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Abstract—We report the design and teaching experience of a
Master-level seminar course on quantitative and empirical soft-
ware engineering. The course combines elements of traditional
literature seminars with active learning by scientific project work,
in particular quantitative mixed-method analyses of open source
systems. It also provides short introductions and refreshers to
data mining and statistical analysis, and discusses the nature and
practice of scientific knowledge inference. Student presentations
of published research, augmented by summary reports, bridge
to standard seminars. We discuss our educational goals and
the course structure derived from them. We review research
questions addressed by students in mini research reports, and
analyse them as tokens on how junior-level software engineers
perceive the potential of empirical software engineering research.
We assess challenges faced, and discuss possible solutions.

Index Terms—Empirical Software Engineering, Teaching
Quantitative Methods, Statistical Analysis, Literature Seminar

I. INTRODUCTION

Effective decision making is a crucial part of being success-
ful in software engineering (SWE). Architects, programmers
and even technical managers need to decide, among others,
how to best organise team collaboration, how to choose
appropriate software components and frameworks, and how
to design entire software architectures.

Scientifically sound decision making is ideally based on
measurable facts. Consequently, substantial portions of SWE
research rest on empirical, quantitative methods. This consti-
tutes a teaching challenge: Beyond covering an already large
syllabus, advanced statistical methodology must be introduced,
to create an understanding of the benefits and limits of
scientific knowledge inference.

In the Master-level seminar described in this paper, we
address these challenges in a setting targeted at advanced
students with a focus on practical engineering: We augment
a traditional scientific seminar—avoiding to impose undue
workload—with active, creative learning components, chal-
lenging students with the quantitative, data-driven investiga-
tion of a research question of their choice. At the same time,
we re-use this setting to learn from our students (many of
who are part-time employees in the local software industry,'

! In-house surveys show that 40% of all Master students dedicate over 40%
of their time to casual work (usually as programmers). Details upon request.
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or have previous work experience’) how empirical methods
are observed by junior-level software professionals.

II. COURSE DESIGN

The computer science Master curriculum at Technical Uni-
versity of Applied Sciences Regensburg requires students to
complete a scientific seminar worth 5 ECTS credits. In the
following, we detail organisation, learning goals and timeline
of the course. So far, we have taught two iterations.

A. Learning Goals

The course description for the scientific seminar® states
these learning goals: The students learn to 1) independently
research an area within the field of computer science, 2) crit-
ically reflect and summarise central ideas of scientific work,
3) perform literature search and reviews, 4) give a professional
presentation, and 5) engage in an academic discussion.

To reach these goals, scientific seminars traditionally com-
prise a seminar presentation as well as a seminar report on
an existing body of research. However, we also made it our
goal that students actively experience empirical SWE (eSWE),
beyond merely analysing existing research. They should gather
background knowledge as to why (and when) an empirical,
quantitative approach is preferable over more orthodox SWE,
and experience benefits, limitations and challenges of quan-
titative work. Consequently, we desire that they 1) do not
merely read up on principles, but acquire a certain level of
proficiency in using and also mining version control systems*,
2) gain first-hand experience with the technical and conceptual
pitfalls in exploring a research question, 3) write a mini
research report as a “training” opportunity before handing in
the graded seminar report, and 4) are aware that not only
technical aspects of building software, but also socio-technical
and social aspects of software development can be quantified.

2All undergraduate students at Technical University of Applied Sciences
Regensburg complete a mandatory, 18-week internship. Additionally, 40% of
Bachelor graduates report in in-house surveys that they have held full-time
occupations in the private sector before taking up their studies.

3This course is detailed in the department module guidelines.

4The ubiquitous version control system git is an obvious choice, since it
is a popular data source in research; using the system for data engineering
usually implies a proficiency boosts in daily work, too.


https://www.oth-regensburg.de/fakultaeten/informatik-und-mathematik/studiengaenge/master-informatik.html
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Fig. 1. Timeline breakdown of the 15 week term. “DDL” denotes a student deadline for submitting or presenting results.

