
Porting Simulated Quantum Algorithms

to the QExa20: Challenges and Results

Bachelor Thesis

in

Computer Engineering

At

Regensburg University of Applied Science

Student: Laura Madajczyk

Student Number: 3213681

Supervisor: Prof. Dr. Wolfgang Mauerer

Second Examiner: Prof. Dr. Florian Heinz

Submission Date: 29.04.2025

Stand: 10.07.2024/Abt. III

ERKLÄRUNG

ZUR BACHELORARBEIT VON

Name:

Vorname:

Studiengang:

1. Mir ist bekannt, dass dieses Exemplar der Bachelorarbeit als Prüfungsleistung

in das Eigentum der Ostbayerischen Technischen Hochschule Regensburg

übergeht. Die Abschlussarbeit darf elektronisch gespeichert und zu Zwecken

der Zitatkontrolle genutzt und unter Verwendung digitaler Hilfsmittel,

insbesondere von Plagiatserkennungssoftware, auf das Vorhandensein

eventueller Plagiate geprüft werden.

2. Ich erkläre hiermit, dass ich diese Bachelorarbeit selbständig verfasst, noch

nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und

sinngemäße Zitate als solche gekennzeichnet habe.

3. Für den Fall, dass eine elektronische Fassung der Bachelorarbeit abgegeben

worden ist, bestätige ich die Übereinstimmung der elektronischen Fassung

mit der gebundenen Ausfertigung der Abschlussarbeit.

Regensburg, den

..

Unterschrift

Diese Erklärung ist mit der Bachelorarbeit (eingeheftet) abzugeben.

28.04.2025,

Laura

Madajczyk

technische Informatik

Abstract

The access to quantum hardware is limited, which is why simulating is common practice
in quantum computing research. Thanks to granted access to the QExa20 quantum com-
puter at the Leibniz Supercomputing Centre during its pilot phase, this thesis focuses on
reproducing previously simulated experiments on real quantum hardware. The QExa20
is part of the European Quantum Computing for Exascale-HPC project and the first of
its kind connected with a SuperMUC high-performance computer. There are five more
quantum computer systems planned across Europe, with the vision of making several
quantum computers and simulators accessible for multiple users.
The experiments ported to the QExa20 are based on the approaches introduced in [22]
and [16], presenting a non-iterative version of the Quantum Approximate Optimization
Algorithm (QAOA) and a quantum reinforcement learning method for solving the join
order problem. Although the system is still in an early stage of development, it faces
initial challenges, such as long runtimes and unclear error responses. Because 20 qubits
is a really limited source to work with, the experimental parameters needed to be scaled
down to fit the number of available qubits and experiments were carefully selected to
account for long execution times.
As far as this thesis examined the performance of the QExa20, a really low depolariza-
tion error could be obtained and the results for non-iterative QAOA could be confirmed
on real quantum hardware. Despite all limitations, the QExa20 has proven to be capable
of producing reliable results. However, integrating quantum hardware into large com-
puter systems and controlling multi-user access remains a complex challenge. Network
latencies and request management can easily erode quantum advantage.

4

Contents

1 Introduction 6

2 Quantum Basics 7
2.1 Bloch Sphere . 7
2.2 Quantum Gates . 8

2.2.1 Projection, Hermitian and Unitary Operator 9
2.2.2 Eigenvectors and Eigenstates . 10
2.2.3 Pauli Rotation Gates . 10
2.2.4 RGate and Cphase . 11

2.3 Quantum Circuits . 12
2.4 Ising Hamiltonians and cost functions . 12

3 Variational quantum algorithms 14
3.1 QAOA . 14
3.2 Quantum Reinforcement learning . 15

4 Optimization Problems on Quantum Hardware 17
4.1 Boolean satisfiability . 17
4.2 Qr-factoring . 18
4.3 Join Order Optimization . 18

5 Experimental Setup 20
5.1 QExa . 20
5.2 Join Order Optimization with QRL . 21
5.3 Non-iterative QAOA . 22

6 Conclusion 26
6.1 Discussion . 26

5

1 Introduction

Because available quantum hardware is a limited resource, it is common practice in re-
search to simulate quantum circuits. Because of the chance to work on real quantum
hardware, this thesis concentrates on porting such simulated experiments onto the quan-
tum system QExa20. This superconducting quantum computer from IQM is the first
of its kind connected to the SuperMUC high-performance computer and is stationed
in the Leibniz Supercomputing Centre (LSC). It is part of the Munich Quantum Valley
(MQV) and the first of six quantum computer systems of the project European Quantum
Computing for Exascale-HPC. The big vision is to build multiple quantum machines and
simulators all over Europe and making it accessible for multiple users. The MQV created
an online portal for accessing their quantum machines and simulators.
Thanks to the granted access for several research groups in the pilot phase of the QExa20,
the system could be used for the experiments of this thesis. The chosen experiments
come from the paper [22] that introduces a non-iterative QAOA variant through param-
eter approximation and from [16] giving an approach for solving the join order problem
with quantum reinforcement learning.
The work concentrates on the comparison of the results and also examines the sys-
tem performance and workflow for QExa20 and the management infrastructure around
it. To provide some fundamentals on quantum computing, the first chapter introduces
qubit representation, the visualization of quantum states on the Bloch sphere, and the
application of basic quantum gates. The second chapter outlines the concept of varia-
tional quantum circuits, focusing in particular on QAOA and Quantum Reinforcement
Learning, followed by the third chapter outlining the covered optimization problems and
their realization as a quantum circuit. In the final chapter describes the QExa20 system
and its surrounding infrastructure, evaluates its performance and discusses the obtained
results.

6

2 Quantum Basics

This chapter is for giving a basic understanding of quantum computing. Before qubits,
quantum states, gates and circuits can be discussed, it is necessary to address some
mathematical basics about vectors and vector spaces. The math of quantum computing
is performed in the Hilbert Spaces, which are (complex) complete vector spaces with a
scalar product and in this context with finite dimensions. They are also separable, what
means they have a countable basis, so the basic vectors can be numbered consecutively.
In such spaces, standard vector and matrix operations can be applied mainly [28].
The architecture of a quantum computer can be built from a n-dimensional Hilbert
space, in which a state is referred to as qudit. But most architectures are constructed
in a two-dimensional Hilbert space where states are named qubits. The state vectors
are written on the computational basis which is orthonormal, meaning they are both
orthogonal and normalized. So any two basis vectors vi and vj with i, j ∈ {0, n − 1},
with n ∈ N≥1 have the property [17]

δij := vi, vj =

{
1, if i = j

0, if i ̸= j

This orthogonality ensures that, upon measurement, a qubit collapses to either |0⟩ or
|1⟩ with well-defined probability. The used notation is Dirac’s bra-ket notation, which
provides a more compact denotation for vectors in a complex vector space. Let |v⟩
represent a column vector v ∈ Cn with its elements vi for i ∈ {0, 1, ..., n − 1}, n ∈ N in
ket-notation and let |v⟩† be the dagger operation performed on v. The dagger denotes the
complex conjugate of its transpose. For each vector in ket-notation exists a corresponding
bra-notation [28]. So for |v⟩ applies

|v⟩ :=


v0
v1
...

vn−1

 , ⟨v| := |v⟩† :=


v0
v1
...

vn−1


T

= (v0 v1 ... vn−1)

Using this notation, we can now describe any qubit state as a linear combination of the
basis states. Any state of the system can be written as |ψ⟩ = α |0⟩ + β |1⟩, which is a
linear combination of |0⟩ and |1⟩ or also called superposition [28]. The coefficients α and
β are complex numbers that satisfy the property |α|2 + |β|2 = 1. This ensures that the
total probability of measuring the qubit in either |0⟩ or |1⟩ is 100%.

