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Abstract

Tracing mechanisms in real-time Linux systems enable detailed observation of application and
kernel behavior while minimizing interference, aiming to capture system behavior as accurately
as possible under production conditions with minimal observer effect. This thesis presents a
comparative analysis of three widely used tracing frameworks, ftrace, LT Tng, and eBPF, eval-
uating their usability, instrumentation workflow, features, performance impact, and suitability
for tracing user-space applications. The study systematically measures the overhead intro-
duced by each framework using a microbenchmark focused on User Statically-Defined Trac-
ing (USDT). Additionally, the instrumentation workflow and feature set of each framework
are examined to assess their practicality and integration usability. The impact on real-time
performance is evaluated empirically using Cyclictest, the de facto standard benchmark for
measuring real-time performance. The results indicate that LTTng has the least impact on
real-time performance for user-space instrumentation due to its static instrumentation ap-
proach, while ftrace achieves the best stability and lowest overhead for kernel-space tracing.
In contrast, eBPF introduces the highest performance impact in both kernel-space and user-
space tracing. The study further highlights differences in usability, with ftrace offering the
simplest setup, LT Tng providing the most structured workflow for instrumenting user-space
applications, and eBPF enabling advanced programming and scripting capabilities. The find-
ings support developers and system designers in selecting a tracing framework that aligns with
system constraints, enabling effective debugging and performance analysis while preserving

real-time properties and ensuring accurate insights.
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1 Introduction

1.1 Observability in Real-Time Systems

The increasing demands of real-time applications and the rise of mixed-criticality systems
have driven interest in using Commercial-off-the-Shelf (COTS) hardware for real-time
domains. This shift stems from the need to reduce costs and utilize readily available
components while meeting stringent performance requirements. The Linux kernel has
become a prominent solution, offering extensive hardware support and a mature pro-
gramming environment. A notable advancement is the PREEMPT_RT patch, which
improves the Linux kernel’s predictability and responsiveness for real-time use cases [1].
As Steven Rostedt, a key contributor to PREEMPT_RT and maintainer of the ftrace
framework, stated: ”We actually would not push something up unless we thought it was
ready” [2, 3]. After two decades of development, PREEMPT _RT has been integrated
into the mainline Linux kernel for ARM64, RISC-V, and x86 architectures [4, 5]. This
integration marks the growing maturity of real-time Linux for critical applications. Both
the European Space Agency (ESA) and NASA have considered real-time Linux for space

and ground systems [1].

The development of robust and reliable real-time systems presents significant challenges.
History offers stark examples of the consequences of software defects in such systems.
Between 1985 and 1987, the Therac-25 medical accelerator caused six incidents of mas-
sive radiation overdoses due to a software bug, resulting in severe injuries and fatalities
[6]. A race condition in the Therac-25 software triggered X-ray emissions before the
safety component, the flattener, was in position, exposing patients to hazardous levels
of unfiltered radiation. Such failures could have been avoided with proper observabil-
ity techniques to detect and address software defects during development. In the past
decade, the development and availability of observability tools have expanded, particu-
larly within the Linux ecosystem [7]. As a result, Linux has become a suitable platform
for building and analyzing real-time systems, offering the necessary instrumentation to

support safe and reliable operation.



1.2 Problem Statement and Motivation

Observing and analyzing systems introduces a fundamental challenge: the observer effect
[8]. This phenomenon occurs when the observation process alters the system’s character-
istics, potentially causing Heisenbugs, elusive performance anomalies that shift or vanish
during observation [9, 10]. In real-time applications, which operate under strict timing
constraints, even minor perturbations can significantly affect performance. Identifying
the root causes of latency in such systems is particularly difficult, as performance issues
may stem from hardware limitations, kernel latency, scheduling delays, interrupt han-
dling, or preemption mechanisms. To address these complexities, tracing frameworks
provide diagnostic capabilities with the granularity needed to analyze the sources of un-
known latencies [11]. However, these tools often introduce overhead, potentially masking
the performance issues they are meant to diagnose. This creates a paradox where the
diagnostic process itself disrupts accurate system analysis. The key challenge lies in de-
veloping tracing methodologies that capture meaningful observations while minimizing

disruption to the system’s natural behavior.

1.3 Research Scope, Objectives and Questions

This bachelor’s thesis provides a detailed overview of tracing frameworks and tools within
the Linux ecosystem, focusing on tracing real-time applications executed in user-space.
The research explores the fundamental concepts of tracing and examines three well-
established frameworks, ftrace, LTTng, and eBPF-based, with particular attention to

user-space application tracing methods.

The primary objectives of this study are:

e To explain the core concepts of tracing in Linux systems

e To explore the user-space instrumentation process for each framework, presenting
the integration options available to development teams for instrumenting their

applications

e To evaluate the overhead introduced by the tracing routines of ftrace, LT Tng, and

eBPF

e To evaluate the overall impact of tracing on real-time systems



Based on these objectives, the following research questions have been formulated:

1. Which framework offers the highest usability for instrumenting an application?

2. Which framework provides the most extensive and effective features for user-space

tracing?

3. Which framework introduces the lowest performance overhead when instrumenting

a user-space application?

4. What effect does tracing have on real-time performance?

To address these questions, this study will offer a comparative analysis of the three
selected tracing frameworks. The analysis will examine their instrumentation work-
flow, overhead implications, and overall impact on real-time performance. Empirical
data will be collected through controlled experiments, utilizing benchmarking tools and
custom-designed microbenchmarks to quantify performance characteristics. Addition-
ally, the study will include a qualitative assessment of the frameworks’ usability and
feature sets, providing a detailed evaluation of their suitability for various observability

requirements.

By investigating these aspects, this thesis aims to contribute findings to the field of
Linux system tracing, supporting developers and system administrators in selecting the
most suitable tracing framework while balancing functionality, performance, and ease of

use.

1.4 Structure of the Thesis

Chapter 2 presents the theoretical foundations necessary for understanding the subject
matter. Chapter 3 introduces the most relevant tracing tools and frameworks, followed
by an analysis of three selected frameworks, focusing on their user-space application
capabilities. This chapter also examines the impact of tracing on real-time system per-
formance. Chapter 4 provides a detailed discussion of the differences identified between
the frameworks. The thesis concludes in Chapter 5 with the main findings and a sum-

mary of the previous chapters.



2 Fundamentals

2.1 Observability Techniques in Computer Systems

Observability is the practice of understanding a system through observation, using tools
such as counters, profilers, and tracers. Although tracing will be discussed in detail
later, it is essential to distinguish observability tools from benchmarking tools, which
actively alter the system’s state. Observability tools can be classified based on their scope
(system-wide or per-process) and their data collection method (counter-based or event-
based) [7]. Event-based tools, such as profilers and tracers, capture dynamic system

behavior, while counters, commonly used for monitoring, track specific metrics.

Applications and the kernel generate data on their state and activity, including operation
counts, byte counts, latency measurements, resource utilization, and error rates. This
data is typically exposed through integer variables known as counters, some of which are
cumulative. Performance tools read these counters to compute statistics such as rates
of change, averages, and percentiles. When these statistics are selected to evaluate or
monitor a specific target, they become metrics [7]. Advanced monitoring software can

also trigger alerts based on these metrics, notifying staff of potential issues.

While time-series metrics can sometimes identify the exact cause of a performance issue,
such as a recent software or configuration change, they often provide only a general indi-
cation. In such cases, profiling or tracing tools become essential for deeper analysis. Pro-
filing, within the context of system observability, typically involves sampling—collecting
a subset of measurements to form an overview of the target system. CPUs are common
profiling targets, often using timed-interval samples of on-CPU code paths [12]. Flame
graphs, a powerful visualisation of CPU profiles, can identify various performance bot-
tlenecks, including lock contention, memory inefficiencies, and networking delays, by

analyzing CPU usage patterns.



2.2 Historical Background and Evolution of Tracing

Technologies

With the increasing complexity of modern computer systems, performance and reliability
often depend on a complex interaction of factors, including I/O subsystems, device
drivers, interrupts, lock contention, scheduling, and memory management [13]. This
complexity has driven significant growth in the development of tracing tools across the
software stack over the past decade. While traditional debugging methods, such as
printf() statements, offer basic insights, they lack the granularity and efficiency needed
to diagnose performance bottlenecks in complex systems. Tracing, by contrast, provides
a powerful approach for debugging and reverse-engineering intricate systems, offering a

configurable and efficient methodology for detailed logging [14].

