled-

X gate, the
√
X gate and a parametrized Phase gate [26].

Quantum computers using trapped ion qubits also have a finite gate set. The gate set of

IonQ Forte, a trapped ion quantum processor from IonQ, which was developed in 2022,

contains four gates. These gates are, two parametrized single-qubit gates, namely the GPi

gate as well as the Virtual Z gate, and two two-qubit gates, the Mølmer-Sørenson gate

and the ZZ gate [29].

3.3.3 Errors in Quantum Systems

In all physical realizations of quantum computers, it cannot be assumed that the quantum

system is closed. That is because the state of the quantum system is interfered by noise.

15

Specifically, the qubits and quantum gates are erroneous.

The states of the qubits are not stable, which means that it decays over a short period of

time. This phenomenon is referred to as decoherence [9].

Similarly, the gates do not manipulate the state of the qubits the way they intended to.

This results in a deviation from the expected result. This particular behavior is known as

gate fidelity [9].

The decoherence as well as the gate fidelity depends on the specific platform. Indicators

for decoherence and gate fidelity are typically published by the vendors themselves.

These indicators are analyzed in the remainder of this chapter.

Vendor Platform T1 T2 F1 F2

IBM IMBQ-Sherbrooke 271.55µs 176.81µs 99.976% 99.249%

IonQ Forte 10s− 100s 1s 99.98% 99.6%

Rigetti ANKAA-2 12.7µs 12.8µs 99.614% 90.588%

Rigetti ANKAA-9Q-1 17.6µs 4.3µs 99.3% 98.0%

Table 1: Indicators for decoherence and gate fidelity [30–32].

Table 1 contains the indicators for decoherence and gate fidelity for four selected quantum

systems.

The coherence times T1 and T2 indicate the vulnerability of a qubit to noise.

T1 is the average time in which a qubit can remain in its intended state [9]. That means

that the qubit gradually transitions from the state |1⟩ to |0⟩, indicating a bit flip. This can

be due to thermal relaxation because a qubit will slowly loose energy to its environment

over time [9].

T2 defines the average time it takes for the stability of the relative phase between states

to undergo a phase flip [9]. This means, T2 is the average duration before a superposition

state, for example |+⟩, transitions into an equal probability mixture of |+⟩ and |−⟩.

The gate fidelities F1 and F2 indicate the fidelity of a quantum operation, as quantum

gates can never be implemented perfectly. The fidelity describes how ”close” two quantum

states are. These two states are the preferred output state and the real output state after a

quantum gate operation [9]. F1 characterizes the gate fidelity of one-qubit gates, whereas

F2 characterizes the gate fidelity for two-qubit gates.

The main differences in the vendor data in Table 1 is by far the coherence times T1 and

T2. This is based on the physical realization on which the quantum computer is based on.

The vendors IBM and Rigetti provide quantum computers using superconducting qubits,

while the platform from IonQ is using trapped ions. The coherence times of IonQ’s Forte

platform is far longer than the coherence times of the other platforms. This is due to the

trapped ions technology which has longer coherence times but, as stated in Section 3.2,

also longer gate execution times [33].

Unfortunately, IBM does not provide data for the gate fidelities of IBMQ-Sherbrooke.

However, they supply the mean average error for their ECR gate and their SX gate. As

the ECR gate is their only two-qubit gate, this indicator can be used for F2 [30]. The SX

16

gate is, however, not the only one-qubit gate in their gate set, so the mean SX-error can

only be used for a rough estimation for F1.

This is also the case for the quantum computers provided by Rigetti. Rigetti provides

only F2 for their CZ gate [32]. The fidelity F2 for the XY gate, which is the only other

two-qubit gate in their gate set, is unknown.

The total error of a quantum circuit depends on the number of and type of gates in it.

With more gates acting on a qubit the probability for decoherence increases because each

gate has its own operation duration. Also the fidelity of the whole quantum circuit shrinks

as more gates are involved.

In summary, both the coherence time as well as the gate fidelity demonstrate the impor-

tance of keeping circuits as small as possible, as the probability for errors increases with

the size of the circuit.

17

4 Functionality of Quantum Compilers

In Section 3.3 the constraints for physical realizations for quantum computers are de-

scribed. A quantum compiler must take these constraints into account while compiling a

quantum circuit to a specific platform. This chapter describes a general procedure for the

compilation process.

In Section 4.1 a general description of the gate translation procedure is provided. Sec-

tion 4.2 and Section 4.3 discuss the mapping and routing approaches of a compiler. Finally,

Section 4.4 provides an overview of optimization techniques a quantum compiler possesses.

A quantum compiler receives the quantum circuit provided by the developer and a de-

scription of the backend on which the circuit will be executed. The basic description for

a backend is made up of a coupling map and a gate set.

The task of the compiler is to transform the input circuit into a new quantum circuit which

just contains gates from the gate set of the backend and has its multi-qubit operations

just on qubits that share an edge on the coupling map. Some compilers additionally run

optimizations to decrease the overall circuit depth, which reduces the impact of noise. In

order to compile a circuit to the designated backend, the compiler chains multiple algo-

rithms into a compilation pipeline.

There are four distinct tasks into which the compilation process can be subdivided: Gate

Translation, Initial Mapping, Routing, and Optimization.

The following sections provide a detailed description of these tasks and discuss specific

solution approaches. These approaches are used in the compilers that this thesis will focus

on later.

4.1 Gate Translation

Like described in Section 3.3.2 the amount of different gates a backend usually provides is

finite. The task of the compiler is to generate a new circuit, that is approximately identical

to the input circuit, but only consists of gates that are in the gate set of the backend.

In classical computation, every arbitrary circuit can be produced by just using NAND

gates. This means that, every arbitrary gate can be replaced with a combination of

NAND gates. That is because this gate is one of the universal logic gates.

In quantum computing, a similar universality concept exists. The gate set a backend pro-

vides is usually a universal gate set. A set of gates is considered universal for quantum

computation if any unitary operation can be approximated to any degree of accuracy by

a quantum circuit [9] using only gates contained in this gate set. Every arbitrary unitary

matrix U on an n qubit system can be decomposed into a product of two-level unitary

matrices. A two-level unitary matrix can be implemented by using a single qubit unitary

in combination with a CNOT gate. Gates in a universal gate set can approximate a single

qubit unitary to an arbitrary precision. [9]

19

U =

U

U

=

U

U

U U

≈

SX X

RZ

RZ SX RZ X

Figure 9: A general decomposition chain for a backend with a gate set consisting of SX,
X, CNOT and RZ gates.

By using this decomposition chain, a compiler can break down any unitary into gates from

the universal gate set of the backend. Such a decomposition chain for a backend with a

gate set consisting of SX, X, CNOT and RZ gates is depicted in Figure 9. In addition

to the goal of approximating the input circuit to a given degree, the circuit depth of the

produced circuit should be as small as possible. That is due to the gate infidelities and

the resulting overall circuit error, which is described in Section 3.3.3. A typical algorithm

for the decomposition is the Solovay-Kitaev theorem that can approximate a unitary that

acts on one qubit with single-qubit gates from a finite set [34]. Another approach would

be the KAK decomposition, which decomposes a two-qubit unitary into a sequence of

CNOT gates and one-qubit gates [35]. The solution algorithm for the gate translation of

the individual compilers are explained in more detail in Section 5.

4.2 Initial Mapping

As already briefly mentioned in Section 3.3.1 the qubits in a backend, namely in the

connectivity graph, are referred to as physical qubits [36]. The qubits in the circuit are

referred to as logical qubits [36].

During the initial mapping stage, the compiler has to map the logical qubits to physical

qubits prior to circuit execution [27]. This relabeling process does not introduce any ad-

ditional gates to the circuit. In the literature, the initial mapping as well as the routing

stage are often combined in one step, as the initial mapping is mandatory for the routing

to take place [36, 37].

For example, a trivial initial mapping could be to map every logical qubit qi to a physical

qubit Qi, i.e., qi 7→ Qi. However, this specific mapping is not aware of the circuit it is for

and is therefore probably not the best option, as an example in the following section shows.

It is not guaranteed that this mapping will satisfy the connectivity constraint for every

circuit. But an advanced initial mapping strategic can reduce the additional gates which

the routing stage otherwise must add.

The major challenge of the initial mapping is, that as the size of the connectivity map

increases, it becomes increasingly difficult to find a perfect solution, as the mapping prob-

lem has been proven to be NP-complete [38].

20

This thesis describes initial mapping strategics of different compilers in Section 5.

4.3 Routing

As mentioned in Section 3.3.1 the qubits on a backend may have a limited connectivity.

That means, the backend limits the possible interactions between qubit pairs. A multi-

qubit operation just can be applied to qubits which share an edge on the connectivity

graph. The quantum compiler has to place the multi-qubit operations on qubits that ful-

fill this condition.

For many circuits, an initial mapping is not sufficient to satisfy the connectivity con-

straints. Therefore, the mapping must be adjusted during the circuit execution.

In order to fulfill these constraints, the circuit must be adapted so that the qubits are

remapped within the circuit. This can be achieved by SWAP gates. As the name suggests,

the SWAP gates swaps the state of two qubits. Figure 10 depicts a SWAP gate and suggests

a decomposition into three CNOT gates.

q0

q1
≡

q0

q1

Figure 10: SWAP gate in combination with a decomposition into three CNOT gates.

As mentioned in Section 2.4.1 a CNOT operation has the notation |A,B⟩ → |A,A⊕B⟩.
Therefore, three CNOT operations, as depicted in Figure 10, operate on a two-qubit

register, so that

|A,B⟩ → |A,A⊕B⟩
→ |A⊕ (A⊕B), A⊕B⟩ = |B,A⊕B⟩
→ |B, (A⊕B)⊕B⟩ = |B,A⟩ .

(17)

It can be observed, that the three CNOT operations, depicted in Figure 10, and therefore

the SWAP operation, indeed swap the quantum states of a two-qubit register. Before per-

forming a multi-qubit operation, the compiler must add SWAP gates to generate a new

mapping that satisfies the connectivity constraint, if the logical qubits are not already

mapped to physical qubits that meet this requirement.

The primary goal of this stage is to identify paths in the connectivity graph connecting

two physical qubits. Swap operations are subsequently implemented along the path.[27]

This task is known to be NP-complete [39].

As with the gate translation task, the compiler should aim to minimize the number of

added SWAP gates to reduce the overall circuit error.

The following example should clarify the connection of the role between the initial map-

ping and the routing stage. Figure 11 depicts a circuit going through the initial mapping

and the routing stages of a quantum compiler.

Figure 11(a) shows the connectivity graph of a given backend. The circuit, depicted in

21

Figure 11(b), consists of four qubits and six CNOT gates. First, a trivial mapping is

performed such that qi 7→ Qi with i ∈ {0, 1, 3}. With this mapping, the CNOT gate

between q1 and q3 does not satisfy the connectivity constraints of the connectivity graph.

Therefore, the compiler has to add a SWAP gate to create a new mapping. This new

mapping now allows a two-qubit operation between q1 and q3, since q1 is now mapped to

Q2. However with this new mapping, the upcoming CNOT operation between q2 and q3

is not allowed as the logical qubits q2, q3 are now mapped to Q1, Q3 respectively. That is

why the compiler adds another SWAP operation to restore the mapping from the begin-

ning. Now all remaining CNOT operations fulfill the connectivity constraint.

In Figure 11(c) the same circuit is depicted. However, it has a more advanced initial

mapping. It can be seen that there is now no additional routing required by the compiler

because every multi-qubit operation in the circuit satisfies the connectivity constraint.

This example should emphasize the importance of an advanced initial mapping strategic.

The process of the mapping does not introduce additional gates to the circuit and therefore

does not increase the overall circuit error.

Q0

Q2

Q1

Q3

(a)

q0 7→ Q0

q1 7→ Q1

q2 7→ Q2

q3 7→ Q3

Q0 Q0

Q2 Q1

Q1 Q2

Q3 Q3

q0 7→ Q0

q1 7→ Q1

q2 7→ Q2

q3 7→ Q3

(b)

q0 7→ Q3

q1 7→ Q0

q2 7→ Q1

q3 7→ Q2

(c)

Figure 11: Example of an initial mapping with a subsequent routing.

The routing stage needs an initial mapping for the routing process. A good initial mapping

can, of course, in some cases make the routing unnecessary.

This thesis describes routing strategics of different compilers in Section 5.

4.4 Optimization of Quantum Circuits

As stated in Section 3.3.3 the quantum operations are prone to noise and therefore possess

a degree of infidelity. Thus, it is desirable to have a circuit with minimal gates and low

22

circuit depth.

Optimization is crucial at every stage of a quantum compiler. Especially since routing and

initial mapping are NP-complete and therefore an exact solution is not feasible for large

circuits [38, 39]. For this reason, optimization methods are used at these stages.

However, optimization can also be used as a separate stage. In this case, the entire circuit

is analyzed and optimized.

The objective for a quantum compiler in the optimization stage is to reduce the overall

circuit depth and the number of gates while maintaining the circuit’s fidelity as much as

possible.

There are mainly two possibilities to optimize a quantum circuit.

The first is through lossless optimization, achieved by removing unnecessary or redundant

gates [3, 7]. For example, two CNOT gates, placed back-to-back, would cancel each other

out. Therefore, the gates can be removed from the circuit.

The second possibility is an approximation of unitaries or a group of gates. This can lead

to a higher infidelity of the circuit. However, this procedure can result in a lower circuit

depth and therefore reduce the error [37].

This thesis describes optimizing strategics of different compilers in Section 5.

23

5 In-Depth Analysis of Quantum Compilers

This chapter presents a detailed analysis of three selected and commonly used quantum

compilers, focusing on their compilation strategies.

One of the main contributions of this thesis is the thorough, and in-depth analysis of these

compilers. Such an analysis of the functionality is important for several reasons. Firstly,

it provides a basis for a fair comparison. Secondly, it gives developers a foundation for

decision-making. This can help them decide which compiler to use for which specific pur-

pose.

Although such an analysis is essential for the reasons mentioned above, it does not yet

exist in this depth.

The chapter is structured as followed: In Section 5.1 an analysis of the BQSKit is provided.

Section 5.2 gives an overview of the approaches the TKET compiler uses. Subsequently,

Section 5.3 presents an analysis of the workflows of the Qiskit compiler.