2.1 Bloch Sphere

Beside Dirac’s notation, another common way of representing a single qubit is the Bloch
sphere. This is a normalized sphere in the three-dimensional space as pictured in Fig-
ure 2.1. Since every qubit state is described by a normalized vector, which can be
visualized in the Bloch sphere originating from the center of the sphere, pointing to its
surface. By convention, the state |0⟩ is placed at the top and |1⟩ at the bottom of the
sphere. To represent a general qubit state |ψ⟩ = α |0⟩ + β |1⟩, the complex coefficients

7

CHAPTER 2. QUANTUM BASICS

Figure 2.1: Bloch Sphere, Source:[28]

α and β can first be written in polar coordinates: α = r1e
iγ1 and β = r2e

iγ2 where
γ1, γ2 ∈ [0, 2π] and r1, r2 ∈ [0, 1]. Due to the normalized condition |α|2 + |β|2 = 1, there
exists an angle θ ∈ [0, π] such that r1 = cos(θ/2) and r2 = sin(θ/2) where, θ represents
the polar angle of the state on the Bloch sphere. This allows us to rewrite the state as
[8]:

|ψ⟩ = cos
θ

2
eiγ1 |0⟩+ sin

θ

2
eiγ2

Since a global phase factor eiγ1 does not affect the physical state, we can eliminate it by
multiplying the entire state by e−iγ1 . Letting ϕ = γ2−γ1 yield the equivalent expression:

|ψ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiϕ |1⟩ (2.1)

Thus, any pure qubit state can be fully described by the two real angles θ ∈ [0, π] and
ϕ ∈ [0, 2π]. [20]

2.2 Quantum Gates

As described in 2.1 the state transformation of a qubit can be visualized with rotations
inside the Bloch sphere. These rotations can be represented by matrices and are then
called operators or quantum gates. This chapter breaks down the effect of quantum gates
on qubits and breaks down their most important properties.
To perform calculations in quantum computing, the inner product and the tensor product
are important operations on vectors and matrices. The inner product measures the
similarity or overlap between two vectors in the same vector space. So for two vectors
v, u ∈ Cn the inner product is

⟨u, v⟩ = u1v1 + u2v2 + ...+ unvn

with, u denoting the complex conjugate of the vector u.[17]
The evolution of a quantum state can be represented by a linear operator. Any such
operator can be expressed as a linear combination of tensor products. For an operator
A in a n-dimensional Hilbert space with basis vectors |i⟩ and ⟨j| for i, j ∈ {0, 1...n− 1}
applies:

A =
∑
ij

Aij |i⟩ ⟨j|

8

CHAPTER 2. QUANTUM BASICS

with standard basis vectors |i⟩ and ⟨j|.[20]
The tensor product of two vector spaces U and V with dimensions n and m, n,m ∈ N
are of dimension n ·m. For two vectors u ∈ U and v ∈ V , the tensor product |u⟩ ⊗ |v⟩
creates a new vector in the combined vector space U ⊗ V . [20]
Extending the tensor product to matrices, the Kronecker product for two matrices A
being a n× n matrix and B being a m×m matrix can be defined as [21]:

A⊗B := (ai,jB) :=


a0,0B a0,1B · · · a0,n−1B
a1,0B a1,1B · · · a1,n−1B

...
...

...
an−1,0B an−1,1B · · · an−1,n−1B


where ai,jB is a scalar-matrix-product, where ai,j represent an element in A. The re-
sulting matrix is of size (n ·m)× (n ·m).
As an example, the identity gate is a gate that induces no qubit evolution, because it
consists of the basis vectors of the n qubit system. The identity matrix for a one qubit

system is simply defined as I =

(
1 0
0 1

)
. Applying an operator onto a state includes

a matrix vector multiplication. So for applying I onto |0⟩ it is

I |0⟩ =
(

1 0
0 1

)(
1
0

)
=

(
1
0

)
Note that I consists of both basic vectors for |0⟩ and |1⟩. Therefore, the result for the
multiplication is always zero or one where the matrix row is the vector itself. For any
quantum operator A applies that A multiplied with its inverse A−1 will result in the
Identity operator. This property is called reversibility and is one of the essential proper-
ties for quantum operators. Some operators also fulfill the property of involutory. That
is the case, if an operator applied twice, it will also result in the identity operator.

2.2.1 Projection, Hermitian and Unitary Operator

Beside general operator properties, there are three special operator types to be discussed.
At first there are Hermitian operators. These are matrices with real eigenvalues. A ma-
trix A is Hermitian if it satisfies A = A†, where A† denotes the conjugate transpose of
A. [17]
To give an example, let

A =

[
2 i
−i 3

]
By transposing A we get:

AT =

[
2 −i
i 3

]
Further, the complex conjugate of AT is A†, so we get:

A† =

[
2 i
−i 3

]

9

CHAPTER 2. QUANTUM BASICS

By comparison, we get A = A†, which means that A is Hermitian.
Secondly, a unitary operator U describes the evolution of a quantum state over time t
[1]. If Matrix A is Hermitian, then for any t ∈ R, eitA is unitary. Conversely, every
unitary matrix has the form eitA of some Hermitian matrix [20]. The third operator
type is the projection operator, which is more a construction method for operators than
an operator itself. They utilize the basis states of the Hilbert space to project any state
onto a subspace. Let ψ be a vector in a high dimensional space, then we project it to a
lower dimensional space spanned by |i⟩ with the projection operator Pi given by

Pi = |i⟩ ⟨i|

The operator removes all orthogonal components and only retains the component in the
subspace spanned by |i⟩[28].
The act of measurement is described mathematically by using projection operators. Each
observable is associated with a Hermitian operator A with a set of eigenvalues ai, onto
which the state ψ is projected onto. The probability of obtaining the outcome ai is
given by pi = ⟨ψ|Pi |ψ⟩. After the measurement, the system collapses into state |i⟩ with
probability pi.

2.2.2 Eigenvectors and Eigenstates

The possible outcomes of a measurement correspond to the eigenvalues of an observable.
Let A be a linear operator and |a⟩ a vector in Hilbert space. If |a⟩ satisfies the equation

A |a⟩ = b |a⟩

for some scalar b, then represents |a⟩ the eigenvector of A with the eigenvalue b. This
implies that applying A to |a⟩ does not change the direction of the vector, It just scales
it by its eigenvalue. Furthermore, when |b⟩ is scaled by any complex number c it stays
an eigenvector of A.

cA |b⟩ = ca |b⟩A(c |b⟩ = a(c |b⟩)

This justifies why eigenvectors are typically normalized, because normalization does not
affect their eigenvalue relation. If two or more linear independent eigenvectors correspond
to the same eigenvalue, these eigenvectors are called degenerated. In this case, any
linear combination of these eigenvectors is also an eigenvector with the same eigenvalue.
Together they span a subspace called eigenspace associated with that eigenvalue [28].

2.2.3 Pauli Rotation Gates

Three very basic operations to transform a qubit state are the Pauli Operators X, Y, Z.
These are represented by the following matrices:

X =

[
0 1
1 0

]
, Y =

[
0 −i
−i 0

]
, Z =

[
1 0
0 −1

]
,

These gates are named according to the rotations they perform on the Bloch sphere. The
X -gate performs a bit flip, the Z gate induces the phase flip and the Y gate combines
both a bit and phase flip.