B. Organisation and Timeline

Figure 1 summarises the timeline of our seminar, broken
down across the 15 week term, and highlights the main events.
a) Kickoff session (week 1): Students enrolled in the
Masters program are assigned to one of several parallel
seminar tracks (organised by different professors), according
to their topical preferences. A track comprises 20 participants.
We asked our students to prepare the online course “Version
Control with Git”.> This course includes hands-on exercises,
S0 our course participants can operate git directly on the
command-line (and not just via feature constrained colourful
user interfaces). This includes advanced working with different
branches, cloning, fetching, forking, and cherry picking, as
well as a basic understanding of the data storage model.

b) Lab Session (week 4): The lab session is an all-day
workshop where the students focus on practical exercises.
This includes answering questions on more advanced aspects
of git (the full list is available in the online supplement.®
This allows students to self-assess their level of proficiency in
handling git. (Additionally, we schedule two papers [!], [2]
on the subject early in the paper presentation stage, see (d)).
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Fig. 2. Using BigQuery to identify the most frequently imported Go packages.

Likewise, we provide small challenges that must be solved
using Google BigQuery. BigQuery is a cloud-based data ware-
house.” It provides various open data sets, among them the
GitHub activity data. As of October 2019, this contains a snap-
shot of open source software (OSS) repositories amounting to
over 3 TiB of data (currently, over 2.8 million repositories,
145 million unique commits, and over 2 billion different files).
Queries such as “What are the most frequently imported Go

5The course is available on the Udacity MOOC platform.

Blue coloured text provides a link in the electronic version of this paper.

7While BigQuery is a commercial service, it can be used without billing
enabled, but requires that students are comfortable with a Google account.

packages?” may be stated declaratively, using SQL, as Figure 2
illustrates. Together, we discussed the issue of reproducibility,
as the data collection is updated regularly.

We further provided a refresher on statistics and on scientific
writing, the latter based on Zobel’s book [3].

For a mandatory two-page mini research report (discussed
in detail in Section III-B) that explores a self-chosen research
question, students collected ideas in an interactive brainstorm-
ing session,. We gave feedback on the validity and feasibility
of each question, taking into account the temporal constraints.
We also commented on apparent threats to validity.

c) Mini research report deadline (week 7, Deadline 1):
We graded the submitted mini research reports by detailed
criteria that we made public beforehand®.

d) Seminar presentations (weeks 8 and 9): Each student
is assigned one (usually seminal) original research paper, or a
book chapter from Ref. [4], as a basis for the seminar presen-
tation and report. Prior to presentation and discussion, students
were mentored one-on-one, like in traditional seminars.

e) Seminar report (week 14, Deadline 2): The five page
seminar report is prepared by week 14. It wraps up the core
ideas of the underlying article or book chapter, and discusses
it critically in the context of related work, methodological
soundness’, and practical utility.

III. EXPERIENCE REPORT

We next report on our experience. We begin by discussing
Google BigQuery as a means of evaluating research questions.
We then reflect on the mini research reports. We review
encountered challenges in the upcoming section.

A. Data Provisioning with git and Google BigQuery

Felderer and Kuhrmann [5] confirm that students tend to
underestimate the effort of data collection and preparation,
in agreement with common experience in data science. This
calls for using sophisticated tools that come with powerful data
preparation pipelines. Yet unfortunately, we found that many
of the software solutions used by professional researchers
lack in quality and maturity, particularly regarding ease of
installation and setup, completeness of documentation, and
usability, which was confirmed after consultation with the tool
authors. In short, we failed to get any of the state-of-the-art
tools'® used in academic research to work for in-classroom

8The grading rubric is available in the online supplement.

9This requires substantial individual guidance from the instructors. Addi-
tionally, the statistical refresher points out commonly encountered problems.