There are several quantum compilers and frameworks that also contain compilers. These

include Google’s Cirq, Rigetti’s Quilc, Microsoft’s Quantum Dev Kit, Xanadu’s Penny-

Lane, IBM’s Qiskit, Quantinuum’s TKET, and Lawrence Berkeley National Laboratory’s

BQSKit.[3–8].

However, this thesis will limit the analysis and evaluation to only three compilers. These

are Qiskit, TKET and BQSKit. Each of these compilers has a different approach.

Qiskit is an open-source quantum framework widely used in the field. It also has com-

pilation capabilities [3]. TKET is an open-source, language-agnostic quantum compiler

capable of generating code for a variety of NISQ devices [7]. BQSKit is a quantum com-

piler with its focus on circuit optimization [8].

As these compilers are all open-source, they are all updated frequently. Consequently, this

analysis represents a snapshot of the current versions. The versions that are part of this

thesis are Qiskit 1.0.0, TKET 1.25.0 and BQSKit 1.1.1.

5.1 Analysis of BQSKit

The Berkeley Quantum Synthesis Toolkit (BQSKit) is a quantum compiler framework

which can compile quantum circuits for any backend [8]. It can compile a given circuit to

any backend, as long as the gates from the universal gate set are known to BQSKit. It

highly focuses on circuit optimization and uses a bottom-up synthesis approach for this

[37]. The compilation process can be executed with four different levels of optimization

[8].

The algorithms that are responsible for the compilation process are described in the fol-

lowing sections. The optimization of the system is mainly carried out by two algorithms,

LEAP and QSearch. Since LEAP is simply a specification of QSearch, this text will focus

on providing a more detailed description of QSearch.

5.1.1 QSearch

QSearch is a synthesis algorithm that can compile arbitrary unitaries into a sequence of

two-qubit and single-qubit gates that are in the gate set. It is also aware of connectivity

25

constraints. [37]

Since each sequence of gates can be described as a unitary matrix, as described in Sec-

tion 2.4.2, this algorithm can be used to compile any circuit onto an arbitrary backend.

Basically, QSearch spans a tree of possible solutions to synthesize a given unitary. It uses

an A* algorithm to find the solution that is closest to the unitary. [37]

The A* algorithm is a graph traversal method for finding the shortest path between two

points. The main advantage of the A* algorithm in contrast to other shortest path algo-

rithms is the use of a heuristic function. This heuristic function estimates the cost from a

given node to the goal, which helps the algorithm to prioritize nodes that are more likely

to lead to the shortest path. [40]

Like stated above, the core of QSearch is a tree which is evolving during the algorithm. The

root node describes a circuit structure with one U3 gate acting on each qubit separately.

The algorithm expands the tree by placing successor nodes, a CNOT gate followed by one

U3 gate on each of the two involved qubits, on each possible qubit line. In this process, the

connectivity constraint is taken into account. An optimization function then determines

the parameter of the U3 gates, by minimizing the distance between the target unitary

Utarget and each node. The A* algorithm selects the successor node that minimizes the

estimated total cost of the path from start to finish. These costs f(n) are specified by the

amount of CNOT gates as well as the distance from the circuit to Utarget. This process

is repeated until the distance between Utarget and a node meets a certain threshold. This

node represents the synthesized circuit. [37]

Figure 12 depicts the evolution of the tree which is used in QSearch.

26

Figure 12: The evolution of the QSearch Tree. The tree is expanded from the root node,
left in the picture, with successor nodes. A successor node consists of a CNOT gate and two
U3 gates. The tree is expanded until the distance to Utarget meets a certain threshold. The
path on which the tree is expanded is chosen by a A* algorithm with the heuristic function
f(n). In this example, the algorithm selects the path highlighted in blue.
Source: [37]

Davis et al. also deliver a proof that this method works for any circuit that can be con-

structed with a finite number of CNOT and U3 gates [37]. While theoretically capable of

solving for any circuit size, in practice, the scalability of QSearch is limited to four qubits

[41]. This is, among other factors, due to the long backtracking chains [42]. Furthermore,

as it converts the whole circuit to a single unitary, the complexity of QSearch is exponen-

tial to the number of qubits used in the circuit.

The QSearch algorithm can be considered both a routing algorithm (Section 4.3) and an

optimization algorithm (Section 4.4).

5.1.2 Larger Exploration by Approximate Prefixes

Larger Exploration by Approximate Prefixes (LEAP) is a synthesis algorithm based on

the QSearch framework, which is described in Section 5.1.1. It aims to improve the scala-

bility and reduce the computational requirements. It achieves this by using an incremental

approach that divides the synthesis process into segments and optimizes each one individ-

ually, which also reduces the frequency of backtracking. Therefore, it reduces complexity

and search space by a divide-and-conquer method. [42]

Unlike QSearch, LEAP scales up to six qubits and according to Smith et al. LEAP can

compile four qubit unitaries up to 59 times faster than QSearch, although it usually results

in the same circuit depth [42].

However, it also considers the whole circuit as a unitary and therefore suffers from an

exponential complexity just like QSearch.

27

5.1.3 SWAP-based BidiREctional Heuristic Search Algorithm

The SWAP-based BidiREctional heuristic search algorithm (SABRE) is an algorithm to

approximate a solution for the mapping problem. The basic idea of SABRE is to get an

initial mapping by using a reverse traversal technique. [36]

The core of SABRE is a SWAP-based heuristic search algorithm. This routing algorithm

basically parses the circuit from left to right. If a two-qubit operation in the circuit does

not fulfill the connectivity constraint, the routing algorithm finds a path in the connectiv-

ity graph with the help of a heuristic function. Based on this path, SWAP gates will be

added to the circuit for the routing. [36]

The heuristic function is based on a Nearest Neighbor cost function, which prefers a route

to the nearest physical qubit that satisfies the connectivity constraint [36].

To enable a look-ahead ability, not only the current two-qubit operation is considered,

but also a set of future two-qubit operations. This ensures that routes are considered,

which may not necessarily be the shortest path to physical qubits that allow for two-qubit

operations. However, the sum of the routes for these two-qubit operations, together with

upcoming ones, may be significantly lower. [36]

Besides the Nearest Neighbor cost function and the look-ahead ability, the heuristic func-

tion also introduces a decay effect, which penalizes routes that traverse qubits that were

recently involved in another route. This decay effect makes sure that the heuristic search

will tend to select SWAP operations that do not overlap, thus increasing the potential for

parallelism in the resulting circuit. [36]

To generate an initial mapping, the SWAP-based heuristic search algorithm is performed

twice. The two generated circuits are depicted in Figure 13. First, an initial mapping is

randomly generated, followed by the application of a SWAP-based heuristic search to tra-

verse the original circuit. This gives a final mapping, which is obtained by the remapping

of the inserted SWAP operations. The final mapping obtained from this forward traversal

is then used as the initial mapping in the subsequent reverse traversal. As all quantum

operations, besides operations that collapse the quantum state, are reversible, a reverse

circuit can be generated [10]. Figure 13 shows a reverse circuit. It is generated by inserting

the CNOT operations present in the original circuit, parsed from right to left. One-qubit

operations can be neglected here, as they do not affect the connectivity constraints. The

same SWAP-based search is used with only the circuit reversed, and the original initial

mapping is updated to the final mapping in the reverse traversal. This final mapping is

the output from the SABRE algorithm. [36]

q1

q2

q3

q4

q5

q6

q1

q2

q3

q4

q5

q6

Original Circuit Reverse Circuit

In
itia

l M
a
p

p
in

g

F
in

a
l M

a
p

p
in

g

U
p

d
a
ted

 In
itia

l

M
a
p

p
in

g

Figure 13: SABRE Reverse Traversal Technique. Produce an initial mapping by using a
reverse traversal technique.
Source: [36]

28

5.1.4 Permutation-Aware Synthesis

The Permutation-aware synthesis (PAS) is an extension to already described synthesis

algorithms (see Section 5.1.1, Section 5.1.2).

The algorithm aims to find a permutation of the input and output qubits in order to

change the unitary matrix. This can result in shorter circuits. [43]

However, as there are n!× n! permutations available, finding the best one is not feasible.

Therefore, the already synthesized circuit is vertically partitioned into multiple blocks.

The block is subsequently resynthesized for each possible unique permutation that also

satisfies the connectivity constraint. [43]

The permutation-aware mapping algorithm uses the concept of SABRE, but with a heuris-

tic search algorithm that considers the previously found permutations. The routing algo-

rithm, that is aware of permutations, inserts SWAP-gates based on the heuristic search

algorithm. [43]

5.1.5 Compilation Pipeline

BQSKit has four compilation pipelines build in its framework. According to their doc-

umentation, the workflows have increasing optimization capabilities, which decreases the

depth of the circuits [8].

This chapter provides a detailed description of the four workflows. These workflows will

be evaluated in Section 7.1.3. Each workflow is a sequence of different subworkflows.

In the following section, each of the optimization workflows is divided into their subwork-

flows. Subsequently, each of these subworkflows is described in detail.

The information presented in this section is derived from the source code of BQSKit [8].

29

multi_qudit_retarget_workflow

sabre_mapping_workflow

multi_qudit_retarget_workflow

single_qudit_retarget_workflow

(a) BQSKit compilation workflow

for optimization level 1.

multi_qudit_retarget_workflow

sabre_mapping_workflow

multi_qudit_retarget_workflow

single_qudit_retarget_workflow

gate_deletion_optimization_workflow

(b) BQSKit compilation workflow

for optimization level 2.

multi_qudit_retarget_workflow

sabre_mapping_workflow

multi_qudit_retarget_workflow

resynthesis_optimization_workflow

single_qudit_retarget_workflow

gate_deletion_optimization_workflow

(c) BQSKit compilation workflow

for optimization level 3.

seqpam_mapping_optimization_workflow

multi_qudit_retarget_workflow

resynthesis_optimization_workflow

single_qudit_retarget_workflow

gate_deletion_optimization_workflow

(d) BQSKit compilation workflow

for optimization level 4.

Figure 14: BQSKit compilation workflows for the four different optimization levels.

Figure 14(a) depicts the workflow for the first optimization degree. The first optimization

level leads to a workflow that is divided into three distinct subworkflows, namely the multi-

qudit retarget workflow, the sabre-mapping workflow, themulti-qudit retarget workflow, and

the single-qudit retarget workflow.

Figure 15 shows the process of the multi-qudit retarget workflow. The objective of this

workflow is to ensure that the circuit contains only multi-qubit gates that are also included

in the gate set of the backend. The primary operations are conducted by the standard

search synthesis workflow or, alternatively, by the AutRebase2QuditGatePass.

The standard search synthesis workflow executes the QSearch algorithm, described in

Section 5.1.1 if the circuit has a width of three or less. For larger widths, the LEAP

algorithm that is described in Section 5.1.2 is used. This differentiation is important for

the scalability of the QSearch algorithm. Both algorithms synthesize the circuit so that it

contains only gates from the backends gate set.

30

The AutoRebase2QuditGatePass substitutes the two-qubit operations in the circuit with

gates from the gate set of the backend. This is achieved by an instantiation method that

replaces each two-qubit gate with a collection of at most three quantum gates from the

backends gate set [8].

The three algorithms lead to the same result, namely that all multi-qubit operations that

remain within the circuit, are included in the gate set of the backend.

multi_qubit_retarget_workflow

FillSingleQuditGatesPass

unitarys > 2 are in circuit or modeltrue false

standard_search_synthesis_workflow

circuit width < 3true false

QSearchSynthesisPass LEAPSynthesisPass

AutoRebase2QuditGatePass

ScanningGateRemovalPass

false
multi-qubit gates in circuit, which are in gate set true

false
circuit width < 2 true

Figure 15: A flowchart of the multi-qudit retarget workflow used in BQSKit.

sabre_mapping_workflow

GeneralizedSabreLayoutPass

GeneralizedSabreRoutingPass

Figure 16: A flowchart of the SABRE mapping workflow used in BQSKit.

Figure 16 depicts the process of the sabre mapping workflow, which is performed after the

multi-qudit retarget workflow. This workflow consists of the GeneralizedSabreLayoutPass

and the GeneralizedSabreRoutingPass.

The GeneralizedSabreLayoutPass finds an initial mapping by executing the SABRE algo-

31

rithm that is described in Section 5.1.3. Subsequent after this, the GeneralizedSabreRout-

ingPass is performed, utilizing the SABRE heuristic to perform the routing and fulfill the

connectivity constraint.

After the sabre mapping workflow, the compiler runs the multi-qudit retarget workflow

again. This ensures that any SWAP operation that may have been introduced during the

sabre mapping workflow are substituted with gates that are included in the gate set of the

backend.

single_qubit_retarget_workflow

GroupSingleQuditGatePass

ScanningGateRemovalPass

model has general single gatetrue false

GeneralSQDecomposition model has (RZ or U1) and (SX or RX)true false

ZXZXZDecomposition QSearchSynthesisPass

true
one-qubit gates in circuit are in gate set false

true
no one-qubit gate is in gate set false

false
one-qubit gates in circuit are in gate set true

Figure 17: A flowchart of the single-qudit retarget workflow used in BQSKit.

The final process in the workflow generated for optimization level 1, is the single-qudit

retarget workflow, which is depicted in Figure 17. In this process, all one-qubit gates are

substituted with gates from the backends gate set.

The circuit is initially passed to the ScanningGateRemovalPass, where it is scanned from

left to right. A one-qubit gate is removed, if the circuit’s fidelity remains in a specified

threshold after the removal. If this algorithm has successfully removed all the gates that

are not in the native gate set, the workflow comes to an end. However, if there are still

one-qubit gates that are not in the native gate set, these gates will be decomposed in the

subsequent steps.

The single-qudit retarget workflow contains three decomposition algorithms. The Gener-

alSQDecomposition only works, if the native gate set includes a GeneralGate, which in

BQSKit is a gate that parametrizes any unitary [8]. If the backend’s gate set contains a

32

RZ gate and either a
√
X gate or a RX gate the compiler runs the ZXZXZDecomposition

task. This algorithm substitutes a one-qubit gate with a sequence of RZ gates and RX

gates [8]. If the native gate set does not contain any of the above gates, the QSearch

algorithm is applied. It synthesizes the circuit with gates from the gate set.

In either way, after the single-qudit retarget workflow, the circuit just contains gates that

are included in the native gate set.

The workflow generated for the second optimization level is depicted in Figure 14(b).