10

CHAPTER 2. QUANTUM BASICS

While the standard Pauli gates always flip the qubit state with a fixed angle of π, the
presence of the identity operator allows for a controlled and continuous rotation by an
arbitrary angle θ. This leads to a generalization of the Pauli gates into the Pauli-rotation
gates [8]:

RX(θ) = e−i θ
2
X = cos

θ

2
I − i sin

θ

2
X =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
RY (θ) = e−i θ

2
Y = cos

θ

2
I − i sin

θ

2
Y =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]

RZ(θ) = e−i θ
2
Z = cos

θ

2
I − i sin

θ

2
Z =

[
e−i θ

2 0

0 ei
θ
2

]
=

[
1 0
0 eiθ

]

2.2.4 RGate and Cphase

The RGate and the CPhase gate are the two native gates of the QExa20. Therefore, any
quantum circuit must be decomposed into a sequence of these two gates to be executable
on this specific hardware.
The Rotation Gate (RGate) is a single qubit gate, capable of inducing rotation on the
Bloch Sphere with the rotation angles θ, ϕ ∈ [0, 2π]. It is defined as [12] :

R(θ, ϕ) =

[
cos(θ2) −ie−iϕ sin(θ2)

−ieiϕ sin(θ2) cos(θ2)

]
However, operations on single qubits are not sufficient to change the degree of entan-
glement in a quantum system, which is a property that fundamentally distinguishes
quantum computing from classical computing. Entanglement is the central quantum
mechanical effect in which at least two quantum particles are related to each other in
such a way that their common properties are retained, regardless of how far apart they
are in space. In the case of entanglement, both particles are in an indeterminate state. If
one of the two is measured, i.e. the state collapses to |0⟩ and |1⟩, it is also clear from this
measurement that the other particle is in the same state. Entanglement can occur over
multiple qubits, can have different intensity (concurrence) and can be passed between
qubits. Because it is a very complex topic on its own and not essential for this thesis, for
further readings on that [19] is recommended. With applying only unitary single qubit
gates entanglement can not be generated or manipulated. To overcome this, at least one
entangling two qubit gate is required.
One such gate is the controlled phase (CPhase) gate. It applies a phase shift conditioned
on the control qubit being in the |1⟩ state. The matrix form of the CPhase gate with
the real parameter λ ∈ [0, 2π] is:

CPhase(λ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eλi


[11] Together, the RGate and the CPhase gate form a universal gate set, as proven in
[3]. Therefore, can any unitary operation be decomposed into a finite sequence of these
two gates.

11

CHAPTER 2. QUANTUM BASICS

2.3 Quantum Circuits

A formalism to denote quantum circuits is the quantum gate array, introduced by
Deutsch. It is the quantum generalization of acyclic combinational logic circuits that
consist of quantum gates interconnected with quantum wires. These gates have the same
number of input as output and carry an operation in the Hilbert space of dimension 2n

for n ∈ N input qubits[1].
The circuit shown in 2.2 consists out of the one qubit Hadamard gate and the two qubit
CNOT-gate. Both together create an entangled bell state. A circuit can be quantified
with the parameters circuit width and circuit depth. The circuit width is the number
of qubits utilized for the circuit. The depth describes the highest amount of operations
on one qubit over the whole circuit. For the example, the width and the depth of the
circuit is two. To perform a quantum circuit on real quantum hardware, transpilation

q0 H

q1 X

Figure 2.2: Original circuit

q0 R
(
π
2 ,

π
2

)
R(π, 0)

q1 R
(
π
2 ,

π
2

)
R(π, 0) R

(
π
2 ,

π
2

)
R(π, 0)

Figure 2.3: Transpiled circuit for QExa20

needs to be performed. Transpilation is the process of bringing a circuit into a form that
considers the resources of the system, like qubit count, qubit coupling and native gates.
The transpiled circuit for the bell state for the QExa20 is given in 2.3. The transpilation
partitioned the Hadamard gate into two R-Gates on qubit zero and the effect of the
CNOT is achieved with two RGates on qubit one, followed by on CPhase gate on both
qubits, followed by two more RGates on qubit one. For this simple example, the circuit
width stays two, but the circuit depth increased to five. To calculate the outcome for
a circuit, it is always quantum gate multiplied by the state it acts on. The result is
the new state vector after the gate acted on the input qubits. To get the state vector
over more than one qubit, the vector can be retrieved through the tensor product of the
single qubit states. If there are qubit gates that act simultaneously on different qubits,
the qubit gate for the whole system is retrieved by calculating the tensor product of the
qubit gates of all qubits that are performed in parallel. If a qubit has no gate that acts
on it, the identity gate is inserted. Sometimes extra qubits are needed to map a gate
onto a specific quantum hardware. These helping qubits have the name ancilla qubits
and store information for subcalculations if gates can not be performed directly. [17]

2.4 Ising Hamiltonians and cost functions

A Hamiltonian H represents the total energy of a system, expressed as a Hermitian
operator. Because of this property, the eigenvalues of the Hamiltonian are always real
and the eigenstate with the lowest energy state is called ground state. Any optimization
problem can be transformed into a minimization problem. Thus, the optimal solution
lies in the ground state |ψ⟩ that minimizes the average energy value ⟨ψ|H |ψ⟩. The eigen-
states of the Hamiltonian corresponds to all possible inputs x ∈ X, where X = {0, 1}n is

12

CHAPTER 2. QUANTUM BASICS

the set of binary strings with length n. These binary strings represent the state vectors
|x⟩ of a n-qubit system. The respective eigenvalues correspond to an objective function
f(x). This so-called cost function encodes the problem and its minimum corresponds to
the solution of the problem. Therefore, the problem Hamiltonian is a 2n × 2n matrix

H =
∑
x∈X

f(x) |x⟩ ⟨x|

with its eigenvalues as diagonal elements [17].
Problem Hamiltonians can be encoded by formulating Quadratic unconstrained binary
optimization (QUBO) problems. A QUBO problem is defined via a quadratic cost
function over boolean variables xi ∈ F2, F2 := {0, 1} and is given by∑

i̸=j

ai,jxixj +
∑
i

aixi (2.2)

where ai,j , ai ∈ R are weights, which describe the cost contribution of a single bit or bit
pair.[22]
Equivalently, problem Hamiltonians can also be constructed efficiently using the Ising
model. In this case, the boolean variables in the objective cost function are transformed
into spin variables si = ±1. A real constant Ji,j describes the correlation between the
spins si and sj , while another real constant hi introduces the incentive for each individual
spin. The corresponding cost function

C(s) = C(s1, ...sn) = −
∑
i<j

Ji,jsisj −
∑
i

hisi

and the respective problem Hamiltonian is specified with

HC = −
∑
i<j

Ji,jZ
(i)Z(j) −

∑
i

hiZ
(i) (2.3)

where Z(i) denotes the Pauli-Z operator on the i-th qubit. [18]

13

3 Variational quantum algorithms

Achieving quantum advantage on NISQ devices remains a significant challenge due to
constraints such as limited qubit counts, restricted connectivity between qubits, gate
errors, and short coherence times. Nevertheless, variational quantum algorithms are
considered a potentially sufficient strategy to obtain quantum advantage on NISQ de-
vices. VQAs adopt a hybrid quantum-classical approach of executing a parameterized
circuit on Quantum Hardware while a classical optimizer iteratively updates the parame-
ters to minimize a predefined cost function C(θ). In this framework, the quantum circuit
estimates the cost function and classical methods are used to optimize the parameters
θ.