10Easy to install and use tools like gitstats are too simplistic even for
less ambitious research questions chosen by students.


https://sites.google.com/view/seuh2020/home
https://www.github.com
https://console.cloud.google.com/marketplace/details/github/github-repos
https://www.udacity.com/course/version-control-with-git--ud123
https://sites.google.com/view/seuh2020/home
https://sites.google.com/view/seuh2020/home

Students’ Research Questions

o 30%—Relationships between straight-forward observables
Time of day versus bug introduction?
Does the number of bugs per developer vary with project age?

o 23%—Velocity of changes to observable quantities
Speed of Java dependency updates after the weekly security issue?
How fast are bug tickets closed?

o 13%—Testing: effort, coverage, and utility
How are unit tests distributed by programming language?
How does test coverage evolve?

e 10%—Hidden and indirect project properties
How many OSS projects are company supported?

o 10%—Test (anecdotal or established) SWE conjectures
Developer group size versus the 7£2 scrum assumption?
Do code of conducts have measurable effects?

o 10%—Trivia — Do bigger files change more often?

Fig. 3. Distribution of student research ideas, categorised (subjectively) by
topic, along with typical research questions.

use within reasonable effort (we grudgingly need to accept a
share of the blame since this also holds for our own tools).

Thus, research questions based on complex socio-technical
observations or multi-modal data sources cannot be addressed
in mini research reports. To compensate, we devote a substan-
tial share of the discussed literature on such research (e.g.,
the seminal series of papers on socio-technical congruence by
Cataldo, Herbsleb and co-workers, initiated in Ref. [0]).

We settled on two recommendations for how students can
conduct their own research. (1) First, we proposed individual,
programmatic analysis using either scripted calls of git or
(preferably) using git front-end libraries from scripting lan-
guages for data collection (we recommend PyGit2, GitPython,
and Git2R). (2) Alternatively, we proposed to use BigQuery,
as already discussed. The well-curated data relations of the
latter alleviate common issues that trouble the collection of
“big” data — students can focus on writing SQL.

Following these recommendations can reduce the effort
spent with data ingestion nuisances like parsing (broken)
dates, parsing (broken) strings, handling (broken and/or mixed)
encodings, or handling other (broken) system details.

B. Mini Research Reports

Mini research reports could be produced by teams of two,
and students had free choice on the topic. Each run of the
seminar produced about 20 suggestions with some overlap,
resulting in 30 unique candidate questions (the full list of
candidate questions is available in the online supplement). We
identified six topical groups, as shown in Figure 3, along with
typical research questions. We also show the distribution of
the questions according to our categorisation.

We additionally categorised each research question con-
cerning the research methodology: 1) Scope: Is the research
question related to a single project or does it pertain multi-
ple projects? 2) Analysis Method: Is a simple (count-based)
measurement considered, are (correlations or stronger forms
of) relationships between measured variables addressed, or

does the research question try to resolve a specific hypothesis?
3) Time Resolution: Is the question applied in a time-resolved
way (i.e., did students consider that properties may change
over time), or is each project analysed as single static entity?

Figure 4 provides a mosaic plot [7] of the resulting three-
way contingency table. The largest group concerns the anal-
ysis of several projects, and considers relationships between
variables—but without accounting for possible changes in the
relationship over time. At the same time, no explicit testing
of a hypothesis on a single project was suggested.
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Fig. 4. Classification of mini research questions by methodological properties.
Areas are proportional to the occurrence count of combinations, and flat lines
denote absent combinations.

Discussion: We believe that to some degree, the topics
chosen for mini research reports mirror the students’ expec-
tations and way of thinking: All seminar participants hold a
Bachelor degree. Thus, they are fully qualified as junior-level
developers. A survey after the winter 19/20 run showed that
75% of the participants have substantial work experience —
50% claimed work experience equivalent to about one year of
full time employment, 25% even more than three years; details
online. The students’ intuition should therefore reflect on the
intuition about eSWE in practice.

Most research questions proposed by the students concern
measuring multiple projects instead of in-depth evaluations of
a single one. Interestingly, @/l mini research reports involve
quantitative measurements, and do not suggest any ethno-
graphic or qualitative research, which does not mirror the
topical distribution observed for published work. More than
half of the research questions concern relationships between
observed variables. This might indicate that students are inter-
ested in finding universal relationships valid beyond the scope
of one particular undertaking, which meets our expectations
towards Master-level students.

Usually, either a visual description or simpler measures
like correlations or a univariate linear regression model are
employed. Given the short time frame, this is understandable,
but it might also indicate unease with more advanced analysis
techniques. No team chose a machine learning-type analysis,
despite the popularity of these methods among students.