A significant milestone in the evolution of tracing was the introduction of DTrace by
Sun Microsystems in 2005 [15]. This technology enabled dynamic tracing of both kernel
and user-space environments without requiring system restarts or code modifications,
an achievement nearly impossible at the time. DTrace’s success extended beyond its
technical capabilities. Its widespread adoption was driven by a well-supported ecosys-
tem that included marketing, training resources, and user-friendly scripting tools. This
contributed to an “observability gap” within the Linux ecosystem, as no comparable

tool was available at the time [16].

This gap has led to the development of several tracing tools for Linux, including Sys-
temTap, LTTng, and ftrace. A primary objective of these tools has been to minimize
the overhead introduced by the tracing process, as excessive overhead can distort system
behavior and cause elusive “Heisenbugs” [13, 17]. The introduction of eBPF (Extended
Berkeley Packet Filter) in 2014 marked a major advancement in tracing technology [18].
eBPF enables developers to dynamically inject custom code into the kernel, unlocking

new possibilities for high-performance networking, observability, and security tools.

2.3 Mechanics and Operation of Tracing Techniques

Tracing, at its core, involves recording events. This process captures essential event data,
which is either stored for later analysis or processed immediately to generate summaries

and trigger actions. Specialized tracing tools serve specific purposes, such as Linux’s



strace for system calls and tcpdump for network packets [7]. General-purpose tools
like SystemTap, ftrace, and bpftrace offer broader capabilities, enabling the analysis of
various software and hardware events. These tools will be examined in detail later in
this work. Tracing provides information about both the timing and location of events,

identifying where they occur in the source code and which process is responsible.

An event is typically represented as an ordered tuple containing the event identifier, a
timestamp indicating its occurrence, its location (often specified by node and thread
identifiers), and an optional field for event-specific details [19]. This section will further
examine the mechanics of tracing by defining key terms and concepts, offering a detailed

overview of the tracing process.

2.3.1 Core Terminology of Tracing

Understanding the core terminology is essential for effectively utilizing tracing tools and
frameworks. This section defines several key terms necessary for comprehending the

mechanics and applications of tracing:

e Tracepoint: A tracepoint is a specific location in a program’s code that allows
probes to be attached. It acts as a hook, triggering probe execution when the
program reaches that point. Tracepoints can be enabled or disabled dynamically,

offering control over tracing activity [20, 7].

e Probe: A probe is a function or code segment associated with a tracepoint. When
program execution reaches an active tracepoint, the corresponding probe is acti-
vated. Probes can perform tasks such as recording data, capturing timestamps, or
modifying program behavior. They are generally designed to be lightweight and

efficient to reduce their impact on the system under observation [14].

e Event: An event marks the occurrence of a specific action or condition within a
program. In tracing, an event is commonly linked to the activation of a tracepoint.
Events can represent various activities, including function calls, system calls, or
context switches [21, 14]. Each event is usually recorded with a timestamp, offering

an exact record of its occurrence [22].

e Payload: The payload refers to the data associated with an event. This data

can provide essential context and information about the event’s significance. For



example, the payload of a function call event may include the function’s arguments

and return value [22].

2.3.2 Callback Mechanism in Tracing

With the concept of tracepoints established, we now examine the mechanisms used to
implement probe callbacks. First, it is essential to understand that instrumentation can
follow two distinct approaches: static or dynamic [23, 14]. Static instrumentation em-
beds tracepoints directly into the binary at compile time, with predetermined locations.
Dynamic instrumentation, on the other hand, inserts tracepoints at runtime based on
user-defined locations. This distinction should not be confused with dynamic tracing,
which refers to the ability to activate or deactivate tracing functionality during program

execution, regardless of whether the instrumentation is static or dynamic.

A mechanism provides a conceptual model for implementing a callback, while the tracing
infrastructure determines its specific implementation [14]. This relationship resembles
that between an architectural blueprint and a completed structure: the blueprint rep-
resents the design (mechanism), while the structure (implementation) is the concrete
realization of that design. For example, a common mechanism is the use of a trampo-
line, which allows code to be dynamically inserted at a tracepoint. The implementation

of the trampoline varies depending on the tracing framework and target.

Before examining the underlying mechanisms, it is essential to differentiate between
tracers and aggregators, as they represent distinct approaches to analyzing program
behavior. Tracers follow a callback-serialize-write pattern: they trigger a probe when
a tracepoint is reached, convert the event data into a storable format, and write this
data to persistent storage [14]. A ring buffer is often used to temporarily hold events
before writing them, allowing the tracer to manage incoming event streams efficiently
and prevent data loss during bursts of activity. The resulting output is a trace, a detailed
record of events for later analysis. Tracers are designed to minimize overhead, preserving

system performance during observation.

Aggregators, in contrast, follow a callback-compute-update pattern. When a tracepoint
is encountered, they trigger a probe, perform computations on the collected data, and up-

date program state or variables accordingly. This approach prioritizes real-time analysis



and immediate action. Tools such as SystemTap and bpftrace exemplify the aggregator

model, offering scripting capabilities to support custom aggregation logic [14].

Unlike tracers, which produce detailed event logs, aggregators generate condensed out-
puts tailored to specific needs. These outputs may include aggregated metrics or updated

program variables [24].

Function Instrumentation

Function instrumentation, a type of static instrumentation, relies on compiler support.
This method automatically inserts a call to a generic tracing probe before each function
execution. The compiled binary embeds explicit calls to a designated routine at every

function entry and, optionally, upon exit.

For example GCC provides various mechanisms for this callback, such as the -pg flag,
which generates a binary where each function includes an mcount routine call as a
preamble [25, 14].

echo ’main(){}’ | gcc -x ¢ -S -0 - - -pg | grep mcount
# Output: "1: call *mcount@GOTPCREL (%rip)"

The implementation of this routine, which may include tracing, profiling, or other mon-

itoring functions, is defined by the developer or tracer [26].

Static Tracepoints

A tracepoint, a form of static instrumentation, is manually inserted into application code
by developers to enable the tracing of specific events [27]. In contrast to conventional
function calls, tracepoint statements in the Linux kernel are optimized to minimize per-
formance overhead. As these statements remain in the compiled binary unless explicitly
disabled, their efficiency is critical, especially in production environments where tracing

is generally inactive [14].

Several optimizations are employed to achieve this. First, the compiler is directed to
position tracepoint instructions outside the cache lines used by the regular code execution

path. This preserves the cache efficiency of the fast path, ensuring it remains unaffected



by inactive tracepoint code. Second, tracepoints are implemented as C macros rather
than function calls. This approach reduces stack operations and eliminates function call

overhead, further minimizing performance impact [24].

Although tracepoints are primarily used during development, their impact on runtime
performance when disabled is limited to a single condition check. This minimal check
ensures that the normal flow of execution remains efficient and uninterrupted. Despite
these optimizations, a slight overhead persists, as the system must read the condition

operand from memory.

To address this issue, the Linux Trace Toolkit Next Generation (LTTng) project in-
troduced the Immediate Value infrastructure [14]. This mechanism embeds a constant
directly within the instruction, eliminating the need for a memory read and improving
tracepoint handling efficiency. By storing the tracepoint’s enabled or disabled status
directly in the instruction, Immediate Values remove memory access, enabling the CPU
to check the status instantly. This optimization is especially valuable in high-frequency
or real-time environments. As a result, it reduces overhead, making disabled tracepoints

nearly invisible to the system.

Within the Linux kernel, tracepoints are implemented using the TRACE_EVENT macro,
developed by Steven Rostedt. This macro simplifies the definition and insertion of tra-
cepoints, allowing developers to use functions such as tracepoint_name() within their
kernel code. Additionally, the TRACE_EVENT infrastructure provides a standardized
interface for various kernel tracers to connect their probes. This standardization simpli-
fies the development of custom tracers, promoting a more accessible and versatile tracing

ecosystem [14, 24].

Trap

Trap-based instrumentation provides a method for dynamically instrumenting applica-
tions at runtime. This technique utilizes operating system support for traps to insert

and execute custom probes at nearly any point within the kernel or application code.

In the Linux kernel, this mechanism is implemented through the Kprobes infrastructure.
Kprobes use a trap-based approach to dynamically intercept kernel code execution [14].
When a Kprobe is registered at a specific instruction, the instruction is replaced with a

breakpoint instruction. Upon reaching the breakpoint, the kernel’s breakpoint handler



is invoked. The handler saves the application’s state (including registers and stack) and

transfers control to the Kprobes infrastructure, triggering the registered tracing probe.