Training set
Cost function

Ansatz

Quantum Computer

Classical
Optimizer

Evaluating
cost funciton

C(θ)

Quantum state
Probability
distribution
Bitstring

Gate sequence
Quantum operator

Hybrid Loop

Figure 3.1: Schematic diagram of a VQA, inspired by [7]

A Quantum advantage using VQA’s would be demonstrated if the minimum of the cost
function cannot be computed efficiently on a classical machine but by quantum means.
Additionally, for a VQA to be practical, the optimization landscape should allow an
efficient optimization of the parameters θ and smaller values of C(θ) should correspond
to higher-quality solutions.
Due to the limitations of NISQ hardware, the quantum circuits used in VQAs must re-
main shallow and avoid extensive use of ancillary qubits. The parameters θ are typically
encoded in a unitary U(θ), which is applied to the input quantum state. The structure
of the parameterized circuit, referred to as ansatz, determines the nature of θ and is
highly task-dependent. There exist many types of ansätze and design considerations, as
detailed in [7].
In this chapter, the prominent algorithm QAOA will be introduced, as well as Quantum
Reinforcement Learning, which also has received growing attention in recent years.

3.1 QAOA

The Quantum Approximate Optimization Algorithm (QAOA) is a gate-based quan-
tum algorithm designed to obtain approximate solutions to combinatorial optimization
problems. It can be viewed as the discrete (trotterized) counterpart of quantum anneal-
ing. Both methods are inspired by the adiabatic theorem, which uses a time-dependent
Hamiltonian, that induces a continuous transformation of the state of a quantum system
from an initial to a final state. In quantum annealing, the solution is guaranteed to be

14

CHAPTER 3. VARIATIONAL QUANTUM ALGORITHMS

optimal, under the condition that the evolution of the system is slow enough.
The algorithm, originally introduced by [15], translates this adiabatic process into a
discrete sequence of unitary gates using two Hamiltonians:

• The cost Hamiltonian C encodes the optimization problem and has the unitary

U(C, y) = eiγC =
m∏

α=1

e−iγCα

• The mixer Hamiltonian B ensure exploration of the solution space. The corre-
sponding mixer unitary is

U(B, β) = e−iβB =
n∏

j=1

e−iβδxj

Each cost Hamiltonian is parameterized by angle γ and each mixer Hamiltonian param-
eterized by angle β. For the cost Hamiltonian C(z) =

∑m
α=1Cα represents the objective

function defined over bit strings z = z1z2...zn with n bits and m clauses. If clause
Cα = 1, z satisfies clause α, Cα = 0 otherwise.
The mixer Hamiltonian with angle β running from 0 to 2π and operator B =

∑n
j=1 δ

x
j

and δxi is the Pauli X-operator acting on qubit j.[15] A schematic example of a QAOA cir-
cuit with p = n layers is shown below, where each layer alternates between applications
of the cost unitary UC(γ) and the mixer unitary UB(β): In practice, the cost function is

Figure 3.2: Schematic p-layer QAOA circuit for n qubits

often translated into an Ising model representation to define the cost Hamiltonian. The
parameters (γ, β) are optimized classically to minimize the expectation value of the cost
Hamiltonian, thus improving the quality of the approximate solution.

3.2 Quantum Reinforcement learning

For Quantum Reinforcement Learning (QRL) and also for other Quantum machine learn-
ing methods applies, that the classical neural network is changed into a variational
quantum circuit, because both are universal function approximators. In QRL a decision
maker, called agent is defined, who interacts in an environment. In discrete time steps
t, the agent receives a state of the environment St ∈ S with S being all possible states

15

CHAPTER 3. VARIATIONAL QUANTUM ALGORITHMS

and performs a state based action At ∈ A(St), where A(St) denotes the set of all avail-
able actions in the state St. As a consequence of this action, the agent obtains a reward
R ∈ R and transitions into a new state. The goal is to maximise the total amount of this
accumulated reward over a longer period of time. The decision regarding which action
to take is defined by a policy πt, where πt(a|s) denotes the probability that At = a given
St = s.
In accordance with this policy, most reinforcement learning algorithms define a value
function vπ(s), that estimates the expected future rewards depending on the agent’s
action. The mathematically idealized form of a reinforcement learning problems are
Markov Decision Problem (MDPs) [26].
QRL was first introduced by Daoyi Dong and his team in 2005. They derived the set of
states S and the set of actions A(St) for a given state St from the eigenvectors of the
set of the complete orthonormal bases in a Hilbert Space. A state |S⟩ and an action |A⟩
are extended to the set of eigenstates |sn⟩ or eigenactions |an⟩ like

|S⟩ =
∑
n

αn |sn⟩ |A⟩ =
∑
n

βn |an⟩

with probability amplitudes αn and βn, satisfying
∑

n |αn|2 = 1 and
∑

n |βn|2 = 1. Every
state and action in traditional Reinforcement Learning has a corresponding representa-
tion with eigenstates and eigenactions in QRL.
The selection policy π : S −→ A is executed by measuring |as⟩, associated with a partic-
ular state |s⟩. Upon measurement, |as⟩ collapses to a specific action |a⟩ with probability
|Ca|2:

|a(n)s ⟩ =

n︷︸︸︷
1...1∑
a=0...0

Ca |a⟩ , with

n︷︸︸︷
1...1∑
a=0...0

|Ca|2 = 1

Here |a(n)s ⟩ represents the superposition of 2n possible eigenactions and |a⟩ is the eige-
naction selected by measurement. The probability amplitude is updated by performing
Grover iterations multiple times. For further details, refer to [14].

16

4 Optimization Problems on Quantum
Hardware

Certain problems have the potential to be solved more efficiently using quantum algo-
rithms over classical approaches. A promising field is that of Quanutm Machine Learn-
ing, especially in combination with VQAs. The paper [16] approaches the join order
problem with quanutum reinforcement learning. It states, that even though it may not
significantly outperform classical approaches for this problem, a drstic reduction in re-
quired trainable parameters could be found.
In [22] a two phase, non-iterative algorithm is introduced to approximate the optimiza-
tion landscape of QAOA circuits. This algorithm consists of two steps: first, approx-
imating a problem specific bit instance independent expected landscape and second,
sampling a fixed quantum circuit based on this landscape. An optimization landscape
can be described by all point to point interactions between all states in superposition.
While the results apply to QUBO problems, the theoretical considerations are general
and apply to arbitrary combinatorial optimization problems.
The problems from both papers are in the class of NP, which means that there is not
yet known algorithm that can solve the problem in polynomial time. If a problem is at
least as hard as another problem in NP, it is called NP-hard and if it belongs to NP
itself, it is classified as NP-complete. Because promisingly good results could be aimed
with VQAs, it gained a lot of interest in current research [25].
This chapter focuses on the transformation of three specific optimization problems into
a VQA. The first two problems are boolean satisfiability (SAT) and qr-factoring. In [22]
is a strategy given on how to solve these problems with QAOA. The third one describes
the approach of solving the join order problem with Quanutm Reinforcement Learning.

4.1 Boolean satisfiability

In [25] the problem of satisfiability (SAT) is fittingly referred to as ẗhe mother of all
NP-complete problems̈. SAT takes a set of boolean variables V and a set of logic clauses
C over these variables as input. The goal is to determine a variable assignment such
that every clause is satisfied. The clauses must be expressed as a logical formula in
conjunctive normal form (CNF). Although logical formulas can be also be expressed in
disjunctive normal form (DNF), this would render the problem trivial. The conversion
of a formula from CNF into DNF using De Morgan’s laws can result in an exponential
increase of terms required, making such a translation not realizable in polynomial time
[25].
In the special case of k-SAT, each clause contains at most k literals. For example, an
instance of 3-SAT could be expressed as:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

which is satisfied by the assignment x1 = true, x2 = true and x3 = false. As shown in
[25] the 3-SAT problem is computationally hard, and it is known that any instance of
k-SAT can be polynomially reduced to 3-SAT. This reduction places all k-SAT problems

17

CHAPTER 4. OPTIMIZATION PROBLEMS ON QUANTUM HARDWARE

into the class of NP-complete problems.
For solving a SAT instance with QAOA in [22] a constraint Hamiltonian is constructed.
At first, a boolean formula in conjunctive normal form C = {ci}mi=1 with ci being the
i-th clause is given. Let Ci be a projector onto an unsatisfied assignment of the clause ci
and {Ci}mi=0, then it is possible to construct a constraint Hamiltonian C =

∏m
i=0(⊮−Ci)

that projects onto all satisfying assignments of C.