It can be observed that the workflow differs only in the addition of the gate-deletion

optimization workflow at the end of the process.

gate_deletion_optimization_workflow

ScanningGateRemovalPass

circuit has changed? true

false

Figure 18: A flowchart of the gate-deletion optimization workflow used in BQSKit.

Figure 18 illustrates the process of the gate-deletion optimization workflow, which runs

the ScanningGateRemovalPass until the circuit reaches a stable state, wherein no gates

have been removed.

This workflow with the second optimization level produces circuits with at most the same

number of gates or fewer than a circuit produced by the previous workflow.

Figure 14(c) depicts the workflow produced for the third optimization level. It introduces

a new subworkflow, namely the resynthesis-optimization workflow.

The resynthesis-optimization workflow, illustrated in Figure 19, runs the standard search

synthesis workflow, until the number of multi-qubit gates remains unaltered.

33

resynthesis_optimization_workflow

standard_search_synthesis_workflow

circuit width < 3true false

QSearchSynthesisPass LEAPSynthesisPass

false
circuit width < 2 true

amount of mutli-qubit gates have changed? true

false

Figure 19: A flowchart of the resynthesis-optimization workflow utilized in BQSKit.

The last workflow generated for the third optimization level is depicted in Figure 14(d).

Here, the initial mutli-qudit retarget workflow as well as sabre-mapping workflow are

replaced by the seqpam-mapping optimization workflow.

seqpam_mapping_optimization_workflow

circuit width < 4true false

EmbedAllPermutationsPass
QSearch

EmbedAllPermutationsPass
LEAP

PAMLayoutPass

PAMRoutingPass

false
circuit width < 2 true

Figure 20: A flowchart of the seqpam-mapping optimization workflow used in BQSKit.

The seqpam-mapping optimization workflow uses the PAS algorithm, described in Sec-

tion 5.1.4, for finding an initial mapping and subsequently generating a routing with a

34

potential lower two-qubit count.

For both tasks, the EmbedAllPermutationsPass initially generates permutations for either

the QSearch or the LEAP algorithm, depending on the circuit width. Subsequently, the

PAMLayoutPass and the PAMRoutingPass calculate the initial mapping and the routing,

respectively.

The workflow generates circuits that satisfy the connectivity constraint and is expected to

introduce fewer CNOT gates in the routing process than other algorithms such as SABRE

[43].

All of these optimization workflows are evaluated in chapter Section 7.1.3.

5.2 Analysis of TKET

The TKET compiler, developed by Cambridge Quantum Computing, is a quantum com-

piler designed for NISQ devices. The compiler is retargetable and language agnostic. This

means that it can parse input from a wide range of quantum software platforms and can

generate circuits for many different quantum devices. [7]

The compilation process ca be split into two phases. A backend-independent optimization

phase, with the objective to reduce the circuit depth, and a backend-dependent phase that

prepares the circuit to be run on the backend. [7]

In contrast to BQSKit and Qiskit, TKET does not provide a general compilation routine,

rather it defines a separate compilation pipelines for each supported backend. However,

it is possible to define own compilation pipelines for custom backends. [7]

The chapter first covers the backend-dependent phase, consisting of the mapping and rout-

ing algorithm. Subsequently, the two main optimization techniques, namely the peephole

optimization and the macroscopic optimization, used by TKET are described.

5.2.1 Graph Placement

TKET uses an initial mapping method called graph placement. It uses a heuristic which

tries to maximize the number of two-qubit operations at the beginning of the circuit which

can be performed without additional routing. [7]

To accomplish that, the mapping problem, which is described in Section 4.2, is cast as a

subgraph isomorphism problem [7]. Given two graphs G1 and G2 the subgraph isomor-

phism problem is the problem of finding a subgraph in G2 that is isomorphic to G1. Two

graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a bijective function

f : V1 7→ V2 such that iff (u, v) ∈ E1, then (f(u), f(v)) ∈ E2. [44]

For this task, the circuit is represented as an interaction graph GI . Each logical qubit

is identified by a vertex and a multi-qubit operation is depicted as an edge between the

vertices that represents the qubits the operation acts on. [7]

The graph placement searches for a subgraph isomorphism between GI and the connec-

tivity graph GC from the backend. If no isomorphism can be found, an edge from GI

is removed. Edges that belong to operations that are scheduled for a later point in the

circuit are more likely to be removed. Each vertex that does not have an edge anymore

35

is removed from GI . The algorithm repeats this process until a subgraph isomorphism is

found. The founded subgraph serves as the initial mapping.[7]

5.2.2 Routing Approach

The routing algorithm from TKET, begins with an initial partial placement, which is

identified by the graph placement algorithm. It then proceeds to add SWAP operations

until the connectivity constraint is fulfilled.

Like SABRE, the routing algorithm makes use of a nearest neighbor heuristic. In addition

to that, if this heuristic produces multiple routes with an equal ranking, it generates a

tree with a branch for each possible route. With the help of this tree, the costs for future

routes are calculated, until a winning route is identified. [7]

5.2.3 Peephole Optimization

The peephole optimization uses a sliding window which traverses the circuit and searches

for small patterns that are replaceable with equivalent substructures. Substructures that

are eligible for this replacement have a lower gate count or contribute to a smaller circuit

depth. The peephole optimization is generic and therefore not adjustable for a specific

application. [7]

In TKET, the gate set of the circuit is converted to a set of Clifford gates [7]. This

set includes the Hadamard gate, the CNOT gate and the RZ(
π
2) gate [10]. A variety

of simplification techniques are available for circuits consisting of Clifford gates [7, 45].

Figure 21 depicts two example circuits constructed with Clifford gates that can be reduced

to equivalent circuits containing fewer CNOT gates.

−→

(a)

RZ(
π
2)

−→
RZ(

π
2)

H H RZ(
π
2)

(b)

Figure 21: Simplification techniques for Clifford gates. Both circuit snippets (left) can be
reduced to structures with a lower CNOT gates count (right).
Source: Adapted from [7]

In addition to the Clifford simplification approach, TKET also uses the sliding window to

identify long sequences of gates over one or two qubits. The compiler performs a KAK or

a Euler decomposition if the resulting sequence helps to reduce the CNOT gate count.[7]

The advantage of the decomposition algorithms is that they define an upper bound on the

resulting gate count [35].

Both methods, which use the sliding window of the peephole optimization, have the po-

tential to reduce the number of CNOT gates.

36

5.2.4 Macroscopic Optimization

In contrast to the peephole optimization, the macroscopic optimization aims to identify

high-level structures and subcircuits within the circuit. This optimization method depends

on the specific quantum algorithm which the circuit implements. The components of the

quantum algorithm are analyzed, and an attempt is made to substitute these components

with equivalent structures that either have fewer CNOT gates by default or structures

that can be more effectively optimized by the peephole optimization. [7]

The macroscopic optimization method requires a circuit representation which labels sep-

arate components in the quantum algorithm [7]. In the conception chapter of this thesis,

OpenQASM is used as the main representation of the circuit. As OpenQASM is a low-

level description of quantum circuits with a primary focus on gate-level operations, the

macroscopic optimization is not able to identify high-level structures in the circuit.

5.2.5 Compilation Pipeline

As stated in Section 5.2, TKET does not provide a general compilation pipeline. Each

backend, which is supported by the compiler, has a separate defined compilation routine.

In Section 6.5, a general compiler pipeline using the algorithms provided by TKET is

designed and discussed.

5.3 Analysis of Qiskit

Qiskit is an open-source quantum computing framework developed by IBM. The frame-

work is designed to operate with a quantum computer at the application, circuit, and

pulse levels, respectively. It contains multiple tools for circuit compilation, building appli-

cations, simulating quantum hardware and for quantum hardware calibration. Although

it is primarily developed to operate with the quantum computers provided by IBM, it can

also be utilized to design algorithms that can be executed on any quantum hardware that

supports a Qiskit input or a circuit representation in OpenQASM.

5.3.1 Overview of the Transpiler

The compilation tool as defined in Section 4 is called transpiler in Qiskit. As with BQSKit,

the transpiler is capable of generating circuits for an arbitrary backend that is defined by

a connectivity graph and a gate set. There is already a pre-built compilation pipeline

with four different optimization levels. These levels are numbered sequentially from 0

to 3. It uses already discussed algorithms like SABRE (Section 5.1.3) and the subgraph

isomorphism placement algorithm (Section 5.2.1). This compilation pipeline is described

in depth in this chapter.

For each optimization level, the pre-built compilation pipeline defines a different workflow.

However, these workflows can be divided into eight distinct stages, which are as follows:

Pre-Init stage: Checks if the circuit contains instructions that are not supported.

Init stage: High-level structures in the circuit are decomposed. All unitaries that

remain in the circuit, act on no more than qubits.

37

Layout stage: Logical qubits are mapped to the backends physical qubits.

Routing stage: SWAP gates are added to fulfill the connectivity constraint.

Translation stage: All gates in the circuit are translated to gates from the gate

set of the backend.

Pre-Optimizing stage: Prepares the circuit for the optimization.

Optimization stage: Optimization methods are applied in order to reduce the

sources of noise-related errors.

Scheduling stage: Improves the scheduling of the circuit on the backend.

Each of these stages contains multiple algorithms that are applied to the circuit. However,

it is possible to replace each of these stages with a self-defined stage.

The following is a description of all the stages for each level of optimization.

5.3.2 Compilation Pipeline

The information presented in this section is derived from the source code of Qiskit [3].

As stated, the pre-init stage checks the circuit for flow control instructions which are not

supported by Qiskit. Therefore, the stage does not result in any circuit modifications at

any optimization level. Consequently, it is not addressed further in this context.

The initial stage ensures that all unitaries that work on more than two qubits are decom-

posed or in the native gate set. This process is the same for the first three optimization

levels. In the fourth level, further optimization passes are appended.

38

init

UnitarySynthesis
min_qubits = 3

HighLevelSynthesis
min_qubits = 3

basis_gates is Nonetrue false

Unroll3qOrMore BasisTranslator
min_qubits = 3

(a) Flowchart of Init-stage in the first three

optimization levels.

init

UnitarySynthesis
min_qubits = 3

HighLevelSynthesis
min_qubits = 3

basis_gates is Nonetrue false

Unroll3qOrMore BasisTranslator
min_qubits = 3

OptimizeSwapBeforeMeasure

RemoveDiagonalGatesBeforeMeasure

InverseCancellation

(b) Flowchart of Init-stage in the fourth op-

timization level.

Figure 22: The workflow of the init stage for all four optimization levels. For the first
three levels on the left and for the fourth optimization level on the right.

Figure 22 illustrates the initial stage of the Qiskit compiler. The UnitarySynthesis pass

at the beginning of the workflow synthesizes unitaries. The gates to which a unitary is

synthesized are part of the native gate set.

Subsequently, higher-level objects as well as custom definitions are unrolled in the High-

LevelSynthesis pass. Should a gate set exist, the BasisTranslator pass translates all in-

volved gates according to an equivalence library. If there are no native gates, the Un-

roll3qOrMore pass recursively expands gates that act on more than two qubits until the

circuit contains gates with two-qubit and one-qubit gates.

All of these passes just act on objects in the circuit that act on three or more qubits.

In addition to that, the workflow for the fourth optimization level appends three different

optimization passes, namely OptimizeSwapBeforeMeasure, RemoveDiagonalGatesBefore-

Measure, InverseCancellation. These processes remove unnecessary and redundant gates

and perform a relabeling on the qubits if necessary.

All of these two workflows decompose unitaries that act on more than three qubits. How-

ever, the workflow for the fourth optimization level has the potential to reduce the gate

count.

39

layout

SetLayout
initial_layout

TrivialLayout

false
property layout is set true

true
coupling_map or initial_layout exists false

(a) Flowchart of layout stage for

optimization level 0.

layout

SetLayout
initial_layout

TrivialLayout

CheckMap
sets property is_swap_mapped

false
property layout is set true

VF2Layout

true
property is_swap_mapped is False false

BarrierBeforeMeasurements

SabreLayout

false
VF2 match was found true

true
coupling_map or initial_layout exists false

(b) Flowchart of layout stage for

optimization level 1.

layout

SetLayout
initial_layout

VF2Layout

false
property layout is set true

BarrierBeforeMeasurements

SabreLayout

false
property _vf2_match_not_found true

true
coupling_map or initial_layout exists false

(c) Flowchart of layout stage for

optimization level 2-3.

Figure 23: The workflow of the layout stage that is responsible for determine and set the
initial mapping.

The workflows for the layout stage is depicted in Figure 23. There are three distinct work-

flows, as the optimization levels 2 and 3 share the same.

All three workflows require a coupling map, or a predefined initial layout, to begin. If

a predefined layout exists, it is set by the SetLayout pass, and the routine would then

conclude without further processing.

The workflow for the first optimization level runs the TrivialLayout pass to identify an

initial mapping. It maps each logical qubit qx to a physical qubit Qx, qx 7→ Qx. This

mapping process is not aware of the circuit and does not aim to improve the subsequent

routing routine.

The second optimization level, depicted in Figure 23(b), also initially runs the TrivialLay-

out pass. However, subsequent to this, it checks whether the mapping already satisfies

the connectivity constraint. This ensures that the VF2Layout pass is only executed when

necessary. The VF2Layout pass is similar to the graph placement algorithm described

in Section 5.2.1 in TKET, with the exception that edges from the circuit graph are not

40

removed in the event that no result is obtained. Should a mapping be retrieved by the

VF2Layout pass, the workflow will conclude. Furthermore, an additional routing is not

required as this layout would fulfill the connectivity constraints. If, however, no mapping

is found, the workflow will proceed to the SabreLayout pass, which is described in Sec-

tion 5.1.3.

The layout workflow for the optimization levels 2 and 3, depicted in Figure 23(c), is nearly

identical to the workflow with optimization level 1. The only distinction is that the Triv-

ialLayout pass is not executed in advance, and therefore it begins the mapping process

with the VF2Layout pass.

routing

CheckMap
set routing_not_needed if succeed

StochasticSwap

false
property routing_not_needed is set true

true
coupling_map or initial_layout exists false

(a) Flowchart of routing stage for opti-

mization level 0.

routing

CheckMap
set routing_not_needed if success

SabreSwap

false
property routing_not_needed true

true
coupling_map or initial_layout exists false

(b) Flowchart of routing stage for opti-

mization level 1, 2 and 3.

Figure 24: The workflow of the routing stage that is responsible for inserting SWAP gates
to satisfy the connectivity constraint.