After the probe executes and the trap is handled, the original instruction, previously re-
placed by the breakpoint, is executed, restoring normal control flow. Tracing infrastruc-
tures can be built on top of Kprobes, offering a dynamic alternative to manually inserting
trace_tracepoint_name() statements in the code. Rather than modifying the source code,
a Kprobe can be registered at the desired location during runtime. Tracers use this ap-
proach to attach their probes to Kprobes instead of relying on the TRACE_EVENT

macro.

Abstracting the callback mechanism increases flexibility in probe management. By link-
ing a tracer’s probe to various backends, users gain more control over the tracing pro-
cess. Although the resulting trace is functionally identical to one produced with the
TRACE_EVENT macro, differences in the underlying callback mechanisms may affect

performance.

When a Kprobe is unloaded, the breakpoint instruction is replaced with the original in-
struction, removing the instrumentation [24]. This dynamic approach enables temporary

instrumentation and provides flexible tracing capabilities.

Trampoline

Trampolines provide a dynamic, jump-based method for patching or instrumenting appli-
cations at runtime [24]. This approach offers a lower-overhead alternative to trap-based
mechanisms, although it involves a more complex implementation. Recent versions of
the Linux kernel employ this technique to optimize registered Kprobes, replacing costly

breakpoints with jump-based trampolines.

This optimization uses a detour buffer, referred to as the optimized region, to reduce
overhead compared to the breakpoint approach. Instead of inserting a breakpoint in-
struction to trigger a trap, the original instruction is replaced with a direct jump to the
optimized region. The jump-based mechanism starts by saving the CPU’s registers to
the stack. It then transfers control to a trampoline, which redirects execution to the

user-defined probe.

Upon probe completion, the execution flow is restored. Control returns from the opti-

mized region, the CPU registers are reloaded from the stack, and the original execution

10



path resumes. This technique effectively balances performance efficiency with the flexi-

bility of dynamic instrumentation [14].

2.4 Definition and Characteristics of Real-Time Systems

In real-time systems, program correctness depends not only on the logical validity of
its output but also on delivering results within predefined time constraints or deadlines.
Temporal determinism is essential for ensuring predictable task execution [1]. Although
throughput and low latency are desirable, they remain secondary to the system’s ability
to meet timing requirements. Consequently, real-time signifies “as fast as required”, not

necessarily “as fast as possible” [1].

Real-time systems are generally categorised into three types [28]:

e Hard real-time systems: In these systems, even a single missed deadline can
lead to catastrophic failure. Consider an avionics weapons system: failing to launch
a missile within the specified time window after pressing the button could have

disastrous consequences.

e Firm real-time systems: These systems can tolerate a limited number of missed
deadlines, but exceeding this threshold can lead to failure. For example, a naviga-
tion controller in an autonomous robot might tolerate occasional missed deadlines,
causing minor deviations from the planned path, but repeated failures could lead

to significant damage.

e Soft real-time systems: These systems tolerate occasional deadline misses with-
out catastrophic consequences. Performance may degrade, but the system con-
tinues to function. For instance, in a console hockey game, occasional missed

deadlines might cause choppy gameplay but will not result in complete failure.

Real-time systems are not simply ’fast’ systems, and no universally accepted methodol-
ogy governs their specification and design. The consequences of missing a deadline must
be clearly defined [28]. Each real-time system presents distinct challenges and requires

careful consideration of its specific timing requirements.
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2.5 Real-Time Operating Systems (RTQOS)

To address real-time demands, specialized operating systems known as Real-Time Op-
erating Systems (RTOS) have been developed. These systems extend the functionality
of general-purpose operating systems to handle real-time events effectively [29]. Unlike
generic operating systems, which balance performance across metrics such as through-
put, resource utilization, and responsiveness, RTOS focus on meeting task deadlines
through scheduling policies that prioritize tasks with the most urgent timing require-
ments. Key features of an RTOS include minimal interrupt latency, ensuring rapid
response to external events, and preemptive task scheduling, which allows high-priority
tasks to interrupt lower-priority ones at any time [30]. These capabilities enable RTOS
to meet strict deadlines in firm and hard real-time applications, making them essential
in fields such as automation, communications, entertainment, and defense. While com-
mercial RTOS solutions such as VxWorks, QNX, and LynxOS dominate the embedded
systems market [31], Real-Time Linux offers a strong alternative. It combines real-time
performance with Linux’s robust ecosystem, extensive hardware support, cost efficiency,
flexibility, and excellent development environment. This makes Real-Time Linux a well-

suited choice for a wide range of industrial and embedded applications [32].

2.6 Related Work

Previous research has primarily focused on the performance characteristics of individual

frameworks or conducted comparisons with a limited scope.

Gebai and Dagenais [14] analyzed kernel and user-space tracers, evaluating their design,
implementation, and overhead. Their study employed microbenchmarks to quantify the
performance costs of various tracing frameworks, identifying key sources of overhead.
Although they compared various tracers, their focus was limited to tracing overhead
and did not address the instrumentation workflow for User Statically-Defined Tracing

and feature sets.

Piotrowski [33] compared the performance of DTrace on FreeBSD and eBPF on Linux,
assessing their observability capabilities and overhead. The study employed both mi-
crobenchmarks and application benchmarks, including the dd workload and kernel com-

pilation, to evaluate per-event costs and overall system impact. The results highlighted

12



trade-offs between static and dynamic instrumentation, demonstrating scenarios where
DTrace outperformed eBPF. Despite these insights, the analysis focused on cross-OS

comparisons rather than assessing the frameworks’ suitability for real-time Linux.

Beamonte et al. [34] examined the impact of LTTng on real-time systems, assessing
its applicability for tracing multicore Linux environments. Using cyclictest and hwlat-
detector, they measured LTTng’s effect on maximum latency, identified performance
bottlenecks, and proposed modifications to LT Tng-UST to reduce overhead. Their find-
ings indicated that kernel-space tracing with LT Tng introduced minimal overhead, while
user-space tracing required improvements for deterministic real-time performance. De-
spite these findings, their analysis did not compare LTTng with other Linux tracing

frameworks, such as eBPF-based or ftrace.

Bird [35] examined function duration measurement with ftrace, focusing on function
graph tracing to capture function entry and exit timestamps. The study described the
implementation of function graph tracing on ARM, addressing challenges such as stack
manipulation, recursion prevention, and runtime filtering of short-duration functions.
An optimized mechanism for discarding trace events was introduced, improving ftrace’s
ring buffer efficiency and extending trace coverage. Performance measurements indicated
that function graph tracing incurs substantial overhead, particularly with active tracing.
The study did not compare ftrace with other tracing frameworks, assess USDT, or

evaluate its applicability to real-time Linux use cases.

Although these studies offer important perspectives on individual tracing frameworks,
a comparison of their suitability for real-time systems—specifically for USDT trac-
ing—remains absent. This thesis addresses this gap by systematically analyzing three
well-known tracing technologies, ftrace, LTTng, and eBPF-based frameworks, under
both isolated and realistic real-time conditions, while also evaluating their usability for

instrumenting user-space applications

13



3 Comparison

3.1 Overview of Tracing Frameworks for Linux

A comprehensive comparison of Linux tracing tools and frameworks requires examining
the most widely used solutions. These tools can be categorized along two primary axes:

their domain of operation and their scope of functionality.

First, tracing frameworks are typically classified by their ability to collect metrics in
either kernel or user-space. Kernel-space tracing tools operate within the OS kernel,
capturing low-level events such as resource management and process scheduling. User-
space tools, conversely, focus on monitoring applications running outside the privileged

kernel-space, capturing their specific execution patterns.

Second, the scope and complexity of these observability tools must be considered. Tools
like strace and tcpdump are lightweight utilities tailored for specific tasks, providing
quick insights with minimal setup, making them ideal for focused debugging or profiling.
In contrast, frameworks like DTrace, LTTng, and ftrace offer broader functionality,
enabling real-time tracing across both kernel and user-space. These frameworks offer
greater flexibility, allowing users to define custom probes, handle complex data, and

monitor entire systems.