4.2 Qr-factoring

QR-factoring is the task of decomposing a matrix A into two matrices Q and R such
that A = QR. Here Q is an orthogonal matrix and R is an upper triangular matrix.
In contrast to LU-decomposition, QR-decomposition is not limited to square matrices.
It is widely used in numerical methods, particularly for solving least squares problems
and for eigenvalue computations. Common construction methods for the orthogonal
matrix Q include Givens rotations and Householder transformations. The decomposition
process typically involves a sequence of transformations, where A is multiplied by a series
of orthogonal matrices Qi. The product of these matrices forms Q and the resulting
matrix becomes upper triangular [9]. While the classical process of QR-factoring is
computationally intensive, [22] proposes a different perspective by using a QR-factoring
as an example of a one-way function. A one-way function is defined as an injective
function f : D →W between two non-empty sets D,W , where the evaluation of f(x) for
all X ∈ D can be performed efficiently, but computing the inverse f−1(y) for y ∈ f(D)
is computationally hard [23]. For QR-factoring in [22] instances of the problem are
generated by sampling pairs by f−1

qr ({(q, r)i}mi=1) with (q, r)i sampled from P × P of a
precomputed set of primes P ⊂ P. The product x = qr then serves as the problem
instance, while finding the factors q and r represents the hard inversion task.
To represent these instances of QAOA, the binary representation x(2) of x ∈ N is used.

Let z ∈ Fk
2 denote the corresponding bit string of length k that is padded with n − k

leading zeros, if necessary, to obtain the fixed size n. With n = max{⌈ld(q)⌉, ⌈ld(r)⌉
the mapping of a solution (q, r) to the target space T is then performed via (q, r) 7→
pn(q(2)) ◦ pn(r(2)) where ◦ denotes the concatenation of two bit strings. This encoding
allows for a structured quantum representation of the qr-factoring problem.

4.3 Join Order Optimization

Another interesting problem arises from the field of relational databases. The task
of Join Order Optimization is to find an optimal sequence in which to join multiple
relations to minimize the cost function evaluated from a query graph. An example
for a query graph is given in figure 4.1 A query graph is a graph where the vertices
represent base relations and the edges represent join predicates between those relations.
Formally, a query graph is described as G = (V,E) where V is a set of nodes (relations)
and E set of edges (join predicates). This graph can be compactly represented by an
adjacent matrix G ∈ F r×r

2 where r is the number of relations. For a node vi ∈ V with
i ∈ N, 1 ≤ i ≤ |V | the corresponding relation is denoted by Ri. A join predicate pi, j
connects two relations Ri and Rj , and each predicate is associated with a selectivity,

18

CHAPTER 4. OPTIMIZATION PROBLEMS ON QUANTUM HARDWARE

A

B C

Figure 4.1: Example Query
Graph

▷◁

▷◁

B C

A

Figure 4.2: Example Join Tree

which measures the percentage of tuples surviving the join compared to the total number
of tuples in the Cartesian product of the two relations. From a given query graph, one
or more join trees can be constructed, representing different ways to execute the join
operations. An example of a join tree is shown in figure 4.2. The leaf nodes correspond
to base relations and the internal nodes represent join operations. The structure is that
of a binary tree [24].
The input to the join order optimization problem consists of the join graph, a set of
considered join trees and a cost function. The cost function assigns a cost value to each
join tree, based on an estimate of query execution complexity. There are multiple possible
cost functions with varying degrees of accuracy and computational difficulty. In the
reinforcement learning approach in [16], the cost function approximates the complexity
based on the cardinalities of intermediate results: Cout(T) = |T | + Cout(T1) + Cout(T2)
where T = T1 ▷◁ T2 denotes a join of two subtrees, |T | is the true cardinality (number
of tuples) of the result and Cout(T) = 0 if T ∈ r1, r2, ... is a leaf.

19

5 Experimental Setup

The Experiments will replicate parts of the experimental results of two papers on the
LRZs Quantum Hardware QExa20. In the first part there is given an introduction to
the hardware specifics. The goal of this chapter is to compare the Quality of the results
from the Quantum Simulation with the results of the QExa20 as well as the evaluation
of the performance of the system. The system has a tokenized authentication, which
tokens can be generated over the online portal Munich Quantum Portal. An own python
package called MQP Provider includes all functions to connect and communicate with
the system. For the experiments in this thesis a slightly modified version of the MQP
Provider v0.1.4 was used, but the modifications have been only for the purpose of log-
ging the job responses.
The system accepts python code implemented with the python package Qiskit. The
progress of an ongoing experiment can be watched in the online portal, giving an overview
of the triggered jobs with their current status.
In experiments from the paper [16] have been already implemented with Qiskit, using
the Qiskit Aer Simulator for simulating a quantum backend. So the Simulator could be
conveniently exchanged with QExa as backend device after installing the MQP Provider
python package. Surprisingly, no further adjustments on the Code needed to be done to
run the experiments. This was a good opportunity to get used to the workflow with the
system and gather first results rather quickly.
More effort took the porting of the experiments from the paper [22]. Because the work
introduces two new theorems for approximating the parameter of QAOA to create a
non-iterative version of this algorithm, the experiments concentrated on showing the
quality of this new approach. That means, for the experiments a quantum processor
was simulated with QuTip. QuTip is an open source tool for simulating quantum sys-
tems numerically, depending on the python packages Numpy, Scipy and Cython [10].
Therefore, the Code had to be translated into Qiskit, but also the parameter had to be
altered to not exceeding the limited resources of the QExa20.
Most experiments took place from the November 2024 until January 2025. The men-
tioned issues refer to this time and do not reflect the current system state.

5.1 QExa

The QExa20 is a NISQ-Computer from IQM using superconductivity to realize qubits.
The 20 qubit system, stationed in and run by the team of Leibniz Supercomputing Cen-
tre in Munich, is the first of its kind having its control electronics directly connected
to a high-performance computer. The connected machine is the SuperMUC-NG, also
stationed at LRZ, that has over 300.000 compute cores with a main memory of 719 TB
in total and a peak performance of 26.9 Petaflops/s.[13]
The system can hold an entangled Greenberg-Horne-Zeilinger state with 19 qubits with-
out readout error mitigation and a fully entangled 20 qubit GHZ state with readout
error mitigation. It has an average one qubit gate fidelity of 99.94% (over 20 qubits and
an average two qubit gate fidelity over 30 qubit pairs of 99.49%.[4]
The QExa20 system is part of the project Ëuropean Quantum Computing for Exascale-
HPC”, short Euro-Q-Exa, funded by EuroHPC Joint Undertaking that is funding the