Figure 24 depicts the workflow for the routing stage. Both workflows start by checking if

the routing is necessary. This is performed by the CheckMap pass, which determines if all

multi-qubit operations fulfill the connectivity constraint. Should the routing be necessary,

the workflow for the first optimization level adds the StochasticSwap pass. This pass uses

a randomized algorithm to insert SWAP gates. The remaining optimization levels apply

the SabreSwap pass, a SWAP-based heuristic search algorithm that is described in Sec-

tion 5.1.3. Consequently, it is possible, that a more optimal result may be obtained at a

higher optimization level. However, the algorithm may require more time.

41

translation

UnitarySynthesis
min_qubits = None

HighLevelSynthesis
min_qubits = None

BasisTranslator

Figure 25: The workflow of the translation stage.

The workflow for the routing stage is depicted in Figure 25 and remains consistent across

all four optimization levels. It is similar to the initial stage workflow of the first three

optimization levels. Three passes are executed in sequence, namely the UnitarySynthesis

pass, the HighLevelSynthesis pass and the BasisTranslator pass. The BasisTranslator pass

decomposes all quantum gates in the circuit to gates that are in the native gate set. This

is achieved through the use of an equivalence library. This library contains decomposition

rules of known gates. In these rules, the basic translator pass searches for a path from

a native gate to the gate of the circuit to be decomposed. Once the workflow has been

completed, all gates that are included in the circuit are part of the gate set of the back-

end. Furthermore, it also satisfies the connectivity constraint, as it does not introduce

new multi-qubit operations on qubits that are mapped to non-connected physical qubits.

preOptimization

CheckGateDirection
set is_direction_mapped if correct

true
coupling_map exists false

GateDirection

false
property is_direction_mapped is set true

true
coupling_map is symmetric false

Figure 26: The workflow of the pre-optimization stage.

Figure 26 depicts the workflow of the pre-optimization stage, which remains consistent

across all optimization levels. The pre-optimization process requires a symmetric connec-

42

tivity graph to run. As stated in Section 3.3.1, the connectivity graph can be represented

as a directed graph. This means that it also restricts which physical qubit must serve as

the control qubit and which should be the target qubit in a multi-qubit operation. To

check if the circuit fulfills this restriction, the CheckGateDirection pass is run. Should the

circuit not satisfy this condition, the pass GateDirection is executed. This pass modifies

multi-qubit operations in order to align with the direction of the coupling graph. An

example of such a modification illustrated in Figure 27. Here, a Controlled-X gate with

q0 as control and q1 as target bit is modified so that target and control qubits are flipped.

q0

q1 X
=

q0 H X H

q1 H H

Figure 27: Direction change of a Controlled-X gate.

optimizationLoop

Optimize1qGatesDecomposition

InverseCancellation

GatesInBasis

Run Translation Pass

false
property all_gates_in_basis true

(a) Optimization workflow for level

1.

optimizationLoop

Optimize1qGatesDecomposition

CommutativeCancellation

GatesInBasis

Run Translation Pass

false
property all_gates_in_basis true

(b) Optimization workflow for

level 2.

optimizationLoop

Collect2qBlocks

ConsolidateBlocks

UnitarySynthesis

Optimize1qGatesDecomposition

CommutativeCancellation

GatesInBasis

Run Translation Pass

false
property all_gates_in_basis true

(c) Optimization workflow for level

3.

Figure 28: The optimization loops in Qiskit for three different levels of optimization.

Figure 28 shows the three different optimization workflows that exist in Qiskit. These

workflows run all run in a loop, which is referred to as optimization loop in this section.

First, the process within the loop is described for each optimization level. Subsequently,

the termination conditions are explained.

As the compiler for optimization level does not do any optimization in this stage, it is not

listed in Figure 28.

The optimization loop for level 1, depicted in Figure 28(a) consists of two different passes,

43

namely the Optimize1qGatesDecomposition pass and the InverseCancellation pass. The

Optimize1qGatesDecomposition pass synthesizes chains of one-qubit gates using the Eu-

ler decomposition and combines them into a single gate. In the InverseCancellation pass,

gates that are the inverse of each other and occur back-to-back are removed. Figure 21(a)

shows that a two CNOT gates that are back-to-back can be removed. Following these two

passes, the compiler employs the GatesInBasis pass, to ascertain whether all gates within

the circuit remain within the gate set of the backend. If this is not the case, the translation

stage is executed once more. This is important, as the Optimize1qGatesDecomposition

may potentially produce gates that are not necessary within the gate set.

For the optimization level 2 the optimization loop is nearly identical to the previous one.

Except that the InverseCancellation pass is substituted with the CommutativeCancellation

pass. This pass not only considers gates that are back-to-back, but also applies commuta-

tion rules to the circuit in order to move gates and then remove the gates that are inverse

to each other.

The optimization loop for optimization level 3 is structured like the one for optimization

level 2. However, three additional gates are run in advanced, namely the Collect2qBlocks

pass, the ConsolidateBlocks pass and the UnitarySynthesis pass. The Collect2qBlocks

pass partitions the circuit into several blocks that contain at least one two-qubit opera-

tion. Subsequently, these blocks are rewritten as unitaries in the ConsolidateBlocks pass.

In the UnitarySynthesis pass, these unitaries are approximated to sequences of gates from

the gate set. The level of approximation can be set by the attribute approximation degree.

The optimization loop for optimization level 1 and 2 terminates once the circuit depth

remains unchanged in two consecutive iterations.

The termination condition in optimization level 3 is more advanced. There, the compiler

searches for a local minimum in terms of the circuit depth and breaks the loop if it is found.

The workflow for the scheduling stage is not described in depth, as it does not contribute

to the circuit properties that are evaluated in section Section 7. However, a flowchart of

this stage is depicted in Appendix A.

44

6 Design and Implementation of the Evaluation Framework

This chapter offers an overview of the evaluation framework which is used in Section 7.

In Section 6.1 the properties of the compilation workflow which the framework measures

are presented. Section 6.2 and Section 6.3 provide an overview of the circuits and backends

that are used in the evaluation. In Section 6.4 the workflow of the evaluation framework

is presented. Section 6.5 the compilation pipeline for TKET that is used during the

evaluation is introduced. The Section 6.6 describes the implementation of the Echoed

Cross-Resonance gate in BQSKit. Finally, Section 6.7 provides an overview of another

compilation workflow that is used in the evaluation.

6.1 Description of the Analyzed Properties

The evaluation framework in this thesis runs the compilation pipeline from the three differ-

ent quantum compilers, that are described in Section 5, with respect to different backends.

Subsequently, the resulting circuits are analyzed and multiple properties of them are mea-

sured.

The compilers allow the user to adjust multiple parameters for the compilation process.

However, the evaluation in this thesis if focused on the optimization level and the degree

of approximation.

The impact of the optimization level on the compilation workflow in Qiskit and BQSKit

is analyzed in depth in Section 5. The same impact for TKET is described in Section 6.5

as this compilation pipeline is part of the implementation.

The approximation degree serves as a value that determines the extent to which the

synthesis algorithms may approximate the circuits. It should be noted that such an ap-

proximation degree is only present in Qiskit and BQSKit, as TKET does not focus on

synthesis. The exact definition of this value differs between Qiskit and BQSKit.

In Qiskit, the degree of approximation is only vaguely defined as a heuristic dial between

one and zero. One represents no approximation, while zero represents maximal approxi-

mation. The degree is only used in the UnitarySynthesis pass.[3]

The approximation degree in BQSKit is also a value between one and zero. It is defined as

the maximum distance between the target and the synthesized unitary that is permitted.

This distance is based on the Hilbert-Schmidt inner product, which uses the mathematical

relationship described in Equation (9). The Hilbert-Schmidt inner product is defined as

⟨U,US⟩HS = tr(U †US), (18)

with U to be the unitary to synthesize and US the resulting unitary after the synthesis

process. The trace tr of a matrix is defined as the sum of its diagonal elements. [8, 9, 37]

The circuit properties that are measured for the evaluation are the depth of the circuit,

the amount of the one-qubit gates and the amount of the two-qubit gates.

As stated in Section 2.4.2, the circuit depth is defined as the longest route in the circuit,

consisting of gates, from the initialization of a qubit until a measurement. The compilation

process aims to decrease the circuit depth because the probability for decoherence increases

45

with more gates acting on a qubit. Therefore, it is preferable to have a circuit with a lower

circuit depth.

The amount of gates can also be used to estimate the fidelity of the circuit, as the fidelity

tends to decrease with the number of gates that are involved in the operation. The number

of gates is classified as one-qubit gates and two-qubit gates, with the latter typically

possessing a much higher error rate. This value is therefore calculated separately. In

addition to that, the time that the compilation process is needed is also measured, as this

value can also be important in deciding which compiler to choose.

6.2 Description of the Analyzed Circuits

The evaluation is conducted on two selected circuits. The first circuit is a parametrized

circuit with a high degree of expressibility that can therefore be used in a variety VQAs

[46]. The second circuit is a QAOA ansatz that encodes the max-cut problem that is

described in Section 2.6.3.

q0 RY RZ

q1 RY RZ RY RZ

q2 RY RZ RY RZ

q3 RY RZ

Figure 29: A single layer of the VQA circuit, which is proposed by Sim et al. for its high
expressibility and representational quality of a solution space.
Source: Adapted from [46]

Figure 29 illustrates a single layer of a circuit that can be used in VQAs. One layer con-

sists of twelve one-qubit gates, each of which is parametrized, and three CNOT gates that

act on four logical qubits. To generate a circuit, multiple layers a put back-to-back. The

number of layers in a circuit can be increased to enhance its expressibility [46]. However,

this also results in a greater circuit depth.

The circuit used for the evaluation consists of five layers, a configuration that, according

to Sim et al., represents a good trade-off between expressibility and circuit depth [46]. For

the remainder of this thesis, the circuit will be referred to as the VQA circuit.

As previously stated, the second circuit is a circuit constructed from a QAOA for the

purpose of approximating the max-cut problem. For this construction, a cost Hamiltonian

HC is needed.

The cost Hamiltonian HC for the max-cut problem can be defined by taking Equation (16)

into account. Here, the binary variable xi ∈ {+1,−1} is mapped to the Pauli Z operator.

The Hamiltonian HC is therefore defined as

HC = −1

2

∑
(i,j)∈E

(I − ZiZj) (19)

with I representing the identity operator and Zi is the Pauli Z operator. [21]

46

Following the proposal in Section 2.6.2, the mixer Hamiltonian HM is chosen to be

HM = −
∑
j∈V

Xj , (20)

with Xi is the Pauli X operator. As already stated in Section 2.6.2 the initialize state of

the circuit can chosen to be |+⟩⊗n as this state corresponds to the lowest energy state of

the mixer Hamiltonian HM [21]. As quantum circuits are typically initialized with |0⟩⊗n

the described state can by achieved by applying a Hadamard gate to each qubit involved.

To construct the unitaries for the mixing layers UC(γk) and the cost layers UM (βk) the

following transformations can be used:

UC(γk) = e−iγkHC =

n∏
i=1,j<i

RZiZj (2γk), (21)

UM (βk) = e−iβkHM =
n∏

i=1

RXi(2βk), (22)

with RXi , RZiZj being parametrized rotational gates. [21]

The circuit is constructed by placing UC(γk) and UM (βk) back-to-back in multiple layers,

as shown in Figure 6. For the purpose of the evaluation, the amount of layers is set to

eight. The resulting circuit will be referenced throughout the remainder of this thesis as

the QAOA circuit.

The graphs for the Max-cut problem are generated using the gnm random graph function

from the Python library NetworkX. The function receives a fixed seed for reproducibility

and generates a graph with five vertices and ten edges.

6.3 Description of the Backends

In the evaluation, circuits are compiled to be run on different backends. Namely, these

backends are IBMQ-Sherbrooke, Rigetti ANKAA-2, Rigetti ANKAA-9Q-1 and self defined

backend with a linear nearest neighbor physical qubit connectivity. Each backend is only

defined by its connectivity graph and the gate set.

Backend #Qubits Gate Set C

IMBQ-Sherbrooke 127 {ECR,RZ , SX,X} 0.89%

Rigetti ANKAA-2 84 {RX , RZ , CPhase, CZ, iSWAP} 4.27%

Rigetti ANKAA-9Q-1 9 {RX , RZ , CPhase, CZ, iSWAP} 33.33%

Linear-Nearest-Neighbour 5 {RZ , SX , X,CX} 40.00%

Table 2: Properties of the backends used in the evaluation.

The properties of the four backends are presented in Table 2. C describes the connectivity

of the qubits in the connectivity graph. It is calculated by C = NC/NC,max, where NC is

the amount of connections between pairs of qubits, and NC,max is the maximal possible

number of connections [47]. NC,max is therefore given by (n(n − 1))/2, where n is the

number of qubits.

There are three distinct gate sets. The IBMQ-Sherbrooke has 127 qubits and its gate set

47

consists of the two-qubit Echoed Cross-Resonance gate, the RZ gate, the
√
X gate and

the Pauli-X gate. A graphical representation of the connectivity map of this quantum

backend can be found in Appendix B.

The two backends from Rigetti share a common gate set. This set includes a RX gate,

a RZ gate, a CPhase gate, a CZ gate, and an iSWAP gate. For the self defined backend

with five qubits, which is referred to as Linear-Nearest-Neighbour backend, the gate set

consists of the RZ gate, the SX gate, the X gate, and the CX gate. The connectivity

graph of this backend has a linear topology and is depicted in Appendix B.

6.4 Description of the General Workflow

The evaluation framework, written in Python 3.11, takes an arbitrary quantum circuit

as its input. Subsequently, it compiles these circuits to the already mentioned backends.

Finally, the properties, described in Section 6.1, are measured.

As there are certain parameters that must be set for an evaluation run, these can be out-

sourced to a configuration file, which is referred to as a job configuration file.

1 name = VQACircuitEvaluation

2 circuitType = qasm

3 circuit = circuits/circuitQaoa.qasm

4 compilers = qiskit tket bqskit

5 approximationDegree = 1.0 0.9

6 optiLvl = 0 1 2 3

7

8 path = plots/tmp/

9 useUUID = True

10 parameterTypes = bound

11

12 backends = IBMQ127 Rigetti84 Rigetti9 LNN

Listing 1: Job configuration file for an evaluation run.