This section provides a concise overview of the most prevalent tracing tools and frame-
works in Linux. Beginning with pioneering solutions like DTrace and moving to mod-
ern eBPF-based tools, we examine their core functionalities, underlying principles, and

unique contributions to system observability.
DTrace

Introduced by Sun Microsystems in 2005, DTrace was the first widely recognized and
adopted dynamic tracing tool, marking a significant advancement in the field. It en-
abled real-time system observation in both kernel and user-space environments without

requiring system restarts or code modifications, a feat previously considered difficult or

14



impossible [15]. Initially developed for Solaris, DTrace was later ported to FreeBSD,
macOS, and Linux, expanding its influence [36, 37, 38].

DTrace introduced the 'D’ scripting language, inspired by AWK and C, with a focus
on efficiency and minimalism. It encourages concise one-liners for quick system tracing
without complex scripts. For example, the one-liner below counts read() system calls

per executable:

dtrace -n ’syscall::read:entry { @[execname] = count(); }’

These one-liners became popular for their simplicity and ability to provide immediate

insights into system performance [39].
Systemtap

Introduced by Red Hat in 2005, SystemTap is a tracing framework that provides real-
time observability into both Linux kernel and user-space activity [40]. Although dynamic
instrumentation capabilities like Kprobes were available in Linux since 2004, their com-
plexity posed challenges for many developers. Sun’s release of DTrace for Solaris in 2005,
with its user-friendly interface and powerful tracing features, led Linux users to seek a
comparable solution. SystemTap emerged as a strong contender, offering tracing capa-
bilities similar to DTrace. In contrast to DTrace’s widely praised simplicity, SystemTap
initially faced criticism for its complexity and less intuitive user experience [41, 42]. De-
spite early challenges, SystemTap evolved into a flexible tool, offering real-time insights
into system events. It features a scripting language inspired by DTrace’s 'D’, enabling
users to define probes that are automatically translated into C code, compiled into a
kernel module, and dynamically loaded into the running kernel. The example below
performs the same function as the previous DTrace one-liner, counting read() system

calls per executable:

stap —-e ’global counts;
probe syscall.read { counts[execname()] += 1 }
probe end {
foreach (name in counts) {

printf("%s: %d\n", name, counts[name])
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Furthermore, SystemTap offers ”tapsets”, pre-written libraries of common probe func-
tions, which simplify script creation and make observability accessible to a wider audi-
ence [43]. Managed by the stap command-line tool, SystemTap remains an efficient tool

for tracing complex system behavior.
ftrace

Introduced in 2008 by Steven Rostedt, ftrace is a Linux kernel tracing framework that
provides extensive insights into kernel functions [7]. It quickly became indispensable for
developers seeking to understand and monitor kernel behavior [35]. Over time, ftrace

evolved to include advanced features like function graph tracing and event tracing [7].

ftrace is managed through files in the debugfs pseudo-filesystem. These files configure
various aspects of ftrace, including trace buffer size, event timestamp clock source, and
the enabling or disabling of specific events. This flexibility enables ftrace to support
function tracing, tracepoints, system call tracing, and dynamic instrumentation. ftrace
can leverage both the TRACE_EVENT infrastructure for static instrumentation tracing
and the Kprobe infrastructure for dynamically hooking into various parts of the kernel

[14].

The development of tools like trace-cmd, a command-line utility for managing ftrace,
has streamlined trace configuration and control, enhancing usability. Furthermore, Ker-
nelShark, a graphical tool for visualizing trace data, simplifies the analysis of complex

kernel interactions through intuitive visualizations [44].
LTTng (Linux Trace Toolkit Next Generation)

Introduced in 2006 as an extension of the original Linux Trace Toolkit (LTT) [13], LTTng
(Linux Trace Toolkit: Next Generation) is an open-source toolkit for tracing both the
Linux kernel and user applications simultaneously. Unlike ftrace, which is built directly
into the Linux kernel, LTTng relies on loadable kernel modules for kernel-space tracing

and user-space components for instrumentation, control, and data collection. [14].

LTTng offers numerous features, including multiple recording sessions, dynamic event
rule management, and efficient event filtering using custom expressions. Traces can
be saved to the file system or streamed over a network, either entirely or selectively.
LTTng supports multiple programming languages, including Python, Java, and C++,
through user-space libraries that enable direct integration of tracing functionality into

applications [22].
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eBPF (Extended Berkeley Packet Filter)

A major advancement in system observability, eBPF enables the dynamic execution of
code within kernel space. eBPF traces its origins to the BSD Packet Filter (BPF), first
introduced in a 1993 paper by the Lawrence Berkeley National Laboratory. BPF was
integrated into Linux in 1997 with kernel version 2.1.75.2 and was used in the tcpdump

utility.

In 2014, BPF evolved into the extended Berkeley Packet Filter (eBPF). This evolution
introduced several enhancements, including a significantly expanded instruction set, en-
hanced security measures, and improved performance. By 2016, eBPF had gained signif-
icant traction, with its adoption in production systems and the rise of influential figures
like Brendan Gregg, whose work on tracing at Netflix significantly popularized eBPF
within infrastructure and operations circles [45]. eBPF allows developers to write custom
code dynamically loaded into the kernel, enabling real-time modifications to its behav-
ior. This capability enabled a new generation of high-performance tools in networking,

monitoring, and security [18].

Enhancing its accessibility, eBPF includes bpftrace, a command-line tool designed for
ease of use. As described in the project’s README, "bpftrace is a high-level tracing
language for Linux eBPF | inspired by awk and C, and predecessor tracers such as DTrace
and SystemTap.” bpftrace translates high-level programs into eBPF kernel code and

outputs formatted results in the terminal [46].
Perf

Perf, the official Linux profiling tool, is integrated into the mainline kernel. This multi-
faceted tool provides profiling, tracing, and scripting functions, serving as the front-end
to the kernel’s perf_events observability subsystem. Initially focused on performance
monitoring counters, perf now supports event-based tracing sources. Its capabilities in

CPU analysis are particularly noteworthy [7].

pert’s typical use case differs from that of ftrace or LTTng. While it can interface with
the kernel’s tracepoint infrastructure and record tracepoints, including system calls, perf
is primarily used for sampling and profiling applications. Additionally, perf monitors
only a single process at a time. Perf reports only the events and counters that occurred
within the traced process. This makes perf particularly effective for analyzing a specific

program’s behavior [14].
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strace

Originally developed by Paul Kranenburg in 1991 for Sun Systems [47], strace is an
open-source Linux utility used for diagnostics, debugging, and instruction in user space.
It traces interactions between processes and the Linux kernel, including system calls,

signal deliveries, and process state changes.

strace uses the kernel’s ptrace feature to hook into a process and intercept all its system
calls along with their arguments. The trace data is then written to a file descriptor
for later analysis. Because strace relies on ptrace and incurs scheduling overhead from
managing multiple processes, it typically introduces significant performance overhead
[14].

System administrators, diagnosticians, and troubleshooters find strace particularly valu-
able for diagnosing issues in programs without access to source code. Its ability to trace
programs without requiring recompilation makes it invaluable for analyzing program
behavior [48].

Sysdig

Sysdig, initially developed as a traffic-monitoring system, integrates a kernel module to
capture all network traffic, particularly between containers. Its support for Lua-based
filters, known as ”chisels”, provides extensive flexibility for network traffic analysis and
custom system monitoring, offering capabilities similar to eBPF and SystemTap [14].
Beyond network monitoring, Sysdig instruments systems at the OS level by capturing
system calls and other OS events [49]. This functionality has made it a widely used
commercial tool for monitoring diverse environments, from containers to web services

[50, 51].

3.2 Evaluation of USDT-Based Instrumentation

Testing real-time systems in environments that closely resemble real-world conditions is
essential to obtaining accurate insights, as discussed in Chapter 1. To address this chal-
lenge while enabling precise analysis, static code instrumentation concepts emerge as an
effective solution. Specifically, the use of User Statically-defined Tracing (USDT) offers
substantially reduced overhead compared to conventional logging approaches [14]. This

instrumentation methodology enables the integration of efficient logging mechanisms
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while maintaining the integrity of time-critical operations. The minimal performance
impact of USDT allows for meaningful testing that accurately reflects production envi-

ronment behavior.

The subsequent section examines the underlying mechanics of USDT functionality. Mul-
tiple established frameworks provide USDT support, among which this analysis focuses
on three distinct tracing frameworks: ftrace, LT Tng, and eBPF-based. The selection
of ftrace is justified by its position as one of Linux’s pioneering comprehensive tracing
frameworks, alongside LTTng, and its robust contemporary community support. eBPF,
as a modern tracing solution, offers exceptional adaptability and sophisticated capabil-
ities, making it particularly relevant for contemporary tracing applications [18]. Our
focus will not only be on measuring overhead but also on identifying the strengths and
weaknesses of these tracing methods in terms of their instrumentation and feature sets.
It is equally important to explore the level of effort required for development teams to

implement and utilize these tools effectively.