20

CHAPTER 5. EXPERIMENTAL SETUP

construction and running of six hybrid quantum systems planned for Europe. It is also
financed by the Federal Ministry of Education and Research and the Bavarian state of
ministry of science and art as a part of the Munich Quantum Valley. [5] While QExa20s
pilot phase started in June 2024, it is planned to integrate another 54 qubit system in
the second half of 2025 and extend it with a 105 qubit system in 2026 into the HPC
architecture. [6]
To access the QExa20, a user must have access to the web portal Munich Quantum Por-
tal or a direct HPCQC access. The second access possibility is a programming interface
implemented as a C library to express quantum circuits. This approach will not to be
examined in this thesis. The Munich Quantum Portal allows using multiple quantum
backends and simulators directly over Qiskit with the python package MQPProvider,
which provides a basic API for communication. To utilize the backend the resource
information for the qubit count, the coupling map and native instructions is directly
retrieved from the addressed system. To launch a job submission the system will take
the resource name, the circuit, the circuit format, shot count and a no modify flag. Each
job can be identified by a unique job ID with a default value of 10,000 shots.
The waiting time for the results is strongly bounded by the time needed for data trans-
mission, the scheduling processes inside the Munich Quantum Stack environment and
the system utilization. To get some sense of time, three time stamps are given back by
the system: submitted, scheduled, completed. Unfortunately the granularity is in seconds
and not enough to make precise statements about the execution time.
The circuit result is given back in a dictionary that assigns the result bit string with the
amount of occurrences of the job.
For automatically adapting to to changing physical characteristics and constraints of
the system, the LRZ developed the Quantum Device Management Interface (QDMI).
It is an abstraction layer that retrieves direct information from the quantum resources,
manages sessions and enables device control [27].
As described in section 2.2.4, the native gate set of the QExa20 includes the Rotation-
and the CPhase gate. The coupling graph for the system is shown in 5.1.

Figure 5.1: QExa20 coupling map

5.2 Join Order Optimization with QRL

The paper [16] examines the ansatz of using quantum reinforcement learning for the join
order problem. The optimal join tree is discovered by multi-step quantum reinforcement
learning with Proximal Policy Optimization as baseline for the Markov decision process.

21

CHAPTER 5. EXPERIMENTAL SETUP

For the experiments a test dataset was trained one including 12000 subqueries. Through
the lack of sufficiently large quantum machine, each query includes four relations. 500
queries are used as dataset for the experiments, with 497 randomly chosen queries from
the generated data set and the 3 available queries from the join order benchmark with
four relations. On this Dataset a ten-fold cross validation is applied, which is a method in
machine learning for evaluating a model design. Each group is set to be the test dataset
once, all the others are declared to be the training dataset for this one evaluation. Then
the model is fitted on the training set and evaluated on the test set [2].
For the implementation the python libraries Tensorflow, for machine learning specifics,
Tensorflow Quantum to simulate an ideal quantum system and Qiskit, to simulate a
noisy system, are used. Originally exist three configurations for the experiments. For
one the variational quantum circuit (VQC) acts as critic together with a classical neural
network as actor, the other has a classical critic and a VQC as an actor and the third
one uses for critic and actor a VQC.
To introduce data re-uploading (DRU) resulting in 8, 12, 16 and 20 layers coming from
training with four relations per query. The same amount of variational layers is used for
the configuration without DRU, including an experiment with four layers.
For the experiments in this paper, the variational quantum circuit is employed as the
agent. The experiments were done with and without data reuploading, resulting in three
runs without data reuploading for four, twelve and 20 layers and two runs for 12 and 20
layers with data reupload. In figure 5.2 the results for the experiment are shown. It can
be seen that the results from the QExa training is likely of the one percent depolarising
error from the simulation based training process, also in the case of more variational
layers. When having a closer look on figure 5.3 can be seen that the depolarising error
is even below the one percent error rate. Not all possible variations of the experiments
have been executed, not just because of redundancy. One experiment was taking the
QExa20 system over 24 hours to finish. From start to end, there have been triggered
300 jobs, each with their maximum shot count of 10000 for each execution. Also there
have been some issues with the continuity of the execution. Each night around 4:00 a.m.
all jobs that were in the queue stopped proceeding further. They could not be aborted,
what lead to rerunning the experiment, starting at the point where the last run stopped.

5.3 Non-iterative QAOA

These two theorems presented in [22] are applied to four different problems: uniform ran-
dom sampling, clustered sampling, Boolean Satisfiability and qr-factoring as a one-way
function. Uniform random sampling was used as an introducing example to demon-
strate, that the structure of a given target space, with respect to Hamming distances
between targets, can be modelled analytically. The expected optimization landscape can
be approximately derived solely from this model. For this problem, instances in state
space dimensions form 8 ≤ n ≤ 11 were sampled. The upper limit of n = 11 was chosen
to keep the level of computational cost reasonable, while n = 8 ensures a sufficiently
large state space. The same applies to the experiment with clustered sampling.
For both experiments exceeds the lower bound of n = 8 the limit of the QExa20. To
make the experiment still executable, n must be reduced to six or fewer. Since these
two experiments were mainly in the paper to illustrate the effectiveness of the theorems

22

CHAPTER 5. EXPERIMENTAL SETUP

W
ith

o
u
t
D
R
U

W
ith

D
R
U

0% 1% 2% 3% 4% 5% QExa

100
101
102
103
104
105
106

100
101
102
103
104
105
106

Depolarising Error Probability

C
C
D
P
(l
og
)

Layers 4 12 20

Figure 5.2: Comparison of relative cost after training with VQC as
actor with different for QExa20 and Qiskit-Simulation

W
ith

ou
t
D
R
U

W
ith

D
R
U

1% QExa

100
101
102
103
104
105
106

100
101
102
103
104
105
106

Depolarising Error Probability

C
C
D
P
(l
o
g)

Layers 4 12 20

Figure 5.3: Zoom in onto simulation with 1% depo-
larising error and QExa20 results

, and given the extremely long execution times on QExa20 (12 to 24 hours per run for
a single value of n), these introductory experiments were not reproduced.
The experiments of greater practical relevance are SAT and qr-factoring. For the SAT
problem 500 random instances were sampled for n = 6 where n denotes the number
of boolean variables and |C| = 4n represents the number clauses. Figure 5.4 visual-
izes the results. At first glance, the simulation clearly outperforms the execution on
real quantum hardware for all values of α. This is primarily due to the fact that the
simulation with QuTip is noiseless. When only comparing the two QAOA variants for
the QExa, the non-iterative QAOA achieves results comparable to the standard QAOA.
In the qr-factoring experiment, the instances in the paper were sampled using all prime
numbers up to 61. Since the number of primes directly influences the amount of required
qubits n via n = max{⌈ld(q)⌉, ⌈ld(r)⌉, the set of primes was reduced to P = {2, 3, 5, 7}.
Figure 5.5 shows that, overall, the solution probability is much lower than for the SAT

23

CHAPTER 5. EXPERIMENTAL SETUP

2

2

4

4

6

6

0.0 0.2 0.4 0.6 0.8

Solution Probability per Sample

A
lp

ha

Algorithm Standard QAOA Non−Iterative QAOA

Source QExa Qutip Simulation

Figure 5.4: SAT experiment

0.00 0.05 0.10 0.15 0.20

Solution Probability per Sample

Q
rf

 In
st

an
ce

Algorithm Standard QAOA Non−Iterative QAOA

Source QExa Qutip Simulation

Figure 5.5: Qr-factoring experiment

experiment, yet similar patterns can be observed: The simulation outperforms the QExa
results, likely due to noise. Nevertheless, both QAOA variants perform similarly, with a
slightly higher median for the non-iterative QAOA in this case.
For experiments on the QExa, QAOA was implemented explicitly constructing the two
Hamiltonians and applying them onto a circuit with n qubits, closely following the
QuTip-based simulation. Due to the systems limitation, n had to be lowered to six.
The constructed Hamiltonians transpile into very deep and wide circuits. For example,
with n = 6 transpiled circuit depths range from 10.000 to 12.000 gates with widths up
to 26. In comparison, trainspiled circuits with n = 8 exceeded 160.000 gates in depth
and width increased to 28, leading to the QExa20 rejecting the circuit with the message:
”Job cancelled: Circuit Execution Error on IQM Backend”.
Additionally, QAOA circuits could not be executed on QExa20 using Qiskits built in
QAOAAnsatz() function. Even for constructed circuits of the same size, the function
failed, returning the same error as above. The issue was resolved by manually imple-
menting the QAOA circuits.