In Listing 1, a job configuration file is illustrated. There are several configuration values

to point out here. The compilers value specifies on which compilers the evaluation should

be run. With the parameters approximationDegree and optiLvl the approximation degree

and the optimization level of the compilers can be set. The values for the parameter ap-

proximationDegree may be selected from the interval [0, 1]. Similarly, the values for the

parameter optiLvl may be chosen from {0, 1, 2, 3}.
It is important to note that the approximationDegree values as well as the optimization

level have been standardized to align with the requirements of Qiskit. This means that

an approximation Degree of 0.0 signifies the maximum possible approximation, whereas

a degree of 1.0 represents no approximation. In BQSKit the definition is reversed, and

therefore is adjusted during runtime. As optimization level, BQSKit accepts values from

{1, 2, 3, 4}, which is therefore also adjusted.

The value backends sets the backends on which the circuits should be compiled.

48

The workflow starts with a job description file, which is depicted in Listing 1. Subsequently,

the circuit to evaluate is imported by reading in a text file on the specified path. The circuit

files are pre generated and are in the OpenQASM3 format. This format supports free

parameters, which makes it comfortable to use with VQA circuits [28]. In the framework,

the circuit is represented as a Qiskit circuit object, as this facilitates conversion to the

BQSKit and TKET circuit representation. The parameter for the parametrized gates

are randomly chosen from the interval [0, 2π] and subsequently assigned to the circuit.

The circuit is then compiled to each specified backend with each selected compiler and

for each combination of the defined parameters. Following the compilation process, each

circuit is subjected to a series of checks to ensure that it meets the specified connectivity

constraints. Additionally, it is verified that each gate within the circuit is included in the

gate set of the corresponding backend. Finally, the resulting circuit properties, defined

in Section 6.1 are measured. The compilation time is measured by the difference of the

system time before and after the compilation. This is only an estimate of the actual time

because other processes may be running on the system. The measurement values, together

with the compiled circuits, are stored for future use.

6.5 TKET Compilation Pipeline

As mentioned in Section 5.2 TKET does not provide a general compilation pipeline for self

defined backend, but it has defined compilation workflows for various quantum devices.

Therefore, a part of this thesis is the design and implementation of a general compilation

pipeline for the TKET compiler. The compilation pipeline was designed with the TKET

compilation flow for IBM and Rigetti quantum devices as a point of reference [7].

49

CXMapping
Placement

SynthesiseTket

AutoRebase

(a) TKET compi-

lation workflow for

level 0.

FullPeepholeOptimise

CXMapping
Placement

SynthesiseTket

AutoRebase

(b) TKET compilation

workflow for level 1.

FullPeepholeOptimise

CXMapping
Placement

KAKDecomposition

SynthesiseTket

AutoRebase

(c) TKET compilation

workflow for level 2.

FullPeepholeOptimise

DefaultMapping

KAKDecomposition

CliffordSimp

EulerAngleReduction

SynthesiseTket

AutoRebase

(d) TKET compilation work-

flow for level 3.

Figure 30: The four distinct compilation workflows for the different levels of optimization
in TKET.

As in the case of Qiskit and BQSKit, four distinct optimization levels are implemented,

namely 0, 1, 2 and 3. Figure 30 depicts the four different workflows that are generated for

these levels of optimization.

The workflow for the first optimization level, illustrated in Figure 30(a), contains only

three passes, namely CXMapping, SynthesiseTket, and AutoRebase. The CXMapping

pass is responsible for the initial mapping and the routing by inserting CNOT gates. In

order to perform this function, it requires a Placement pass to establish an initial map-

ping, as well as a description of the connectivity graph. In this case, the Placement pass

performs the bare minimum by mapping qx 7→ Qx for each logical qubit qx. Section 5.2.2

describes the routing that takes place in the CXMapping pass.

The SynthesiseTket pass together with the AutoRebase pass translate all gates in the

circuits to gates that are included in the gate set of the backend. For this task, first,

all two-qubit gates are synthesized to gates from the native gate set. Subsequently, all

single-qubit gates are substituted by the three rotation gates RZ(α), RX(β), RY (γ). These

rotation gates are then replaced by gates from a subset of the native gate set.

For the optimization level 1, the workflow is expanded by the FullPeepholeOptimise pass.

This pass is described in depth in Section 5.2.3. It is important that this pass is executed

before the routing, as the FullPeepholeOptimise pass can introduce new multi-qubit gates.

50

The compilation pipeline for level 2, depicted in Figure 30(c), adds the KAKDecomposi-

tion pass after the CXMapping pass. This pass, designed for optimization, performs a

KAK decomposition on a chain of gates, if the result has a lower gate count. It is config-

ured to not be able to introduce new multi-qubit gates. Consequently, this pass can be

implemented subsequent to the mapping and routing processes.

The compilation workflow for the last optimization level, namely level 3, is depicted in

Figure 30(d). This workflow introduces three new passes, namely the DefaultMapping

pass, the CliffordSimp pass and the EulerAngleReduction. The DefaultMapping pass re-

places the CXMapping pass, that is used in the first three workflows. In contrast to the

naive initial mapping approach utilized by the CXMapping pass, the DefaultMapping pass

employs the graph placement algorithm that is described in Section 5.2.1. This method

results in a longer computation time, yet it may potentially result in a reduced gate count

due to the potential for fewer SWAP operations introduced by the routing method. The

CliffordSimp optimization pass, performs a series of rewrite rules with the objective of

simplifying Clifford gate sequences. This procedure is similar to the method described in

Section 5.2.3. The other added optimization pass, namely the EulerAngleReduction pass,

employs the Euler angle decomposition to shorten sequences of P and Q rotations, where

P,Q ∈ {RX , RY , RZ}. Chains of P −Q and Q− P are decomposed to P −Q− P triples.

In this workflow, P is set to RY and Q is set to RZ as sequences of these gates may appear

in the VQA circuit. Both optimization passes are configured to prohibit the introduction

of new two-qubit gates, which allows them to be placed subsequent to the routing pass.

It can be assumed that the four workflows will result in improved circuit properties,

specifically in terms of the number of gates and circuit depth, as the degree of optimization

increases.

6.6 BQSKit Echoed Cross-Resonance Gate

In order to compile a circuit to a given backend, a compiler needs the backend’s connec-

tivity graph and its gate set. All gates from the backends native gate set must be familiar

to the compiler.

Since BQSKit has its first release in October 2021, it is still quite new [8]. Therefore, the

toolkit is only aware of a limited amount of quantum gates.

As mentioned in Section 6.3, the IBMQ-Sherbrooke consists of the ECR gate, the RZ

gate, the
√
X gate and the X gate. BQSKit is familiar with the RZ gate, the

√
X gate

and the Pauli-X gate. However, it does not support the ECR gate. Such a support is

important so that BQSKit is able to produce circuits that only have the ECR gate as its

two-qubit gate. There is already an open request in their open-source community for the

support of the ECR gate, but it is not implemented yet.

The Echoed Cross-Resonance gate is a two-qubit gate that implements 1√
2
(IX−XY) [48].

51

q0

ECR
q1

0

1

=

q0

RZX(π4)

RX(π)

RZX(−π
4)

q1

0 1

1 0

Figure 31: Decomposition of the Echoed Cross-Resonance gate. The Echoed Cross-
Resonance gate can be decompose into two RZX gates and a single RX gate.
Source: Adapted from [48]

Figure 31 shows a possible decomposition of the Echoed Cross-Resonance gate into two

RZX gates and a single RX gate with fixed parameters. The unitary matrix representa-

tion of the ECR gate can be written as

ECRq0,q1 =
1√
2


0 1 0 i

1 0 −i 0

0 i 0 1

−i 0 1 0

 . (23)

It is important to note, that the matrix representation in Equation (23) as well as the

decomposition suggestion, depicted in Figure 31, are constructed under the convention,

that higher qubit indices are more significant, also known as little-endian convention [48].

A definition of a new gate in BQSKit is composed of two parts, the unitary matrix of

the gate, which is already defined in Equation (23), and its OpenQASM definition. For

the unitary matrix the Equation (23) can be used. The OpenQASM definition can be

derived from the Figure 31. As BQSKit also uses the little-endian ordering according to

the maintainers, the decomposition and the unitary matrix representation do not need to

be adjusted.

1 gate rzx(param0) q0 ,q1 {

2 h q1;

3 cx q0 ,q1;

4 rz(param0) q1;

5 cx q0 ,q1;

6 h q1;

7 }

8 gate ecr q0,q1 {

9 rzx(pi/4) q0 ,q1;

10 x q0;

11 rzx(-pi/4) q0 ,q1;

12 }

Listing 2: An OpenQASM definition for the ECR gate.

The OpenQASM definition for the ECR gate, together with the RZX gate, is depicted in

Listing 2. It is important to also define the RZX gate, as this gate is not in the standard

gate library of OpenQASM [28]. This definition together with the unitary matrix makes

up the gate definition for the ECR gate in BQSKit.

52

In order to contribute the support for the ECR gate in the BQSKit toolkit, a pull request

has been created, which is currently under review at the time of submission of this thesis.

6.7 Naive Compilation Pipeline

In order to provide a more comprehensive illustration of the quality of the individual com-

pilers under evaluation, a compilation pipeline is constructed that performs the minimum

necessary operations. Such a compiler helps to visualize how the individual workflows of

the other compilers optimize the circuit. The compilation pipeline, referred to as naive

compiler, uses different passes from the Qiskit framework and is depicted in Figure 32.

TrivialLayout

FullAncillaAllocation

ApplyLayout

BasicSwap

BasisTranslator

Figure 32: Compilation workflow of the naive compiler.

These compilation passes from Qiskit that form the pipeline of the naive compiler are

the TrivialLayout pass, the FullAncillaAllocation pass, the ApplyLayout pass, the Basic-

Swap pass and the BasisTranslator pass. The TrivialLayout is also used for the Qiskit

compilation workflows for the first two optimization levels and is therefore described in

Section 5.3.

Both, the FullAncillaAllocation pass and the ApplyLayout pass ensure that the layout

which is identified by the TrivialLayout pass is applied to the circuit.

The BasicSwap pass ensures that the connectivity constraint of the backend is fulfilled by

introducing SWAP operations into the circuit. To accomplish this, the pass searches for

two-qubit operations in the circuit. If a found operation cannot be executed due to the

connectivity graph, the pass calculates the shortest path from the physical target qubit to

the physical control qubit. Subsequently, SWAP operations are inserted along this path.

In order to ensure that all gates in the circuit are also in the gate set of the backend, the

compilation pipeline contains the BasisTranslator pass. This pass is also used by the de-

fault compilation workflow in Qiskit throughout all its optimization levels and is therefore

described in Section 5.3. [3]

This workflow produces circuits that are compatible with a specified backend without

performing any optimizations.

53

7 Evaluation of the Quantum Compilers

This chapter presents the outcome of the evaluation and offers potential explanations for

them.

Section 7.1 provides a comparison of the levels of optimization for each compiler separately.

This is extended in Section 7.2, here the compilers are compared directly with each other.

The Section 7.3 evaluates the time that the compilers take for their task. In Section 7.4

the effects of the approximation degree, a parameter in Qiskit and BQSKit, are evaluated.

7.1 Optimization Levels Comparison

All compilers have the potential to produce circuits with fewer gate count and less circuit

depth with a rising optimization level. In order to test this hypothesis, all three compilers

were instructed to compile the two prepared test circuits to the four introduced backends

for all four levels of optimization. All other parameters for the compilation process are set

to their default values.

The plots presented in this chapter, visualize the compilation and optimization behavior

of the individual compilers. For each compiler and circuit, there are three distinct plots.

These plots illustrate the circuit depth, the number of one-qubit gates, and the amount of

two-qubit gates, for the circuit after the compilation process.

On the x-axis, the four optimization levels are presented for each backend to which the

circuit is compiled. The backends are labeled as LNN for the self defined Linear-Nearest-

Neighbour, IBMQ128 for the IBMQ-Sherbrooke and Rigetti9, and Rigetti84 for the back-

ends from Rigetti with nine and 84 qubits respectively.

A black solid line represents the circuit properties which the circuit posses before the

compilation process. Although it is possible that a compiler could produce a circuit with

fewer gates due to the optimization, compiling a circuit to a backend with a finite gate

set, and a connectivity graph will often result in an equal or increased number of gates.

The orange dashed line illustrates the circuit values from the circuit that the naive com-

pilation pipeline, described in Section 6.7, has compiled.

7.1.1 Qiskit Optimization Levels Comparison

LNN IBMQ127 Rigetti9 Rigetti840

20

40

60

80

100

120

140

Ci
rc

ui
t D

ep
th

70
50 50 52

14
0

63
57

61

11
7

43
33

36

83
43

33
37

Qiskit: Circuit Depth
Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

LNN IBMQ127 Rigetti9 Rigetti840

50

100

150

200

250

300

350

#O
ne

-Q
ub

it
Ga

te
s

18
0

12
0

12
0 12
5

34
5

14
7

13
7 15

3

28
2

96
68

76

21
0

96
68

78

Qiskit: One-Qubit Gates
Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

LNN IBMQ127 Rigetti9 Rigetti840

5

10

15

20

25

#T
wo

-Q
ub

it
Ga

te
s

15 15 15 15 15 15 15 15

27
15 15

17

15 15 15
17

Qiskit: Two-Qubit Gates
Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

Figure 33: Comparison of the four optimization levels in Qiskit for the VQA circuit.

55

LNN IBMQ127 Rigetti9 Rigetti840

500

1000

1500

2000
Ci

rc
ui

t D
ep

th

35
3

35
0

35
3

35
3

23
70

98
2

96
5

12
62

12
24

66
2

61
0

62
7

14
28

66
2

61
0

62
7

Qiskit: Circuit Depth
Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

LNN IBMQ127 Rigetti9 Rigetti840

500

1000

1500

2000

2500

3000

3500

4000

#O
ne

-Q
ub

it
Ga

te
s

27
6

27
6

27
6

27
6

42
31

15
72

14
78

19
78

14
36

66
1

57
9 63
2

20
48

66
1

57
9 63
2

Qiskit: One-Qubit Gates
Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

LNN IBMQ127 Rigetti9 Rigetti840

50

100

150

200

250

300

350

#T
wo

-Q
ub

it
Ga

te
s

33
1

29
2

28
9

28
9

33
7

25
3

23
5

22
9

22
0

15
7

15
7

15
7

32
2

15
7

15
7

15
7

Qiskit: Two-Qubit Gates

Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

Figure 34: Comparison of the four optimization levels in Qiskit for the QAOA circuit.