3.2.1 User Statically-Defined Tracing: Concept and Integration

User Statically-Defined Tracing represents a mechanism for adding static tracing ca-
pabilities to user-space applications. As previously discussed in Chapter 2, the imple-
mentation of tracing mechanisms varies across different tracing frameworks, allowing
for diverse design approaches to User Statically-Defined Tracing (USDTs). A critical
distinction exists between tracepoint insertion in the application’s source code and the

implementation of the actual probe attachment to this tracepoint.

A well-known dynamically probe-attached USDT implementation utilizes the trap mech-
anism, where tracepoints are embedded as metadata within the binary during compila-
tion rather than being compiled into executable instructions. When tracing is enabled,
the system dynamically inserts a trap instruction, typically implemented as a break-
point, at each USDT location. This trap temporarily halts the normal program flow
and redirects execution to a handler routine provided by the tracing framework. To
achieve this, the tracing framework introspects the ELF section of the binary to identify
the location of the tracepoint. A breakpoint is then placed at the tracepoint’s marker,
which translates into an interrupt. When program execution reaches this marker, the
interrupt handler is triggered, invoking the kernel’s uprobe mechanism. The kernel pro-

cesses the event and broadcasts it to user-space for further handling [52, 53]. Handler
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routines are designed to efficiently collect relevant data with minimal execution over-
head. Once the required information is gathered, control promptly returns to the main

program flow, ensuring normal execution resumes with minimal delay.

The core advantage of USDT is their negligible performance impact when inactive. In
their dormant state, USDT impose virtually no overhead on program execution. When
disabled, system performance is nearly identical to that of an uninstrumented binary.
Once activated, USDT provide an efficient mechanism for targeted data collection at
strategic locations. This combination of low inactive overhead and precise active trac-
ing makes them particularly well-suited for production-near environments where perfor-

mance minimization is critical [54].

To leverage USDTs in practice, we now explore the integration workflow for developers
using ftrace, eBPF, and LTTng.

3.2.2 User Statically-Defined Tracing Instrumentation Workflow

Across Frameworks

ftrace

ftrace can be used to trace statically instrumented applications through the use of its
uprobe capabilities [55]. To implement static instrumentation in applications, you first
need to add tracepoints to the application. The ”sys/sdt.h” header file, which is part of
the systemtap-sdt-devel package, is required.

Therefore, statically coded instrumentation is achieved using DTRACE_PROBEn macros,
such as DTRACE_PROBEI(provider, event, argl), where the macro specifies the provider,
event name, and up to 12 arguments that define the tracepoint parameters [56]. During
compilation, USDTs are translated into NOP (No Operation) instructions, while the

associated metadata is stored in the .note.stapsdt section of the ELF file.

Locating the memory addresses of the tracepoints in the .note.stapsdt section of the ELF
file requires manual inspection or the use of a script to automate the process. Tools such
as readelf or objdump can help extract this information. Once the memory addresses
are identified, the actual probe attachment is implemented using uprobe, which can be
activated using ftrace’s debugFS interface. After activation, ftrace monitors the provided

address and allows you to extract specific arguments by accessing the relevant register
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contents. The exact registers used for argument passing must also be determined from
the ELF file [57].

eBPF

The use of eBPF shares the same prerequisites as ftrace. Applications must also be
instrumented using the DTRACE_PROBEn macros provided in the ”sys/sdt.h” header
file. Unlike ftrace, the activation of the tracing mechanism with eBPF involves signifi-
cantly less effort. bpftrace, a tracing tool built on top of eBPF, simplifies this process
by automatically detecting all tracepoints from the application’s binary, making it well-
suited for instrumenting user-space applications [53]. Unlike a tracing framework, eBPF
is a technology that enables the dynamic insertion of code into kernel space at runtime,
providing the necessary infrastructure for bpftrace. Since bpftrace utilizes eBPF for dy-
namic instrumentation, and eBPF provides the foundation for its functionality, we will

use the terms eBPF and bpftrace synonymously for simplicity in this context.

A major advantage of bpftrace is its adherence to the callback, compute, update pattern,
as discussed in Chapter 2, categorizing it as an aggregator. This enables real-time evalu-
ations based on tracepoint information, making it particularly effective for live analysis.
Alternatively, the BPF Compiler Collection (BCC) can be used instead of bpftrace to
implement a custom instrumentation solution. While BCC provides finer control over
tracepoint handling and data processing, it requires more complex implementation com-

pared to bpftrace.

The following script demonstrates how to capture user-space tracepoints with nanosec-
ond precision, access provided arguments, and aggregate executions. Its structure closely
resembles awk, with distinct BEGIN, main processing, and END blocks, making it in-

tuitive for users familiar with text processing tools.

It initializes a counter in BEGIN, increments it on each tracepoint hit, and prints exe-
cution details, including process ID, CPU ID, timestamp, and arguments. In END, it

reports the total number of probe hits.

#!/usr/bin/env bpftrace

BEGIN {

Qcount = O;
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usdt:/opt/trace/tests/main:* {
printf ("%u [%ul %u %d\n",

pid,
cpu,
nsecs,
arg0
);
Qcount++;
+
END {
printf ("Total USDT probe hits: %d\n", Qcount);
}
LTTng

LTTng provides a more flexible instrumentation mechanism compared to ftrace and
eBPF by allowing the creation of custom tracepoint providers using C macros. This
flexibility enables developers to tailor tracing functionality to their specific needs, offering
advanced options for passing arguments from the application to the tracing system at
runtime. Complex data structures can be transmitted as payloads, facilitating more

detailed analysis in the resulting trace logs [58].

For simpler tracing scenarios, LT Tng offers an alternative via the ”lttng/tracef.h” header
This functionality mirrors the simplicity of ftrace and eBPF, allowing developers to

quickly implement basic trace logs. For example:
lttng_ust_tracef ("my message: %s (%d)", my_string, my_integer);

To leverage LTTng’s features, applications have to be dynamically linked against the

Ittng-ust library.

LTTng also includes a command-line tool for managing tracing sessions and enabling
tracepoints. For instance, developers can activate tracepoints in user-space applications

with commands such as:

lttng enable-event --userspace ’lttng_ust_tracef:x*’
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3.3 Assessment of Tracing Framework Overhead

With the options for instrumenting user-space applications now outlined, the following
sections focus on evaluating the overhead introduced by instrumentation and tracing on
an application’s runtime behavior, as well as identifying the mechanisms that minimize

this impact.

3.3.1 Methodology for Measuring Tracing Overhead

The idea is to test a simple application under different conditions using each tracing
mechanism. The goal is to measure the time with nanosecond accuracy from the start
of the routine until it returns to the program flow. This time will serve as a measure of

how much time is consumed by a tracepoint hook.
Several scenarios are of interest:

Baseline (Case 0): Measure execution time when no tracing mechanism is activated

and the application is not instrumented. This will serve as the baseline for comparison.

Full Tracing Implementation (Case 1): Measure the performance impact when the
application is instrumented and the tracing mechanism is active while storing all logs

produced by the application for later analysis.

Inactive Tracing (Case 2): Measure the performance impact when the application is
instrumented and the tracing mechanism is active, but no trace routines are triggered.
This tests the impact of the full tracing implementation without any actual tracing

activity.