24

CHAPTER 5. EXPERIMENTAL SETUP

25

6 Conclusion

The goal was to port the experiments of [22] and [16] onto the QExa20 and compare the
results and evaluating the performance of the system. In the experiments it could be
shown that the depolarizing error of the system is really low and also that non-iterative
QAOA has a similar solution probability to standard QAOA. The execution time is really
high and working with the system is difficult, because of very undetailed information
about the system. The error messages were unprecise and all job executions will be
aborted around 4 a.m.
Considering the challenges of the current system, a big field of research would be to
design a more efficient interface or integration of quantum hardware. Running a net-
work utilizing several quantum devices and simulators with multi-user accessibility is a
big topic in itself, especially if the goal is to obtain and hold up the quantum advan-
tage. For the current state of quantum hardware, it could also be interesting to design
more algorithms like the non-iterative QAOA that minimizes the usage of the quantum
resource.

6.1 Discussion

The access to the QExa20 over the Munich Quantum Portal is very convenient to use.
Besides some start issues, like page loading failures and an automated logout after 15
minutes even while using the page, the simple design gives a straightforward overview
on the currently available resources, token generation, and job execution.
With the first experiment with quantum reinforcement learning for the join order prob-
lem could be obtained, that the QExa20 has a really low depolarization error. What is
a really nice result in addition to the days of execution time needed to gather all the
data for the graph in 5.2. It is worth mentioning that the already high execution times
for this experiments were increased by hours, because of a miracle cancelation of every
executing job sequence at around 4 a.m. That the reason for this event is still unknown
shows just once more, how complex the whole design and management of creating such
a network with multiple quantum devices is.
Surprisingly, QExa20 could execute these experiments without any code adjustments,
while the system struggled with a very low value of n as the circuit width for QAOA
circuits. The transpiled unitary operators caused circuit depths of over 15.000 that was
very close to the limit of circuit sizes the circuit could handle. It is also worth mention-
ing that the information for a non-executable circuit gives only very vague information
about the failed process with ”Error on IQM backend”, to just cite one example. A clear
error message at this point would not only improve the user experience significantly, but
could also be the foundation of future system development and maintenance.
The experiments for SAT and QR-factoring show that the non-iterative QAOA can also
compeed in solution probability with the standard QAOA on Quantum Hardware. What
is the significant difference between these two approaches executed on the QExa is the
runtime. Because the non-iterative QAOA needs only one execution of the QAOA cir-
cuit, the whole experiment execution time was around 45 minutes, while the execution
of standard QAOA needs through the alternating circuit execution and optimization
takes around 18 hours. This is the most significant disadvantage of utilizing the QExa.

26

CHAPTER 6. CONCLUSION

The process of sending the job request, partitioning it into jobs, assumingly another
transpilation process, waiting in the scheduler until the jobs can be executed, the actual
execution and sending it back takes a significant amount of time. Because concrete infor-
mation about the whole Munich quantum stack is not available, it is unclear which exact
step consumes so much time. For more clarity of the processes happening before actually
executing the circuit, a better log of timestamps with clear positions could be useful, es-
pecially for research purposes. The approximation approach for the non-iterative QAOA
is also an interesting field of research in case of efficient resource utilization, especially
for nowadays, where quantum resources are very limited.

27

Bibliography

[1] Adriano Barenco et al. “Elementary gates for quantum computation”. In: Phys-
ical Review A 52.5 (Nov. 1995), pp. 3457–3467. issn: 1094-1622. doi: 10.1103/
physreva.52.3457. url: http://dx.doi.org/10.1103/PhysRevA.52.3457.

[2] Jason Brownlee. A Gentle Introduction to k-fold Cross-Validation. Oct. 2023. url:
https://machinelearningmastery.com/k-fold-cross-validation/.

[3] Jean-Luc Brylinski and Ranee Brylinski. Universal quantum gates. 2001. arXiv:
quant- ph/0108062 [quant-ph]. url: https://arxiv.org/abs/quant- ph/
0108062.

[4] Leibnitz Supercomputing Centre. Deutschlands erster hybrider Quantencomputer
am Leibnitz-Rechenzentrum. June 2024. url: https://doku.lrz.de/supermuc-
ng-10745965.html.

[5] Leibnitz Supercomputing Centre. Quantencomputer für Europa. June 2023. url:
https://www.quantum.lrz.de/de/bits- von- qubits/detail/quantum-

computer-for-europe.

[6] Leibnitz Supercomputing Centre. Von IQM ausgestattet, vom LRZ gehostet: Euro-
Q-Exa, der hybride Quanten-Supercomputer des EuroHPC Joint Undertaking (Eu-
roHPC JU) für die Forschung. Oct. 2024. url: https://www.quantum.lrz.de/
de/bits-von-qubits/detail/iqm-selected-to-deliver-two-advanced-

quantum-computers-as-part-of-euro-q-exa-hybrid-system.

[7] M. Cerezo et al. “Variational quantum algorithms”. In: Nature Reviews Physics 3.9
(Aug. 2021), pp. 625–644. issn: 2522-5820. doi: 10.1038/s42254-021-00348-9.
url: http://dx.doi.org/10.1038/s42254-021-00348-9.

[8] Elias F. Combarro and Samuel Gonzales-Castillo. A Practical Guide to Quantum
Machine Learning and Quantum Optimization. Ed. by Rosal Colaco, Maran Fer-
nandes, and Safis Editing. 1st ed. Birmingham, UK: Packt Publishing Ltd., Mar.
2023. isbn: 987-1-80461-383-2.

[9] Wolfgang Dahmen and Arnold Reusken. Numerik für Ingenieure und Naturwis-
senschaftler. 3rd ed. Springer-Lehrbuch. Springer Spektrum Berlin, Heildelberg,
Sept. 2022. isbn: 978-3-662-65181-0. doi: https://doi.org/10.1007/978-3-
662-65181-0.

[10] QuTiP developers and contributors. QuTip Quantum Toolbox in Python. url:
https://qutip.org/.

[11] IBM Quantum Documentation. Qiskit SDK v1.1, CPhaseGate. 2024. url: https:
//docs .quantum.ibm .com/api /qiskit/1. 1/qiskit. circuit.library.

CPhaseGate.

[12] IBM Quantum Documentation. Qiskit SDK v1.1, RGate. 2024. url: https://
docs.quantum.ibm.com/api/qiskit/1.1/qiskit.circuit.library.RGate.

[13] LRZ Dokumentationsplattform. SuperMUC-NG. Leibnitz Supercomputing Centre.
n.d. url: https://doku.lrz.de/supermuc-ng-10745965.html.