Figure 33 depicts the plot that compares the circuit depth and the amount of one-qubit

and two-qubit gates of the compiled VQA circuit.

It can be observed that the optimization 0 indeed produces the highest circuit properties.

In certain instances the circuit properties, specifically the circuit depth and the number of

one-qubit gates of the generated circuit for IBMQ127 and the two-qubit gates of the cir-

cuit for Rigetti9, are even higher than those of the circuit produced by the naive compiler.

This can be an indicator that the StochasticSwap pass from the workflow for optimization

level 0 in Qiskit introduces more SWAP operations than the BasicSwap pass of the naive

compiler. Both passes are required to add SWAP operations, as the TrivialLayout does

not provide a layout that satisfies the connectivity constraint for Rigetti9.

The compilation workflows for level 1 and 2 produce similar circuit properties, although

optimization level 2 tends to produce more favorable results. This could be due to the

slightly improved optimization loop present in this level.

The process of compiling a circuit at level 3 often results in the creation of properties

that are inferior to those produced by the compiler at optimization level 2. Once more,

this discrepancy may be attributed to the different optimization loops, as this is the only

significant difference between these two levels.

All workflows introduce a significantly greater number of gates during the compilation of

the QAOA circuit, in comparison to the VQA circuit. This can be due to the fact, that

the QAOA circuit does not have a linear topology regarding the two-qubit gates like the

VQA circuit. As all of the available four backends have a subgraph that also has a linear

topology, adding SWAP operations is not mandatory while compiling the VQA circuit.

However, as the topology, that the two-qubit operations span in the QAOA circuit, has

a more arbitrary shape, the compiler has to add additional SWAP operations in order to

satisfy the connectivity constraint of the backend.

The plot for the circuit properties of the compiled QAOA circuit, depicted in Figure 34,

shows a very similar result. Similarly, the workflow for optimization level 0 produces the

least favorable circuit properties, which may be attributed to the previously outlined rea-

sons.

The workflows for optimizations 1 and 2 result again in comparable circuit properties,

with the latter workflow yielding to slightly better outcomes.

The workflow for optimization level 3 also produces slightly less favorable results of the

QAOA circuit than the workflow for optimization level 2.

56

Note that the results for optimization level 3 can be improved by adjusting the approxi-

mation degree parameter. This adjusting is discussed in Section 7.4.

7.1.2 TKET Optimization Levels Comparison

LNN IBMQ127 Rigetti9 Rigetti840

20

40

60

80

100

120

Ci
rc

ui
t D

ep
th

50 50 50 50

66 66 66 66

75 75 75
55 55 55 55 55

Tket: Circuit Depth

Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

LNN IBMQ127 Rigetti9 Rigetti840

50

100

150

200

250

300

#O
ne

-Q
ub

it
Ga

te
s

12
0

12
0

12
0

12
0

16
5

16
5

16
5

16
5

16
2

16
2

16
2

12
6

12
6

12
6

12
6

12
6

Tket: One-Qubit Gates

Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

LNN IBMQ127 Rigetti9 Rigetti840.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

#T
wo

-Q
ub

it
Ga

te
s 15 15 15 15 15 15 15 15

21 21 21
15 15 15 15 15

Tket: Two-Qubit Gates

Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

Figure 35: Comparison of the four optimization levels in TKET for the VQA circuit.

LNN IBMQ127 Rigetti9 Rigetti840

250

500

750

1000

1250

1500

1750

2000

Ci
rc

ui
t D

ep
th

45
2

45
2

45
2

37
4

10
68

10
68

10
68

77
8

11
47

11
47

11
47

93
5

17
63

17
63

17
63

13
23

Tket: Circuit Depth

Uncompiled Circuit
Naive Compiler
Optimization Level 0
Optimization Level 1
Optimization Level 2
Optimization Level 3

LNN IBMQ127 Rigetti9 Rigetti840

500

1000

1500

2000

2500

#O
ne

-Q
ub

it
Ga

te
s

27
6

27
6

27
6

27
6

13
32

13
32

13
32

10
26

12
27

12
27

12
27

93
7

20
82

20
82

20
82

14
87

Tket: One-Qubit Gates

Uncompiled Circuit
Naive Compiler
Optimization Level 0
Optimization Level 1
Optimization Level 2
Optimization Level 3

LNN IBMQ127 Rigetti9 Rigetti840

50

100

150

200

250

300

350

#T
wo

-Q
ub

it
Ga

te
s

35
2

35
2

35
2

29
8

35
2

35
2

35
2

25
0

20
8

20
8

20
8

15
7

35
2

35
2

35
2

25
0

Tket: Two-Qubit Gates

Uncompiled Circuit
Naive Compiler
Optimization Level 0
Optimization Level 1
Optimization Level 2
Optimization Level 3

Figure 36: Comparison of the four optimization levels in TKET for the QAOA circuit.

The plots, depicted in Figure 35 and Figure 36, respectively, compare the optimization

levels based on the circuit characteristics for the VQA circuit and the QAOA circuit that

are compiled by TKET.

Like in the plots in the previous chapter, a large difference can be seen in the added gates

between the QAOA circuit and the VQA circuit. This is most likely due to the same

reason that is described above.

For both circuit types, the first three optimization levels produce the same circuit at-

tributes. This is an indicator that the optimization passes that are part of the compilation

workflows cannot remove any gates. For instance, the FullPeepholeOptimise algorithm is

designed to identify and replace known circuit structures. A similar approach is employed

by the CliffordSimp pass and the EulerAngleReduction. Obviously, no such structures can

be identified by TKET to replace.

The TKET workflow for optimization level 3 is able to produce circuits with better prop-

erties in some cases. Given that this occurs in the case of the VQA circuit compiled for

the Rigetti9 backend, it is reasonable to assume that this improvement is triggered by the

graph placement algorithm. This statement is supported by the two-qubit gate count in

57

the compiled QAOA circuit for all four backends. As previously stated, the compiler is

required to add more SWAP operations, as it is constrained by the design of the circuit.

An advanced mapping approach, such as the graph placement algorithm, could potentially

reduce the necessity for these operations.

7.1.3 BQSKit Optimization Levels Comparison

LNN IBMQ127 Rigetti9 Rigetti840

20

40

60

80

100

120

Ci
rc

ui
t D

ep
th

60
51 51

75

65 63 63
66 65

52 53
79

65
48

40
51

BQSKit: Circuit Depth

Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

LNN IBMQ127 Rigetti9 Rigetti840

50

100

150

200

250

300

#O
ne

-Q
ub

it
Ga

te
s

15
0

12
0

12
0

16
9

17
0

15
4

15
4 16

1 17
0

10
9

91
11

9

17
0

10
7

85
10

4

BQSKit: One-Qubit Gates

Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

LNN IBMQ127 Rigetti9 Rigetti840

5

10

15

20

25

#T
wo

-Q
ub

it
Ga

te
s

15 15 15
18

15 15 15
16

15
16

18
26

15 15 15
16

BQSKit: Two-Qubit Gates

Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

Figure 37: Comparison of the four optimization levels in BQSKit for the VQA circuit.

LNN IBMQ127 Rigetti9 Rigetti840

250

500

750

1000

1250

1500

1750

2000

Ci
rc

ui
t D

ep
th

16
98

11
75

11
71

15
22

17
86

12
51

12
65

12
86

11
74

50
5

30
4 36

9

10
30

68
9

31
4 39

8

BQSKit: Circuit Depth

LNN IBMQ127 Rigetti9 Rigetti840

500

1000

1500

2000

2500

3000

3500

4000

#O
ne

-Q
ub

it
Ga

te
s

38
05

23
53

23
18

29
58

39
20

23
51

23
84 24

70

23
05

68
6

34
7 42

3

20
30

10
67

32
9

33
3

BQSKit: One-Qubit Gates

LNN IBMQ127 Rigetti9 Rigetti840

50

100

150

200

250

300

350
#T

wo
-Q

ub
it

Ga
te

s

29
5

29
5 30

1
35

4

29
5

29
5 30
0 31

2

14
8 15

9
11

4
15

6

12
4

14
8

12
7

12
6

BQSKit: Two-Qubit Gates

Uncompiled Circuit
Naive Compiler
Optimization Level 1
Optimization Level 2
Optimization Level 3
Optimization Level 4

Figure 38: Comparison of the four optimization levels in BQSKit for the QAOA circuit.

The diagrams shown in Figure 37 and Figure 38 illustrate the comparison of the four

optimization levels based on the circuit properties for the VQA circuit and the QAOA

circuit, respectively, both compiled for the four backends by BQSKit.

The discrepancy between the circuit types regarding their properties are also present when

compiling with BQSKit.

It can be observed that circuits that have been compiled with BQSKit do not necessarily

have better properties with increasing optimization level. In the majority of cases, the

first level of optimization results in worse circuit characteristics, especially the amount

of one-qubit gates and the consequential increase in the circuit depth, for both the VQA

circuit and the QAOA circuit in comparison to the following levels. One potential expla-

nation for this behavior could be the absence of the gate deletion optimization workflow

in the pipeline for the first optimization level.

The workflow for the fourth optimization level also produces VQA and QAOA circuits

with an increased number of gates, or in some cases only as many gates as the workflows

58

for optimization levels 2 and 3. An explanation for this phenomenon may be found in

the differing mapping algorithms employed by the workflows, namely the SABRE and the

PAS algorithm.

Interestingly, the amount of one-qubit gates, and consequently the circuit depth, of the

QAOA circuit compiled for the LNN backend exceeds that of the naive compiler by orders

of magnitude. This could be due to the fact, that the QSearch and LEAP algorithm, used

by workflows for all optimization levels, synthesize the circuit by introducing gates from

the gate set in layers to an empty circuit. The translation of gates, with the help of an

equivalence library, seems to produce better solutions in this case in terms of the number of

one-qubit gates. Furthermore, the gates, particularly the RZZ used in the QAOA circuit,

can be effectively substituted by this method through the use of RZ and CNOT gates.

Both gates are part of the native gate set of the LNN backend.

7.2 Compiler Comparison

In order to compare the different compilers, the QAOA circuit is compiled for the IBMQ127

and the Rigetti9 backend with all four optimization levels. The backends are selected

based on the observation that the QAOA circuits, produced for Rigetti9 and Rigetti84

have similar circuit properties when compiled by the three compilers. The QAOA circuits,

compiled for the LNN backend, have a strong deviation when compiled with BQSKit. The

possible reason for this is described in Section 7.1.3.

The following plots visualize the differences between the four compilers regarding the

properties of their compiled circuits. On the x-axis, the four distinct optimization levels are

presented. It is important to note that optimization levels for BQSKit are increased by one

to maintain a uniform presentation. The bars, each color represents a different compiler,

show the circuit depth and the amount of one-qubit and two-qubit gates respectively.

Additionally, the bars are grouped by the four optimization levels.

0 1 2 3
Optimization Level

0

500

1000

1500

2000

Ci
rc

ui
t D

ep
th

23
70

10
68

17
86

98
2 10

68
12

51

96
5

10
68

12
65

12
62

77
8

12
86

IBMQ127 - Circuit Depth
Uncompiled Circuit
Naive Compiler
Qiskit
Tket
BQSKit

0 1 2 3
Optimization Level

0

500

1000

1500

2000

2500

3000

3500

4000

#O
ne

-Q
ub

it
Ga

te
s

42
31

13
32

39
20

15
72

13
32

23
51

14
78

13
32

23
84

19
78

10
26

24
70

IBMQ127 - One-Qubit Gates
Uncompiled Circuit
Naive Compiler
Qiskit
Tket
BQSKit

0 1 2 3
Optimization Level

0

50

100

150

200

250

300

350

#T
wo

-Q
ub

it
Ga

te
s

33
7

35
2

29
5

25
3

35
2

29
5

23
5

35
2

30
0

22
9

25
0

31
2

IBMQ127 - Two-Qubit Gates
Uncompiled Circuit
Naive Compiler
Qiskit
Tket
BQSKit

Figure 39: Comparison of the three compilers based on the compiled QAOA circuit for
the IBMQ127 backend.

59

0 1 2 3
Optimization Level

0

200

400

600

800

1000

1200

Ci
rc

ui
t D

ep
th

12
24

11
47 11

74

66
2

11
47

50
5

61
0

11
47

30
4

62
7

93
5

36
9

Rigetti9 - Circuit Depth
Uncompiled Circuit
Naive Compiler
Qiskit
Tket
BQSKit

0 1 2 3
Optimization Level

0

500

1000

1500

2000

#O
ne

-Q
ub

it
Ga

te
s

14
36

12
27

23
05

66
1

12
27

68
6

57
9

12
27

34
7

63
2

93
7

42
3

Rigetti9 - One-Qubit Gates
Uncompiled Circuit
Naive Compiler
Qiskit
Tket
BQSKit

0 1 2 3
Optimization Level

0

50

100

150

200

#T
wo

-Q
ub

it
Ga

te
s

22
0

20
8

14
8

15
7

20
8

15
9

15
7

20
8

11
4

15
7

15
7

15
6

Rigetti9 - Two-Qubit Gates
Uncompiled Circuit
Naive Compiler
Qiskit
Tket
BQSKit

Figure 40: Comparison of the three compilers based on the compiled QAOA circuit for
the Rigetti9 backend.

Figure 39 and Figure 40 depict the differences in the produced circuits of the compilers

for each optimization level on the backends IBMQ127 and Rigetti9 respectively.

It can be seen that, for both backends, there is no clear preference for a particular compiler

over the other compilers for this circuit. As each compiler has advantages and disadvan-

tages regarding the circuit properties associated with each backend.

For the IBMQ127 backend, it appears that the circuits produced by Qiskit and TKET

are more preferable in terms of circuit depth and one-qubit gate count. However, the

characteristics of the circuits produced by BQSKit seem to be better when compiled for

the Rigetti9 backend. At least for the last three levels of optimization.

It appears that the selection of the backend on which the quantum application is to be

executed is at least as important as the choice of the compiler itself.

7.3 Compile Time Comparison

For a comparison of the time the compilation process takes, the compilation duration of

each compiler is measured for each optimization level. Like mentioned in Section 6.4 the

time is measured by a difference of the system times. Therefore, this is only an estimation

of the actual compile time, especially for short periods. As the results for the VQA circuit

and the QAOA circuits are similar, this discussion will focus on the time required for the

QAOA circuit to be compiled.