Instrumentation Impact Alone (Case 3): Measure the performance impact when
the application is instrumented but the tracing mechanism is inactive, i.e., the tracer is

disabled. This isolates the effect of the instrumentation code itself.
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3.3.2 Microbenchmark Design and Execution Environment

For the baseline (Case 0), the cpu_relax function was implemented to insert a null assem-

bly instruction, ensuring that the execution is not optimized away by the compiler.

static inline void cpu_relax() {

asm("" ::: "memory");

For the microbenchmark, a C program was designed that, depending on whether ftrace,
eBPF, or LTTng is used, provides a corresponding function to trigger a simple trace

event.

static inline void event() {
#ifdef USE_LTTNG
lttng_ust_tracef ("%s (%d)", "event", 0); // LTTng (Case 1, Case 3)
#elif defined(USE_DTRACE)
DTRACE_PROBE1 (workload, event, 0); // ftrace and eBPF (Case 1, Case 3)
#else
cpu_relax(); // Case 2
#endif

Depending on the previously described cases, the execution time of the routine is mea-

sured using the corresponding mechanism:

static inline void run() {
#ifdef TRACING_ON
event () ;
#else
cpu_relax(); // (Case 0)
#endif
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// In Main
/%
In Case 2, tracepoints were defined elsewhere in
the code to serve as attachment point for the tracer
*/
while (runs—-) {

ticks start_time = getticks();

run();

ticks end_time = getticks();

The microbenchmark was executed on hardware with an Intel@®) Core™ i7-1065G7 CPU
@ 1.30 GHz, capable of turbo boosting up to 3.9 GHz, running Ubuntu 24.04.1 LTS with
the latest available kernel (6.12.11) and the RT preemption model. To ensure stable and
repeatable benchmarking results, several system modifications were applied, some of

which are also recommended by Denis Bakhvalov, a senior developer at Intel [59].
Disabling Turbo Boost (Dynamic Frequency Scaling)

Turbo Boost is a feature in Intel CPUs that dynamically increases the clock speed to
improve performance during demanding tasks. This can lead to inconsistent benchmark
results, as the CPU frequency might vary throughout the test. To avoid this, Turbo
Boost is disabled to ensure that the CPU operates at a consistent frequency. This is

achieved by writing 1 to the no_turbo file in the Intel P-state directory, as shown below:
echo 1 | sudo tee /sys/devices/system/cpu/intel_pstate/no_turbo

Setting the CPU Scaling Governor to “Performance”

The Linux kernel uses a CPU scaling governor to adjust the processor’s frequency based
on workload, with the “performance” governor keeping the CPU at its maximum fre-
quency. In power-saving modes, the CPU frequency can be reduced, which might affect
benchmark results. To prevent any reduction in performance, the CPU scaling governor

was set to “performance” across all cores using the following commands:

for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor; do
echo performance > $i

done
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Clearing File System Cache

The Linux kernel caches file system contents in memory to reduce disk access times.
This can distort benchmark results by causing file operations to be faster than they
would be if the data had to be read from the disk. To eliminate the influence of file
system caching, the cache was cleared by writing 3 to the drop_caches file and executing

the sync command to ensure all changes were written to disk:

echo 3 | sudo tee /proc/sys/vm/drop_caches

sync

Disabling Hyperthreading

Hyperthreading, Intel’s implementation of Simultaneous Multi-Threading (SMT), can
introduce performance variability during benchmarking by allowing two logical threads
to share a single physical core’s resources [60]. This resource sharing can lead to in-
consistent performance measurements in certain scenarios. To achieve more stable and
reproducible core performance, Hyperthreading has been disabled through the BIOS

settings.
CPU Isolation

To minimize scheduler-induced disturbances and ensure consistent benchmarking condi-
tions, CPU isolation was enforced by configuring the kernel boot parameters. The sys-
tem was booted with GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=3 nohz_full=3",
which prevents the Linux scheduler from migrating tasks onto CPU 3. This isolation
minimizes latency spikes and prevents interference from background processes during

benchmarking
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3.3.3 Results and Analysis of Microbenchmark Experiments

None ftrace

Case

min max T S min max i S

Case 0| 13 5189 15.55 12.27 - - - -

Case 1 - - - - 506 58365 607.26 889.06
Case 2 - - - - 13 5180 15.62 9.59
Case 3 - - - - 13 5102 15.66 8.90
eBPF LTTng
Case
min max T S min  max T S
Case 0 | - - - - - - - -

Case 1 | 450 58709 564.67 1446.99 | 171 22404 185.75 43.27
Case 2 | 12 32926 15.60 17.15 13 5185  15.52  10.26

Case 3 | 12 39352 15.70  22.11 12 7053 15.83 11.77

Table 3.1: Comparison of routine duration across tracing frameworks. The
table presents the minimum, maximum, mean (z), and standard deviation
(s) of routine execution times (in nanoseconds) for different cases under four
configurations: no tracing, ftrace, eBPF, and LTTng.

Table 3.1 presents the measured execution times for user-space instrumentation in nanosec-
onds. Measurements were performed over 10 million iterations. As shown in Figure 3.1
and Figure 3.2, the distribution of these measurements reveals several key insights about

the performance characteristics of different tracing frameworks.
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Figure 3.1: Probe duration across frameworks (Case 1). The box plot compares
probe durations for ftrace, eBPF, and LTTng, highlighting differences in
execution time and variability.

LTTng demonstrates notably different behavior compared to ftrace and eBPF, par-
ticularly in Case 1, where tracing is actively performed. The box plot in Figure 3.1
shows that LTTng’s execution time is concentrated in a narrower range (approximately
210-230 nanoseconds), indicating a more compact distribution. In contrast, ftrace and

eBPF show higher median execution times, clustering around 590-700 nanoseconds.
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Figure 3.2: Probe duration frequency distribution (Case 1). The frequency poly-
gon represents the spread of probe durations across frameworks, showing
how frequently specific duration values occur.

The frequency polygon in Figure 3.2 presents the distribution of USDT execution times
across the three frameworks. eBPF exhibits a broader spread of execution times, with
higher frequencies in the mid-to-upper range, suggesting a greater performance impact
for some probes. ftrace maintains a more consistent distribution, closely mirroring eBPF
in some regions but with fewer spikes in execution time. LTTng, in contrast, consistently
records lower execution times, maintaining a tighter and more stable distribution with
minimal variation. This indicates that LTTng imposes the least overhead and provides

the highest stability for user-space tracing.

Cases 2 and 3, where tracing is disabled or partially active, exhibit remarkably similar
performance across all frameworks, with execution times comparable to the baseline Case
0. Only eBPF showed a single maximum latency spike of 32 pus in Case 2 and two spikes

of 321s and 39 ps in Case 3. This indicates that the overhead of inactive tracepoints is
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minimal to negligible, regardless of the framework. The box plots for these cases show
nearly identical shapes and distributions, reflecting consistent behavior across different

scenarios where tracing is inactive.

These observations indicate that while ftrace and eBPF exhibit similar performance
characteristics due to their shared underlying instrumentation approach, LT Tng utilizes
a more efficient mechanism for active tracing, leading to significantly lower overhead and

more stable tracing behavior.

3.4 Benchmarking the Impact of Tracing on Real-Time

Performance

Cyclictest, the most widely used benchmark for evaluating real-time system latency;,
was used to measure the impact of tracing. [61]. It provides a precise mechanism
for measuring system responsiveness with nanosecond accuracy by calculating the time
difference between a thread’s expected and actual wakeup time. The test utilizes an
advanced measurement approach involving a non-real-time master thread that creates
multiple measurement threads with real-time priority. These measurement threads are
periodically awakened by a cyclic timer, and the difference between their defined and
actual wake-up times is calculated and passed to the master thread via shared memory
[62]. Ome key advantage of Cyclictest is its integration with ftrace [63]. This integra-
tion allows users to define upper latency limits, automatically stop the test when these
thresholds are exceeded, and generate a trace marker. This capability enables root cause

investigation by capturing and analyzing surrounding events.

3.4.1 Experimental Setup: Configuration of Cyclictest

For the following measurements, Cyclictest from the rt-tests package (v2.80) was used.

The test was conducted using the following configuration:

./cyclictest \
-—affinity=3 \
--mainaffinity=2 \
-—threads=1 \
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--mlockall \
--100ps=10000000 \
--histogram=10000000 \
--distance=0 \

--nsecs \

--quiet \
--priority=99 \
--interval=30 \
--json="$RESULT_DIR/$1"

This setup ensures that a single real-time measurement thread is bound to a dedicated
CPU (CPU 3), while the main computation thread executes on a separate CPU (CPU

2). The test runs at a fixed interval of 30 s for 10 million iterations.

For all tests, the microbenchmark environment was used, following best practices from
the Linux Foundation to ensure reliable and stable execution [64]. The main computation
thread was explicitly assigned to a separate CPU to prevent resource contention between
the real-time measurement process and background system operations. Additionally, to
eliminate potential delays from memory paging, the —mlockall option was enabled to
lock all current and future memory allocations in RAM. This prevents memory pages
from being swapped to disk, ensuring consistent execution latency. Cyclictest results
are stored in a JSON-formatted latency histogram, forming the basis for subsequent

analysis.