Straightforward measurements of a single variable are usu-
ally intended to act as proxy for a (explicitly given, but
often only diffusely defined) quality property. For instance, the
number of tests is used as proxy for code quality, and number


https://www.pygit2.org
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https://cran.r-project.org/web/packages/git2r/index.html
https://sites.google.com/view/seuh2020/home
https://sites.google.com/view/seuh2020/home
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and staleness of TODO entries in the code proxies for project
progress. Students did not consistently realise that relations
between proxy and indirect observables are not always in
direct proportion, and that assuming such connections in the
first place is a threat to validity. Thus, some research questions
might even be categorised as “bad smells”, as defined by
Menzies and Shepperd [8]. Of course, we do not hold this
against our students, who are novices in eSWE. Rather, we
hope that by attending the seminar, the students learn to
recognise “smelly” research questions.

Interestingly, hardly any students set out to apply principles
and measures that are part of the standard SWE curriculum [9]
of their SWE lecture, such as code metrics or code coverage.

Overall, we typically see simple statistical analyses for
relations. What is missing is the question on how any of the
measured co-variables influence quality or other properties of
projects, or can even induce actionable consequences. This
indicates that prior to the seminar, there was no established
notion if and how complex decisions in SWE projects can be
based on evidence- and measurement-based reasoning. Only
50% of the participants of the winter 19/20 run reported prior
literature experience with eSWE methods; interestingly, no
one reported prior use of eSWE in commercial projects.

IV. CHALLENGES

In the following, we highlight several challenges that we
encountered in teaching the course.

A. Scientific Method: Theory and Application

In the computer science curriculum at Technical University
of Applied Sciences Regensburg, the scientific seminar is only
taught at the Master level. This exposes students later than
desirable'! to scientific processes and methodology, and to
conducting systematic research.'> Students usually need to
sharpen their understanding on the differences between hy-
potheses, theories, laws, observations, and conjectures, that is,
the basic building blocks of scientific insight, as we frequently
observe when supervising student theses.

Both authors have worked in industry, and have
professionally built commercial software, before returning to
academia. We find that exposure to the scientific method is
useful for properly evaluating and understanding contemporary
results of empirical software engineering research (Ql), for
assessing the value of marketing claims of commercial
vendors (Q2), and for comparing the novelty of approaches

"Experiences from multiple half-day refresher courses on scientific data
evaluation for early-stage PhD candidates confirmed, as far as the value
of anecdotal evidence goes, that opportunities for improvement are not
exclusively restricted to early-stage Master students.

2Related lectures include a compulsory course on Automata, Formal
Languages and Computation (4 ECTS) that discusses nature and limits of
scientific inference; a checklist for preparing a scientific experience report
on a mandatory industrial internship; the preparation of a Bachelor’s thesis
(12 ECTS, albeit often performed in industrial settings); and an elective short
course on conducting research, intermittently taught by the authors of this
paper. The omission of a dedicated course on scientific procedure is in line
with the German computer science curriculum recommendations [9], and
therefore probably extends to many other academic institutions as well.
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Fig. 5. Student opinion after the winter 19/20 run regarding the usefulness
of eSWE and scientific methods in practice (questions Qn: see text).

and solutions to the large body of existing work (Q3). The
survey results in Figure 5 show that students mostly agree,
except for Q2. The students share our enthusiasm that eSWE
methods will help them become better software engineers
(Q4), although confusingly only one student in four plans to
employ such methods in the future (Q5).

The attitude towards philosophical aspects of science versus
the acquisition of practical knowledge is, for many students,
not unambiguously in favour of the former. Two aspects
require particular attention in teaching: Firstly, software engi-
neering comprises technical and social aspects, and it is usu-
ally impossible to derive quantitative a-priori theories in fields
with such characteristics. Statistical inference therefore needs
to be understood as the predominant means of establishing cer-
tainty. Many statements that prevail in the industrial domain—
however credible they may sound from “experience”—can
only be rationalised or refuted in this way.'? Secondly, con-
ducting a too delicately faceted discussion on the nature of
science would distract from the seminar core. Differences
between scientific research and actions dictated by practical
necessity can be exposed by entertaining the pragmatic view-
point of equating scientific insight with systematicity [10].