28

https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1103/physreva.52.3457
http://dx.doi.org/10.1103/PhysRevA.52.3457
https://machinelearningmastery.com/k-fold-cross-validation/
https://arxiv.org/abs/quant-ph/0108062
https://arxiv.org/abs/quant-ph/0108062
https://arxiv.org/abs/quant-ph/0108062
https://doku.lrz.de/supermuc-ng-10745965.html
https://doku.lrz.de/supermuc-ng-10745965.html
https://www.quantum.lrz.de/de/bits-von-qubits/detail/quantum-computer-for-europe
https://www.quantum.lrz.de/de/bits-von-qubits/detail/quantum-computer-for-europe
https://www.quantum.lrz.de/de/bits-von-qubits/detail/iqm-selected-to-deliver-two-advanced-quantum-computers-as-part-of-euro-q-exa-hybrid-system
https://www.quantum.lrz.de/de/bits-von-qubits/detail/iqm-selected-to-deliver-two-advanced-quantum-computers-as-part-of-euro-q-exa-hybrid-system
https://www.quantum.lrz.de/de/bits-von-qubits/detail/iqm-selected-to-deliver-two-advanced-quantum-computers-as-part-of-euro-q-exa-hybrid-system
https://doi.org/10.1038/s42254-021-00348-9
http://dx.doi.org/10.1038/s42254-021-00348-9
https://doi.org/https://doi.org/10.1007/978-3-662-65181-0
https://doi.org/https://doi.org/10.1007/978-3-662-65181-0
https://qutip.org/
https://docs.quantum.ibm.com/api/qiskit/1.1/qiskit.circuit.library.CPhaseGate
https://docs.quantum.ibm.com/api/qiskit/1.1/qiskit.circuit.library.CPhaseGate
https://docs.quantum.ibm.com/api/qiskit/1.1/qiskit.circuit.library.CPhaseGate
https://docs.quantum.ibm.com/api/qiskit/1.1/qiskit.circuit.library.RGate
https://docs.quantum.ibm.com/api/qiskit/1.1/qiskit.circuit.library.RGate
https://doku.lrz.de/supermuc-ng-10745965.html

Bibliography

[14] Daoyi Dong et al. “Quantum Reinforcement Learning”. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 38.5 (Oct. 2008), pp. 1207–
1220. issn: 1083-4419. doi: 10.1109/tsmcb.2008.925743. url: http://dx.doi.
org/10.1109/TSMCB.2008.925743.

[15] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate
Optimization Algorithm. Version 1. Nov. 2014. arXiv: 1411.4028. url: https:
//arxiv.org/pdf/1411.4028v1.

[16] Maja Franz et al. “Hype or Heuristic? Quantum Reinforcement Learning for Join
Order Optimisation”. In: 2024 IEEE International Conference on Quantum Com-
puting and Engineering (QCE). IEEE, Sept. 2024, pp. 409–420. doi: 10.1109/
qce60285.2024.00055. url: http://dx.doi.org/10.1109/QCE60285.2024.
00055.

[17] Jack D. Hidary. Quantum Computing: An Applied Approach. 2. Auflage. Springer,
2021. doi: https://doi.org/10.1007/978-3-030-83274-2.

[18] Matthias Homeister. Quantum Computing verstehen. 6th ed. Birmingham, UK:
Springer Vieweg Wiesbaden, Feb. 2022. isbn: 978-3-658-36434-2.

[19] Ryszard Horodecki et al.Quantum entanglement. Version 2. arXiv:quant-ph/0702225v2.
Apr. 2007. arXiv: 0702225. url: https://arxiv.org/pdf/quant-ph/0702225v2.

[20] Antoine Jacquier and Oleksiy Kondratyev. Quantum Machine Learning and Opti-
mization in Finance. Ed. by Saby D’silva et al. Birmingham, UK: Packt Publishinh
Ltd., Oct. 2022. isbn: 987-1-80181-357-0.

[21] Gregor Kemper and Fabian Reimers. Lineare Algebra. 1st ed. Springer-Lehrbuch.
Springer Spektrum Berlin, Heildelberg, Mar. 2022. isbn: 978-3-662-63724-1. doi:
https://doi.org/10.1007/978-3-662-63724-1.

[22] Tom Krüger and Wolfgang Mauerer. Out of the Loop: Structural Approximation of
Optimisation Landscapes and non-Iterative Quantum Optimisation. 2024. arXiv:
2408.06493 [quant-ph]. url: https://arxiv.org/abs/2408.06493.

[23] Burkhard Lenze. Basiswissen Angewandte Mathematik – Numerik, Grafik, Kryptik.
2nd ed. Springer Vieweg Wiesbaden, Aug. 2020. isbn: 978-3-658-30028-9. doi:
https://doi.org/10.1007/978-3-658-30028-9.

[24] Manuel Schönberger. “Applicability of Quantum Computing on Database Query
Optimization”. In: Proceedings of the 2022 International Conference on Manage-
ment of Data. SIGMOD ’22. Philadelphia, PA, USA: Association for Computing
Machinery, 2022, pp. 2512–2514. isbn: 9781450392495. doi: 10.1145/3514221.
3520257. url: https://doi.org/10.1145/3514221.3520257.

[25] Steven S. Skiena. The Algorithm Design Manual. 3rd edition. 6330 Cham, Switzer-
land: Springer, 2020. isbn: 987-3-030-54255-9.

[26] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
second edition. The MIT Press, 2018. isbn: 978-0-262-03924-6.

[27] Robert Wille et al. QDMI – Quantum Device Management Interface: Hardware-
Software Interface for the Munich Quantum Software Stack. url: https://www.
cda.cit.tum.de/files/eda/2024_qce_qdmi.pdf.

29

https://doi.org/10.1109/tsmcb.2008.925743
http://dx.doi.org/10.1109/TSMCB.2008.925743
http://dx.doi.org/10.1109/TSMCB.2008.925743
https://arxiv.org/abs/1411.4028
https://arxiv.org/pdf/1411.4028v1
https://arxiv.org/pdf/1411.4028v1
https://doi.org/10.1109/qce60285.2024.00055
https://doi.org/10.1109/qce60285.2024.00055
http://dx.doi.org/10.1109/QCE60285.2024.00055
http://dx.doi.org/10.1109/QCE60285.2024.00055
https://doi.org/https://doi.org/10.1007/978-3-030-83274-2
https://arxiv.org/abs/0702225
https://arxiv.org/pdf/quant-ph/0702225v2
https://doi.org/https://doi.org/10.1007/978-3-662-63724-1
https://arxiv.org/abs/2408.06493
https://arxiv.org/abs/2408.06493
https://doi.org/https://doi.org/10.1007/978-3-658-30028-9
https://doi.org/10.1145/3514221.3520257
https://doi.org/10.1145/3514221.3520257
https://doi.org/10.1145/3514221.3520257
https://www.cda.cit.tum.de/files/eda/2024_qce_qdmi.pdf
https://www.cda.cit.tum.de/files/eda/2024_qce_qdmi.pdf

Bibliography

[28] Hiu YungWong. Introduction to Quantum Computing. 2nd ed. 6330 Cham, Switzer-
land: Springer Nature, 2023. doi: https://doi.org/10.1007/978-3-031-36985-
8.

30

https://doi.org/https://doi.org/10.1007/978-3-031-36985-8
https://doi.org/https://doi.org/10.1007/978-3-031-36985-8

	Introduction
	Quantum Basics
	Bloch Sphere
	Quantum Gates
	Projection, Hermitian and Unitary Operator
	Eigenvectors and Eigenstates
	Pauli Rotation Gates
	RGate and Cphase

	Quantum Circuits
	Ising Hamiltonians and cost functions

	Variational quantum algorithms
	QAOA
	Quantum Reinforcement learning

	Optimization Problems on Quantum Hardware
	Boolean satisfiability
	Qr-factoring
	Join Order Optimization

	Experimental Setup
	QExa
	Join Order Optimization with QRL
	Non-iterative QAOA

	Conclusion
	Discussion