3.4.2 Kernel and User-space Instrumentation of Cyclictest

To evaluate the impact of tracing on real-time performance, both user-space and kernel-
space instrumentation in Cyclictest were implemented. For user-space instrumentation,
Cyclictest’s source code was modified to insert a tracepoint between the expected and
actual timing measurements. This modification ensured that a tracepoint was triggered
for each latency calculation and recorded in the trace buffer. In contrast, kernel-space
instrumentation leveraged the sys_exit_clock_nanosleep system call as a tracing hook
to capture each wake-up event in the test cycle. This approach provided insights into

Cyclictest’s real-time behavior without modifying its source code.
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3.4.3 Results of Kernel and User-space Cyclictest Benchmark
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Figure 3.3: Comparison of latencies with and without tracing. The figure illus-
trates the impact of tracing on latency. The box plot presents the latency
distributions for configurations without tracing, with static instrumentation
(LTTng), and with dynamic instrumentation (ftrace and eBPF).

Figure 3.3 presents the latency for USDT tracing, showing that static instrumentation
(LTTng) incurs less latency than dynamic instrumentation (ftrace and eBPF). Both
static and dynamic tracing increase system latency, with dynamic tracing exhibiting
slightly greater variability. While eBPF and ftrace rely on the same dynamic instru-

mentation method via uprobes, eBPF results in a higher median latency.
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Figure 3.4: Latency comparison of user-space and kernel-space instrumenta-
tion. The box plot shows the latency distributions for configurations with-
out instrumentation, with user-space instrumentation using LTTng, and with
kernel-space instrumentation using ftrace, eBPF, or LT Tng.

Figure 3.4 compares the latency impact of user-space and kernel-space instrumentation,
with LTTng as the reference for user-space tracing. Tracing the sys_exit_clock _nanosleep
system call in kernel-space results in lower latency with ftrace or LTTng compared to
user-space instrumentation with LTTng. Among kernel-space methods, ftrace and LT-
Tng have similar median latencies, but LT Tng exhibits greater variability in its latency
distribution. In contrast, eBPF introduces a higher latency impact than both ftrace and

LTTng in kernel-space, as well as LTTng in user-space.
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3.4.4 Impact of Preemption Models on Real-Time Performance
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Figure 3.5: Latency distribution comparison between PREEMPT RT and
PREEMPT. The histrogram illustrates the distribution of latencies under
the PREEMPT and PREEMPT _RT configurations, highlighting differences
in tracing stability.

This experiment evaluates Cyclictest execution with user-space instrumentation under
the PREEMPT_RT and PREEMPT models to validate the real-time capabilities of
PREEMPT_RT. LTTng was selected for this analysis as it demonstrated the most sta-

ble user-space performance among the evaluated tracing frameworks. The PREEMPT
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model allows kernel task preemption to improve responsiveness, while PREEMPT_RT
transforms the kernel into a fully preemptible environment for real-time systems. The vi-
sualization shows that both models exhibit similar latency patterns up to 30 ps. Beyond
this point, PREEMPT_RT results in fewer high-latency occurrences, with most latencies
remaining below this threshold and a maximum latency of 34 ys. In contrast, the PRE-
EMPT model continues to show latency variations, reaching nearly 120 ps, with more
than 40 occurrences exceeding 35 ps recorded in 10 million cycles, while PREEMPT _RT

experiences a sharp decline in frequency beyond 25 ps.
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4 Discussion

4.1 Evaluation and Discussion of Framework

Comparison Results

The comparative analysis of ftrace, eBPF, and LTTng highlights significant differences
in usability, features, and performance characteristics. This section synthesizes these
findings to provide a clear understanding of each framework’s strengths and limitations

in user-space tracing.

4.1.1 Discussion on Usability and Features

Setup and Configuration

ftrace, integrated into the Linux kernel, offers the most straightforward setup among
the three. It requires no separate installation, as the Linux kernel must simply be
configured with the appropriate kernel options enabled [65]. Users interact with ftrace
through the debugFS filesystem, where they configure tracing parameters and access
trace outputs. For a more user-friendly interface, the trace-cmmd CLI tool serves as a
frontend to ftrace. It simplifies operations such as starting tracing sessions and listing
available events but provides limited configuration options. eBPF, while also a kernel
feature, has stricter version requirements, requiring at least Linux kernel version 4.4
[66]. To use eBPF effectively for tracing, users must install either the BPF Compiler
Collection (BCC) framework to write custom eBPF programs or the bpftrace CLI tool for
quick tracing tasks. LTTng differs in that it requires separate installation of both kernel-
space and user-space components [22]. It features a modular setup, allowing users to
install only kernel tracing, user-space tracing (supporting languages like C/C++4-, Java,
and Python), or both. LTTng’s configuration is managed via a dedicated CLI tool that
oversees recording sessions and various components, providing a unified interface for

both kernel and user-space tracing.
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The choice between these tools depends on specific use cases and system requirements.
ftrace, with its kernel integration, is well-suited for constrained Linux environments.
eBPF provides flexible configuration options, making it ideal for both quick insights and
custom tracing tool development. LT Tng, with its modular design, offers a comprehen-
sive tracing solution for both kernel and user space but comes with a more complex

setup process.
Instrumentation Workflow

The instrumentation process for ftrace, eBPF, and LT Tng involves distinct trade-offs in
complexity and flexibility. Both ftrace and eBPF use DTRACE_PROBEn macros to add
tracepoints. ftrace requires manual steps or the use of scripts to locate tracepoint ad-
dresses and identify argument registers, making iterative development cumbersome. In
contrast, eBPF streamlines this process by automatically detecting tracepoints, requir-
ing only the application’s binary location when using it. For more complex use cases,
BCC provides greater control over instrumentation and functionality but involves a
more complex implementation. LTTng differs by providing custom tracepoint providers
via C macros, enabling tailored tracing solutions. These tracepoints can be automati-
cally located using the CLI tool without manually identifying the binary’s location or
extracting tracepoint addresses from the source code. While ftrace requires manual ac-
tivation, eBPF allows automated attachment through bpftrace scripts. LTTng offers
a command-line tool that balances ease of use with control. In summary, while ftrace
has the simplest setup, its instrumentation workflow demands the most manual effort.
eBPF balances usability with real-time aggregation capabilities, while LT Tng provides
unmatched flexibility.

Scripting capabilities

bpftrace, built on eBPF, provides a high-level scripting language inspired by AWK and
DTrace’s D language [67]. It enables users to write scripts that combine probes, pred-
icates, and actions to dynamically trace kernel and user-space events while performing
real-time aggregations. bpftrace can attach to probes and conditionally execute actions
such as printing formatted output or maintaining counters, making it ideal for quick
monitoring tasks. In contrast, ftrace functions as a traditional tracing tool without na-
tive scripting or aggregation capabilities. Users interact with it through the debugFS
filesystem or trace-cmd, which provide basic functionality such as enabling tracepoints
and collecting logs. While ftrace effectively captures raw trace data, it lacks a pro-

grammable interface, making it less suitable for advanced data manipulation. Similarly,

37



LTTng focuses on capturing and recording trace data but does not include an embedded
scripting language for processing or aggregation. Instead, it relies on external tools to
analyze its output, typically stored in the Common Trace Format (CTF) [68]. In sum-
mary, bpftrace excels with its AWK-like scripting capabilities for real-time aggregation
and analysis, while ftrace and LTTng primarily serve as tracing tools for capturing raw

data without built-in aggregation features.
Analysis and visualization

ftrace benefits from strong visualization capabilities through integration with tools like
KernelShark, which provides interactive visualizations of ftrace data, including timing
and delay analysis. eBPF, particularly with bpftrace, offers advanced real-time analysis
but lacks direct visualization support. Instead, its scripting capabilities enable complex
data aggregation and analysis. LTTng distinguishes itself with a comprehensive trace
analysis and visualization approach. It outputs binary trace data, which can be ana-
lyzed using tools like Babeltrace for text conversion or more advanced solutions such
as Tracealyzer and Trace Compass. Trace Compass, in particular, provides an intu-
itive interface for importing and analyzing LTTng traces and supports remote trace
retrieval, a valuable feature for embedded systems where traces are often collected on
resource-constrained devices. Depending on the analysis approach, ftrace and LTTng
offer dedicated visualization tools, while eBPF relies on CLI-based aggregation and eval-

uation.
Documentation and Community Support

ftrace’s documentation is primarily integrated into the Linux kernel documentation [69],
providing detailed explanations of its functionality, available tracers, and configuration
options. While updated with each kernel release, it may be less accessible to newcomers
unfamiliar with kernel documentation. Community support is mainly available through
Linux kernel mailing lists and forums. eBPF, as a more recent technology, has a growing
ecosystem of documentation and community resources. The BPF Compiler Collection
(BCC) project offers extensive documentation and examples for eBPF programming,
complemented by books, articles, and online tutorials [70]. Additionally, various on-
line resources provide one-liners and guidance for writing short bpftrace scripts. LT Tng
distinguishes itself with comprehensive and well-structured official documentation [22],
including detailed user manuals, API references, and version-specific guides. Regular
updates cover installation, usage, and advanced topics. Among the three, LTTng offers

the most structured and beginner-friendly documentation with dedicated community
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support. ftrace, despite its detailed documentation, relies on general Linux kernel com-
munity channels. eBPF, while rapidly expanding, has a diverse but less centralized

documentation ecosystem.