Providing or refreshing the aforementioned knowledge ne-
cessitates covering a substantial body of topics that often
exceed what is covered in the non-elective parts of the curricu-
lum. The lab session contains general guidance on these issues,
but we further equip students with a comprehensive slide
deck that details some of the aspects, and contains appropriate
pointers for self-study. Care is needed to not put undue burden
(or any perception of undue load) on the participants, to keep
the workload comparable between parallel seminar tracks.

B. Statistics, Machine Learning and Data Analysis

Software engineering research rests on a wide body of
statistical methods, but is also sometimes known to employ
these techniques in inappropriate or flawed ways [11]. We
believe this implies three challenges that need to be solved:

Firstly, popular statistical methods in research (such as
advanced forms of multivariate regression, mixed models,
association rules etc.) are usually not covered in compulsory
undergraduate lectures. Secondly, students found it challenging
to apply their method knowledge to practical data sets (e.g.,
knowing the principles of linear regression is not sufficient
to interpret the comprehensive output delivered by statistical
software, as is evaluating quality or aptitude of models for a

131t seems not entirely impertinent to remark that many popular textbooks
on the decades old agile credo do not ease the situation.
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Fig. 6. Comparson of grading results (winter 18/19 run, 50 points maximum),
together with a simple linear regression model (solid black), ideal correlation
curve (dashed red), and 95% confidence interval (shade of grey).

given body of data). Thirdly, students predominantly perceive
minimising the prediction error in statistical models as the
sole quality criterion—most likely caused by the current surge
of interest in machine learning and artificial intelligence—,
which overshadows other schools of statistical thinking [12].
Software engineering research, in particular, is often concerned
with parsimonious and interpretable models, and it was, for
instance, necessary to remind students that common measures
like the ubiquitously used R? value in linear regression are
sub-optimal discriminators to judge models, since closeness
of a model to data can (with over-fitting in mind) usually not
immediately be related to model quality.

C. Availability of Full-Fledged Textbooks

We are not aware of a textbook for SWE that is not
an edited collection of contributions by a large number of
authors, or a collection of (essentially) research papers. We
therefore decided to blend chapters from Ref. [4] with selected
scientific works on research issues, in particular Refs. [1], [2],
augmented by Easterbrooks et al. [13] on method selection
for empirical research. Especially for presentations that estab-
lish base method knowledge, students identified differences
in technical depth, scientific rigour, and focus, perhaps not
entirely unjustified. Fully escaping this problem in a setting
that discusses original research seems impossible.

D. Grading Based on Methods Preached

The difficulty of grading SWE projects is well known [14],
and extends to student work produced in this seminar. Our
major learning objective is to create awareness for data-driven
methods, so we found it pertinent to hold grading to this
standard. As an experiment, the mini research reports were
therefore independently graded by both authors, and results
were subjected to various statistical analyses and comparisons,
which showcases their practical utility on an issue exposed to
much student curiosity. Fig. 6 does not only demonstrate a
satisfactory consistency between graders, but can also be used
to remind students on the implications of residual correlation.

V. RELATED WORK AND CONCLUSION

The idea of students writing mini research reports has been
pursued before. Our concept of mini research reports best
matches the experiments proposed by Fagerholm er al. [15]
and Ref. [16], the former of which gives detailed guidelines
for including empirical studies in SWE education.

Researchers suggested ideas how to enable students to
build up skills in eSWE. Wohlin [17] proposes (i) integration
with a software engineering course, (ii) a stand-alone course,
or (iii) a dedicated research method course. Fagerholm et
al. [15] suggest to use eSWE methods as Master’s thesis
topics, which creates person-specific in-depth understanding,
but unfortunately does not widely distribute method awareness.
Option (iii) best matches our scientific seminar, whereas [5],
[18], [15] report on courses that match options (i) and (ii).

For other courses comprising mini eSWE projects, stu-
dents reported hands-on experience as beneficial for their
future careers [5], which confirms our motivation and matches
our experience after two iterations in a high teaching-load,
application-oriented environment.
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