60

0 1 2 3

10 1

100

101

102

103

104

Co
m

pi
le

 T
im

e
in

 s

LNN
Qiskit
Tket
BQSKit

0 1 2 3
10 1

100

101

102

103

Co
m

pi
le

 T
im

e
in

 s

IBMQ127
Qiskit
Tket
BQSKit

0 1 2 3
Optimization Level

10 1

100

101

102

103

Co
m

pi
le

 T
im

e
in

 s

Rigetti9
Qiskit
Tket
BQSKit

0 1 2 3
Optimization Level

10 1

100

101

102

103

104

Co
m

pi
le

 T
im

e
in

 s

Rigetti84
Qiskit
Tket
BQSKit

Figure 41: Comparison of the compile times for the QAOA circuit.

Figure 41 depicts the time the compilers need, to compile the QAOA circuit onto the four

different backends. Each plot represents a different backend, with the lines representing

the individual compilers. The optimization levels are x-axis values, while the time in sec-

onds is y-axis values. It is important to note that the values on the y-axis are expressed

by a logarithmic scale.

TKET and Qiskit posses similar compile times. It appears that Qiskit requires a longer

compilation time when the optimization level is set to 0. This could be an indicator that

the StochasticSwap pass requires more time than the routing approaches employed in

other optimization levels.

The compilation times for the optimization levels 1, 2, and 3 in TKET are nearly identical.

The duration for the first level of optimization is significantly shorter. This could be due

to the FullPeepholeOptimise pass, that is only absent in this level.

The compilation duration in BQSKit posses almost an exponential increase with increas-

ing level of optimization. This may be due to the additional synthesis passes or to the

parameters for QSearch and LEAP, which change with each optimization level. The last

optimization level also makes use of the PAS algorithm, which also probably leads to a

longer computational time, as it checks all available permutations.

7.4 Effects of the Approximation Degree

In order to evaluate the behavior of compilers when the approximation degree is changed,

the QAOA circuit is compiled for the IBMQ127 backend. As the TKET compilation

pipeline, introduced in Section 6.5, does not provide an approximation degree, this part

of the evaluation is focused on the Qiskit and BQSKit compiler. The circuits have been

compiled by Qiskit with an optimization level of three and by BQSKit with the second

level of optimization. The backend and circuit are chosen in a representative way, as

the compiler’s behavior is similar for other circuits and backends. The line in the plot,

depicted in Figure 42, represent the circuit properties of the produced circuits with varying

61

approximation degree. On the x-axis the value of the approximation degree is placed.

Both plots follow the Qiskit convention that an approximation degree of one equates to

no approximation, while zero represents maximal approximation.

0.00.10.20.30.40.50.60.70.80.91.0
Approximation Degree

0

500

1000

1500

2000

Approximation Degree in Qiskit
Circuit Depth
One-Qubit Gates
Two-Qubit Gates

0.00.10.20.30.40.50.60.70.80.91.0
Approximation Degree

Approximation Degree in BQSKit
Circuit Depth
One-Qubit Gates
Two-Qubit Gates

Figure 42: Evaluation of the Approximation Degree. The QAOA is compiled for the
IBMQ127 backend with the Qiskit and the BQSKit compiler.

The plots, illustrated in Figure 42, show the circuit properties of the resulting circuits

from the Qiskit and BQSKit compilation workflow.

The progression of the one-qubit and two-qubit counts from the circuits produced by Qiskit

show a comparable pattern. The gate count initially falls rapidly in the interval between

1.0 and 0.9 degrees of approximation. After this decline, the circuit properties remain

steady from 0.9 to 0.75. Between 0.7 and 0.05 the amount of gates reaches a minimum.

In this range, there are almost none two-qubit gates in the circuit. It is noteworthy that,

with an approximation degree of 0.0 the number of gates in the circuit increases until it

reaches the same level as without approximation.

In BQSKit the amount of one-qubit gates in the resulting QAOA circuit decreases rapidly

in between 1.0 and 0.9. Besides this fall, the gate count of the one-qubit gates and two-

qubit gates in the circuit further declines linearly until the circuit contains no more gates

at an approximation degree of 0.0.

It can be observed that BQSKit already can compensate for its relative weaknesses in

comparison to Qiskit with a small degree of approximation. As the circuit posses less

gates, up to zero, with more approximation, it can be assumed that the circuit’s fidelity

also decreases. However, in the present of noise, a reduction in the number of gates could

result in a lower overall error rate.

In order to test this hypothesis, the QAOA, constructed in Section 6.2, is executed by

searching for parameters that minimize the expected energy of the cost Hamiltonian HC .

For the minimization, the SciPy’s COBYLA optimizer is used. The backend on which

the circuit is run with 1024 shots, posses a noise model provided by Qiskit that simulates

the noise present at the backend [3]. To generate a solution to the Max-cut problem, the

circuit is executed one final time with these parameters. The histograms depicting this

solution can be found in Appendix C. In the histogram, every digit in the bit-strings

represents one vertex in the graph. The two values zero and one defines the partition to

62

which the node belongs.

The plots, depicted in Figure 43, show the expectation value per iteration of the opti-

mizer. Each plot was produced using the Qiskit compiler with optimization level 3 and

an approximation degree d ∈ {1.0, 0.95, 0.9, 0.85, ..., 0.5}. It is important to note that the

y-axis which represents the expectation value has a logarithmic scale.

0.95 1

0.8 0.85 0.9

0.65 0.7 0.75

0.5 0.55 0.6

0 50 100 150 200 0 50 100 150 200

0 50 100 150 200

−4

−2

0

2

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−4

−2

0

−1.0

−0.5

0.0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

−4

−2

0

−0.8

−0.4

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

Iterations

E
xp

ec
ta

tio
n

va
lu

e

Figure 43: Evaluation of the Approximation Degree. The plot depicts the optimization
process of the parameters of the QAOA circuit compiled by Qiskit with varying degrees of
approximation.

It can be observed that the minimal expectation value remains relatively consistent up to

an approximation degree of 0.75. This behavior also matches the situation in Figure 42.

With a further decreasing approximation degree, the minimal expectation value sinks until

it reaches a limit at a degree of 0.6.

It appears that with a further approximation degree, the optimizer is capable of finding

parameters that result in an expected value that is significantly reduced. However, when

examining the histograms generated using these parameters, that the results do appear

to be invalid for the Max-cut problem. This is because a valid solution bit-string for the

Max-cut problem should always have a second bit-string that is inverse.

Despite the existence of noise, the variation in the approximation degree within the interval

1.0 to 0.75 does not appear to have a significant impact on the derived solutions. This may

be attributed to the limited size of the QAOA, made up of only five qubits. Consequently,

the circuit may be too small to be able to detect a difference.

63

8 Conclusion

To conclude this thesis, this section provides an insight into possible future research areas,

as well as a summary of the topics and findings that are covered in this thesis.

8.1 Future Works

During the analysis and evaluation of the three compilers, some points were noticed that

are worth investigating in the future.

As the separate stages, namely mapping, routing, optimization, and translation, can al-

most be considered independent of one another, the evaluation should be extended by

examining each stage in isolation. This could help to identify favorable approaches for

each stage, leading to the development of a more effective workflow.

As observed in the evaluation, the selection of the backend can be more important than

the choice of the optimization level. It would be beneficial to investigate which coupling

map and which gate set are more favorable for which circuit.

During the evaluation, it was noticed that the optimization stages of the different com-

pilers can produce circuits with better properties when the parameters of parametrized

gates are assigned, as opposed to being unassigned. This may prove beneficial in a hybrid

classical-quantum loop in the context of a VQA, as it offers the possibility of producing

circuits that are better optimized and thus more resistant to noise.

All these research opportunities can contribute to the development of better compilation

techniques, which would lead to circuits that are more resistant to noise.

8.2 Summary

This thesis provided an overview of the limitations of current quantum computers, and

presents techniques for abstracting and overcoming these limitations.

The in-depth analysis of BQSKit, TKET, and Qiskit describes the workflow of each level

of optimization in detail. This analysis also serves to find possible reasons for the behav-

ior of the compilers during the evaluation. The evaluation framework, that was developed

during this thesis, enables a fair comparison of the compilers by providing them with the

same circuit to be compiled on defined backends. In this development, a contribution was

made to BQSKit by providing a gate definition that was not included yet. The evaluation

pointed out that the highest level of optimization does not necessary lead to the most

favorable circuit properties. In most cases, the third level performed better in terms of

circuit depth and gate count. Qiskit and BQSKit can further reduce the number of gates,

with a greater degree of approximation. However, this can lead to a high infidelity of the

circuit. It is not possible to make a general recommendation for a specific compiler, as

each of them has its weaknesses on different backends.

Effective compilation and especially optimization is paramount in the NISQ era, as hard-

ware limitations and error rates present significant challenges. Both processes are of partic-

ular importance for enabling more accurate and efficient execution of quantum algorithms,

despite the constraints of current quantum technology.

65

Appendices

A Flowchart of Qiskit’s Scheduling Stage

scheduling

ConstainsInstruction
delay

TimeUnitConversion

true
property contains_delay is set false

true
instruction_schedule_map has custom gate false

InstructionDurationCheck
sets property rescheduling_required
if circuit needs to be rescheduled

ConstrainedReschedule

true
property rescheduling_required false

ValidatePulseGates

true
timing_constraints are specified false

Figure 44: Scheduling stage of Qiskit

67

B Connectivity Graphs of Backends

Figure 45: Connectivity graph of IBMQ-Sherbrooke

Figure 46: Connectivity graph of Rigetti ANKAA-9Q-1

68

Figure 47: Connectivity graph of Rigetti ANKAA-2

Figure 48: Connectivity graph of Linear-Nearest-Neighbour

69

C Results of the Quantum Approximation Optimization Al-

gorithm

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0

100

200

300

400

500

Co
un

t 294 293

320

283

231

320

226

281

309

259

288
299

354

487

306

349 348
327

533

337

270 269

293
308

244

278

316

287
299

354

308

330

1.0

(a) Histogram encoding the solution to the Max-cut problem with approximation degree 1.0

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0

100

200

300

400

500

Co
un

t 291 290
304

267
250

335

244

311 305

269

306 310 304

438

295

317 315

284

525

317

264 270

367
347

251
267

345

303
294

340 337 338

0.95

(b) Histogram encoding the solution to the Max-cut problem with approximation degree 0.95

Figure 49: Histograms encoding the solution to the Max-cut problem with different ap-
proximation degrees

70

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0

100

200

300

400

500

Co
un

t

317
305

319

271 276

315

244

314
301

356

307
292

318

462

286

309

331
319

471

306
290

277

357

319

251

282
294 293 299

311
294

314

0.9

(a) Histogram encoding the solution to the Max-cut problem with approximation degree 0.90

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0

100

200

300

400

500

Co
un

t

293
302 307

287

260

314

250

318
306

333

294

329 325

440

304
320

335 331

460

314
300

277

326 324

248

308
296 293

302
320

273

311

0.85

(b) Histogram encoding the solution to the Max-cut problem with approximation degree 0.85

Figure 50: Histograms encoding the solution to the Max-cut problem with different ap-
proximation degrees

71

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0

100

200

300

400

500

Co
un

t

278 276

309
294

240

314

239

311
297

256

292
302

339

460

289

334 326
311

537

334

262
281

338
329

246

287

320
304 298

353

312
332

0.8

(a) Histogram encoding the solution to the Max-cut problem with approximation degree 0.80

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0

50

100

150

200

250

300

350

400

Co
un

t

281

307
299

286

268

346

240

336

273

348

297

316 320 317

296

324 325
316

370

349

267
282

392

365

252

271

374

313
302

317 322
329

0.75

(b) Histogram encoding the solution to the Max-cut problem with approximation degree 0.75

Figure 51: Histograms encoding the solution to the Max-cut problem with different ap-
proximation degrees

72

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0

200

400

600

800

Co
un

t

150
170 169 171 181

159

215

157

118
147 140 138

169

414

205

153

426

625

871

683

472

314

423 423
403

351 339

269

501

337

396

311

0.7

(a) Histogram encoding the solution to the Max-cut problem with approximation degree 0.70

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0

200

400

600

800

1000

1200

Co
un

t

146 140
166 148

185
228

180
152 153 138

168
140

190 200 218
174

384
410

1193

741

445

310

690

413

343

259

367

283

515

358
314

249

0.65

(b) Histogram encoding the solution to the Max-cut problem with approximation degree 0.65

Figure 52: Histograms encoding the solution to the Max-cut problem with different ap-
proximation degrees

73

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
10

0
10

10
1

10
11

1
11

00
0

11
00

1
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0

1000

2000

3000

4000

5000

6000

Co
un

t

11 86 4 4 97

508

6 25
176

1056

8 48

1065

6008

49

326

1 9 6 23 1 12 60 3 50

341

2 15

0.6

(a) Histogram encoding the solution to the Max-cut problem with approximation degree 0.60

Figure 53: Histograms encoding the solution to the Max-cut problem with different ap-
proximation degrees

74

References

[1] John Preskill. “Quantum computing 40 years later”. In: Feynman Lectures on Com-

putation. CRC Press, 2023, pp. 193–244.

[2] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and factor-

ing”. In: Proceedings 35th Annual Symposium on Foundations of Computer Science.

1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[3] Qiskit contributors. Qiskit: An Open-source Framework for Quantum Computing.

2023. doi: 10.5281/zenodo.2573505.

[4] Cirq Developers. Cirq. Version v1.3.0. Dec. 2023. doi: 10.5281/zenodo.10247207.

url: https://doi.org/10.5281/zenodo.10247207.

[5] Robert S. Smith, Michael J. Curtis, and William J. Zeng. A Practical Quantum

Instruction Set Architecture. 2016. url: http://arxiv.org/abs/1608.03355.

[6] Microsoft.Azure Quantum Development Kit. url: https://github.com/microsoft/

qsharp.

[7] Seyon Sivarajah et al. “Tket: a retargetable compiler for NISQ devices”. In: Quantum

Science and Technology 6.1 (Nov. 2020), p. 014003. issn: 2058-9565. doi: 10.1088/

2058-9565/ab8e92. url: http://dx.doi.org/10.1088/2058-9565/ab8e92.