4.1.2 Discussion on Overhead and Stability

The performance analysis in Section 3.3.3 highlights differences in execution overhead
and stability across the evaluated frameworks. LTTng demonstrates superior perfor-
mance in active tracing scenarios, achieving average routine execution times approxi-
mately 60% lower than both ftrace and eBPF. This performance advantage stems from
fundamental architectural differences. While ftrace and eBPF use trap-based instru-
mentation with ”sys/sdt.h” macros to detect tracepoints in ELF files, representing a
dynamic instrumentation approach using uprobes, LTTng employs static instrumenta-
tion [34]. By integrating with the UST library, LTTng leverages static function call
instrumentation, bypassing system calls entirely [14]. This elimination of system calls
removes a significant source of overhead and enhances stability. In contrast, the higher
overhead and greater variability in routine durations observed in ftrace and eBPF pri-
marily result from their reliance on kernel infrastructure. When tracing is inactive or
disabled, all three frameworks exhibit similar performance, with overhead approaching
that of uninstrumented code. This finding indicates that dormant tracepoints impose

minimal to negligible performance impact, regardless of the chosen framework.

4.2 Impact of Tracing on Real-Time Performance

The evaluation of tracing mechanisms in real-time systems highlights the trade-offs be-
tween overhead, stability, and instrumentation flexibility. The Cyclictest benchmark,
executed under carefully controlled conditions, provides quantitative insights into the
performance impact of different tracing frameworks. The results show that ftrace and
LTTng in kernel-space tracing have a lower impact on latency compared to user-space in-
strumentation. ftrace demonstrates greater stability than LTTng in kernel-space, which
may be attributed to its out-of-the-box integration within the Linux kernel, whereas
LTTng requires loading its own kernel modules for kernel-space tracing [71]. In con-

trast, eBPF has a greater performance impact on kernel-space tracing than both ftrace
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and LTTng, and even surpasses LTTng’s effect on user-space instrumentation (Figure
3.4).

In terms of user-space effects on real-time performance, LTTng’s static instrumenta-
tion exhibited lower latencies than dynamic tracing with ftrace or eBPF. This aligns
with expectations, as static tracepoints avoid the runtime overhead of dynamic symbol
resolution and breakpoint handling. The box plot analysis (Figure 3.3) confirms that
static instrumentation maintains more consistent latency bounds, whereas dynamic ap-
proaches display a broader latency distribution. The comparison between PREEMPT
and PREEMPT-RT revealed that while both models exhibit similar latency distributions
up to 30 ps, PREEMPT-RT enforces tighter latency bounds beyond this threshold (Fig-
ure 3.5). This behavior aligns with PREEMPT-RT’s design goal of ensuring predictable

real-time performance and validates its effectiveness in achieving it.

4.3 Practical Recommendations for Developers and

System Designers

Choosing the right tracing solution is fundamental to effective performance analysis
and debugging. The optimal choice depends on factors such as the target environment,

required tracing depth, and acceptable performance overhead.

Table 4.1 provides a reference for determining whether a tracing framework supports
a particular instrumentation method, without detailing the underlying mechanisms or
implementation specifics. It categorises frameworks and tools based on their ability to

perform static and dynamic instrumentation in both kernel and user-space.
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Kernel-space User-space
Static Instrumentation | Dynamic Instrumentation | Static Instrumentation | Dynamic Instrumentation
SystemTap X v X v
ftrace v v X v
LTTng v v v v
eBPF v v X v
perf (4 v b 4 v
strace X X X 4

Table 4.1: Supported Instrumentation Mechanisms in Common Linux Tracing
Frameworks/Tools. The table categorises widely used tracing frameworks
by their support for static and dynamic instrumentation in kernel and user-
space.

For quick insights, lightweight tools like strace and perf require minimal setup and ef-
fectively identify performance bottlenecks in individual processes. In kernel-space trac-
ing, ftrace provides efficient function-level tracing with low overhead, while the BCC
framework enables flexible, programmable instrumentation via eBPF. For user-space
applications, LTTng is a strong choice due to its efficient event tracing, broad language
support, and extensive documentation. When short, script-based tracing is required,
the eBPF-based bpftrace offers an expressive, awk-like syntax for both user-space and

kernel-space insights.

To minimize overhead and enhance stability, static tracepoints are preferable. ftrace
leverages predefined tracepoints within the kernel, while LTTng supports static user-
space instrumentation, with both introducing lower runtime overhead than dynamic
trap-based techniques like kprobes and uprobes. Restricting traced events to those
required and avoiding full system tracing further reduces the impact on the observed
system. Buffered tracing solutions, such as LTTng’s ring buffers, are more efficient than
direct logging to files or consoles. Finally, tools relying on ptrace, such as strace, should

be used cautiously due to the substantial scheduling overhead they impose.
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5 Conclusion

This thesis presents a comparative analysis of tracing mechanisms in Linux, evaluat-
ing their applicability to real-time systems. The study examines three major tracing
frameworks, ftrace, LTTng, and eBPF-based solutions, assessing their usability, fea-

tures, performance overhead, and impact on real-time behavior.

Regarding usability and features, ftrace offers the simplest setup due to its native kernel
integration, making it accessible to system developers. Overall, ftrace instrumentation
workflow for user-space applications is cumbersome, and the lack of built-in scripting
capabilities limits its flexibility. In contrast, eBPF provides extensive programmability
and real-time data aggregation through the BCC framework and bpftrace, making it
well-suited for advanced tracing. LTTng, though requiring a more complex setup, is
highly modular and supports both kernel-space and user-space tracing with structured

instrumentation.

The evaluation of user-space instrumentation showed that LTTng introduces the low-
est overhead due to its static instrumentation methodology, outperforming ftrace and
eBPF-based solutions. While ftrace and eBPF rely on dynamic instrumentation via up-
robes, resulting in performance penalties from context switching, LTTng’s integration
with user-space libraries eliminates these sources of overhead. The choice between dy-
namic and static instrumentation, represented by ftrace/eBPF and LTTng, presents a
fundamental trade-off. Performance benchmarks indicated that active user-space tracing
imposes measurable overhead, with LT Tng’s static approach achieving the lowest exe-
cution times and the highest stability. All three frameworks exhibited negligible impact

when tracing was disabled, which is the default state in production systems.

The impact of tracing on real-time performance was evaluated using Cyclictest, revealing
that kernel-space instrumentation with ftrace or LTTng introduces less latency than
user-space instrumentation. While eBPF’s kernel-space instrumentation has less impact
than its user-space counterpart, it was the only kernel-space method that had a greater

impact on real-time performance than user-space instrumentation with LT Tng.
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The findings of this thesis emphasise the importance of selecting an appropriate tracing
framework based on specific use case requirements. While tracing frameworks provide
useful insights for debugging and performance analysis, their overhead can disrupt time-
sensitive applications. Developers must carefully balance tracing granularity with per-
formance constraints to prevent interference with the system under observation, which
could distort the application’s actual behavior. Prioritizing static instrumentation and
limiting tracing to essential events helps minimize overhead while preserving the accu-

racy of performance evaluations.

Future research could explore the functional differences between ftrace and eBPF in
user-space tracing to identify factors influencing their performance variations, despite
both relying on the same kernel infrastructure. Expanding the evaluation to include
additional tools, such as SystemTap, which also offers scripting capabilities but uses a
different approach by loading custom kernel modules instead of eBPF’s method, would

also provide valuable insights.
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