[8] Ed Younis et al. Berkeley Quantum Synthesis Toolkit (BQSKit) v1. Apr. 2021. doi:

10.11578/dc.20210603.2. url: https://www.osti.gov/biblio/1785933.

[9] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum infor-

mation. Cambridge university press, 2010.

[10] Eleanor G Rieffel and Wolfgang H Polak. Quantum computing: A gentle introduction.

MIT press, 2011.

[11] David Deutsch. “Quantum computational networks”. In: Proceedings of the Royal

Society of London. A. Mathematical and Physical Sciences 425 (1989), pp. 73–90.

[12] Matthias Homeister. Quantum Computing verstehen. Springer, 2008.

[13] Manuel A Serrano et al. “Quantum software components and platforms: Overview

and quality assessment”. In: ACM Computing Surveys 55.8 (2022), pp. 1–31.

[14] Tao Yue et al. “Challenges and Opportunities in Quantum Software Architecture”.

In: Recent Trends in Software Architecture (2023), pp. 45–52.

[15] Maŕıa Cerezo et al. “Variational quantum algorithms”. In: Nature Reviews Physics

3 (2020), pp. 625–644.

[16] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A quantum approximate

optimization algorithm”. In: arXiv preprint arXiv:1411.4028 (2014).

[17] Cheng Xue et al. “Effects of quantum noise on quantum approximate optimization

algorithm”. In: Chinese Physics Letters 38.3 (2021), p. 030302.

[18] Andrew Lucas. “Ising formulations of many NP problems”. In: Frontiers in physics

2 (2014), p. 74887.

[19] Kostas Blekos et al. “A review on Quantum Approximate Optimization Algorithm

and its variants”. In: Physics Reports 1068 (June 2024), pp. 1–66. issn: 0370-1573.

doi: 10.1016/j.physrep.2024.03.002. url: http://dx.doi.org/10.1016/j.

physrep.2024.03.002.

75

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.10247207
https://doi.org/10.5281/zenodo.10247207
http://arxiv.org/abs/1608.03355
https://github.com/microsoft/qsharp
https://github.com/microsoft/qsharp
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1088/2058-9565/ab8e92
http://dx.doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.11578/dc.20210603.2
https://www.osti.gov/biblio/1785933
https://doi.org/10.1016/j.physrep.2024.03.002
http://dx.doi.org/10.1016/j.physrep.2024.03.002
http://dx.doi.org/10.1016/j.physrep.2024.03.002

[20] Michael R Garey, David S Johnson, and Larry Stockmeyer. “Some simplified NP-

complete problems”. In: Proceedings of the sixth annual ACM symposium on Theory

of computing. 1974, pp. 47–63.

[21] Wilson R. M. Rabelo, Sandra D. Prado, and Leonardo G. Brunnet. A QAOA ap-

proach with fake devices: A case study for the maximum cut in ring graphs. 2024.

arXiv: 2404.03501 [quant-ph].

[22] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum

(2018). doi: 10.22331/q-2018-08-06-79.

[23] Travis S Humble et al. “Quantum computing circuits and devices”. In: IEEE Design

& Test 36.3 (2019), pp. 69–94.

[24] Nathalie P De Leon et al. “Materials challenges and opportunities for quantum

computing hardware”. In: Science 372.6539 (2021), eabb2823.

[25] Sergei Slussarenko and Geoff J Pryde. “Photonic quantum information processing:

A concise review”. In: Applied Physics Reviews 6.4 (2019).

[26] Petar Jurcevic et al. “Demonstration of quantum volume 64 on a superconduct-

ing quantum computing system”. In: Quantum Science and Technology 6.2 (2021),

p. 025020.

[27] Carmen G. Almudéver et al. “Realizing Quantum Algorithms on Real Quantum

Computing Devices”. In: 2020 Design, Automation & Test in Europe Conference &

Exhibition, DATE 2020, Grenoble, France, March 9-13, 2020. IEEE, 2020, pp. 864–

872. doi: 10.23919/DATE48585.2020.9116240. url: https://doi.org/10.23919/

DATE48585.2020.9116240.

[28] Andrew Cross et al. “OpenQASM 3: A Broader and Deeper Quantum Assembly

Language”. In: ACM Transactions on Quantum Computing 3.3 (Sept. 2022), pp. 1–

50. issn: 2643-6817. doi: 10.1145/3505636. url: http://dx.doi.org/10.1145/

3505636.

[29] Getting started with Native Gates. [Online; Accessed April 3, 2024]. Jan. 2024. url:

https://ionq.com/docs/getting-started-with-native-gates.

[30] IBM Quantum Platform - IBM Sherbrooke. [Online; Accessed April 3, 2024]. Apr.

2024. url: https : / / quantum . ibm . com / services / resources ? system = ibm _

sherbrooke.

[31] IonQ Forte. [Online; Accessed April 3, 2024]. Apr. 2024. url: https://ionq.com/

quantum-systems/forte.

[32] Rigetti Systems. [Online; Accessed April 3, 2024]. Apr. 2024. url: https://qcs.

rigetti.com/qpus.

[33] Christopher Monroe and Jungsang Kim. “Scaling the ion trap quantum processor”.

In: Science 339.6124 (2013), pp. 1164–1169.

[34] A. Yu Kitaev. “Quantum computations: algorithms and error correction”. In: Rus-

sian Mathematical Surveys 52.6 (Dec. 1997), pp. 1191–1249.

[35] Robert R Tucci. “An introduction to Cartan’s KAK decomposition for QC program-

mers”. In: arXiv preprint quant-ph/0507171 (2005).

76

https://arxiv.org/abs/2404.03501
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.23919/DATE48585.2020.9116240
https://doi.org/10.23919/DATE48585.2020.9116240
https://doi.org/10.23919/DATE48585.2020.9116240
https://doi.org/10.1145/3505636
http://dx.doi.org/10.1145/3505636
http://dx.doi.org/10.1145/3505636
https://ionq.com/docs/getting-started-with-native-gates
https://quantum.ibm.com/services/resources?system=ibm_sherbrooke
https://quantum.ibm.com/services/resources?system=ibm_sherbrooke
https://ionq.com/quantum-systems/forte
https://ionq.com/quantum-systems/forte
https://qcs.rigetti.com/qpus
https://qcs.rigetti.com/qpus

[36] Gushu Li, Yufei Ding, and Yuan Xie. “Tackling the qubit mapping problem for NISQ-

era quantum devices”. In: Proceedings of the Twenty-Fourth International Confer-

ence on Architectural Support for Programming Languages and Operating Systems.

2019, pp. 1001–1014.

[37] Marc G Davis et al. “Towards optimal topology aware quantum circuit synthesis”.

In: 2020 IEEE International Conference on Quantum Computing and Engineering

(QCE). IEEE. 2020, pp. 223–234.

[38] Marcos Yukio Siraichi et al. “Qubit allocation”. In: Proceedings of the 2018 Inter-

national Symposium on Code Generation and Optimization. 2018, pp. 113–125.

[39] Alexandru Paler, Alwin Zulehner, and Robert Wille. “NISQ circuit compilation is

the travelling salesman problem on a torus”. In: Quantum Science Technology 6

(2020).

[40] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the heuristic

determination of minimum cost paths”. In: IEEE transactions on Systems Science

and Cybernetics 4.2 (1968), pp. 100–107.

[41] Ed Younis et al. “Qfast: Conflating search and numerical optimization for scalable

quantum circuit synthesis”. In: 2021 IEEE International Conference on Quantum

Computing and Engineering (QCE). IEEE. 2021, pp. 232–243.

[42] Ethan Smith et al. “Leap: Scaling numerical optimization based synthesis using an

incremental approach”. In: ACM Transactions on Quantum Computing 4.1 (2023),

pp. 1–23.

[43] Ji Liu et al. “Tackling the qubit mapping problem with permutation-aware synthe-

sis”. In: 2023 IEEE International Conference on Quantum Computing and Engi-

neering (QCE). Vol. 1. IEEE. 2023, pp. 745–756.

[44] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2022.

[45] Andrew Fagan and Ross Duncan. “Optimising Clifford Circuits with Quantomatic”.

In: Electronic Proceedings in Theoretical Computer Science 287 (Jan. 2019), pp. 85–

105. issn: 2075-2180. doi: 10.4204/eptcs.287.5. url: http://dx.doi.org/10.

4204/EPTCS.287.5.

[46] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik. “Expressibility and Entan-

gling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical

Algorithms”. In: Advanced Quantum Technologies 2.12 (Oct. 2019). issn: 2511-9044.

doi: 10.1002/qute.201900070. url: http://dx.doi.org/10.1002/qute.

201900070.

[47] Karen Wintersperger, Hila Safi, and Wolfgang Mauerer. QPU-System Co-Design for

Quantum HPC Accelerators. 2022. arXiv: 2208.11449 [cs.AR].

[48] IBM Quantum Documentation ECR Gate. [Online; Accessed April 28, 2024]. url:

https : / / docs . quantum . ibm . com / api / qiskit / qiskit . circuit . library .

ECRGate.

77

https://doi.org/10.4204/eptcs.287.5
http://dx.doi.org/10.4204/EPTCS.287.5
http://dx.doi.org/10.4204/EPTCS.287.5
https://doi.org/10.1002/qute.201900070
http://dx.doi.org/10.1002/qute.201900070
http://dx.doi.org/10.1002/qute.201900070
https://arxiv.org/abs/2208.11449
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.ECRGate
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.ECRGate

List of Figures

1 Illustration of the Bloch Sphere . 4

2 Example of a Quantum Circuit . 5

3 CNOT gate acting on two qubits . 6

4 Quantum circuit producing a Bell state . 7

5 VQA Hybrid classical-quantum Loop . 9

6 General QAOA circuit representation . 10

7 Example of a Max-cut Problem . 10

8 Connectivity graph of the IBM Quantum Falcon processor 15

9 General Decomposition Chain . 20

10 SWAP Gate Decomposition . 21

11 Initial mapping with a subsequent routing 22

12 QSearch Tree . 27

13 SABRE Reverse Traversal Technique . 28

14 BQSKit compilation workflows for the four different optimization levels . . 30

15 Multi-qudit retarget workflow . 31

16 Sabre mapping workflow . 31

17 Single-qudit retarget workflow . 32

18 Gate-deletion optimization workflow . 33

19 Resynthesis-optimization workflow . 34

20 Seqpam-mapping optimization workflow . 34

21 Simplification techniques for Clifford gates 36

22 Workflow of the Init-stage . 39

23 Workflow of the layout-stage . 40

24 Workflow of the routing stage . 41

25 Workflow of the translation stage . 42

26 Workflow of the pre-optimization stage . 42

27 Direction change of a Controlled-X gate . 43

28 Optimization loop in Qiskit . 43

29 Single layer of the VQA circuit that is used for the evaluation 46

30 Compilation workflow in TKET . 50

31 Decomposition of the Echoed Cross-Resonance gate 52

32 Compilation workflow of the naive compiler 53

33 Comparison of the four optimization levels in Qiskit for the VQA circuit . . 55

34 Comparison of the four optimization levels in Qiskit for the QAOA circuit . 56

35 Comparison of the four optimization levels in TKET for the VQA circuit . 57

36 Comparison of the four optimization levels in TKET for the QAOA circuit 57

37 Comparison of the four optimization levels in BQSKit for the VQA circuit . 58

38 Comparison of the four optimization levels in BQSKit for the QAOA circuit 58

39 Comparison of the three compilers based the compiled QAOA circuit for

the IBMQ127 backend . 59

40 Comparison of the three compilers based the compiled QAOA circuit for

the Rigetti9 backend . 60

41 Comparison of the compile times . 61

42 Evaluation of the Approximation Degree . 62

43 Evaluation of the Approximation Degree using a QAOA execution 63

79

44 Scheduling stage of Qiskit . 67

45 Connectivity graph of IBMQ-Sherbrooke . 68

46 Connectivity graph of Rigetti ANKAA-9Q-1 68

47 Connectivity graph of Rigetti ANKAA-2 . 69

48 Connectivity graph of Linear-Nearest-Neighbour 69

49 Histogram encoding the solution to the Max-cut problem 70

50 Histogram encoding the solution to the Max-cut problem 71

51 Histogram encoding the solution to the Max-cut problem 72

52 Histogram encoding the solution to the Max-cut problem 73

53 Histogram encoding the solution to the Max-cut problem 74

List of Tables

1 Properties of Current Quantum Hardware 16

2 Properties of the backends used in the evaluation 47

80

	Introduction
	Background on Quantum Computing
	Information on Qubits
	Bloch Sphere
	Multi-Qubit Systems
	Circuit Models
	Quantum Gates
	Quantum Circuits

	Quantum Programming Languages
	Quantum Algorithms
	Variational Quantum Algorithm
	Quantum Approximate Optimization Algorithm
	Max-cut Problem Overview

	Quantum Hardware
	Noisy Intermediate-Scale Quantum Systems
	Physical Realizations
	Quantum Hardware Constraints
	Limited Qubit Connectivity
	Gate Sets
	Errors in Quantum Systems

	Functionality of Quantum Compilers
	Gate Translation
	Initial Mapping
	Routing
	Optimization of Quantum Circuits

	In-Depth Analysis of Quantum Compilers
	Analysis of BQSKit
	QSearch
	Larger Exploration by Approximate Prefixes
	SWAP-based BidiREctional Heuristic Search Algorithm
	Permutation-Aware Synthesis
	Compilation Pipeline

	Analysis of TKET
	Graph Placement
	Routing Approach
	Peephole Optimization
	Macroscopic Optimization
	Compilation Pipeline

	Analysis of Qiskit
	Overview of the Transpiler
	Compilation Pipeline

	Design and Implementation of the Evaluation Framework
	Description of the Analyzed Properties
	Description of the Analyzed Circuits
	Description of the Backends
	Description of the General Workflow
	TKET Compilation Pipeline
	BQSKit Echoed Cross-Resonance Gate
	Naive Compilation Pipeline

	Evaluation of the Quantum Compilers
	Optimization Levels Comparison
	Qiskit Optimization Levels Comparison
	TKET Optimization Levels Comparison
	BQSKit Optimization Levels Comparison

	Compiler Comparison
	Compile Time Comparison
	Effects of the Approximation Degree

	Conclusion
	Future Works
	Summary

	Appendices
	Flowchart of Qiskit's Scheduling Stage
	Connectivity Graphs of Backends
	Results of the Quantum Approximation Optimization Algorithm

