LfD Logo

Digitalisation Laboratory — Prof. Dr. Wolfgang Mauerer

The Digitalisation Laboratory primarily focuses on the intersection between three research areas: Quantum Computing, Systems Engineering, and Software Engineering. Future computing systems will leverage non-classical algorithms, and their hardware and software architectures need to combine advantages of classical and quantum processing units. Consequently, scientific progress needs interdisciplinary thinking across fields now more than ever. The group seeks cross-cutting answers to highly topical scientific questions and participates in active transfer into applications.

Quantum Computing

We work towards quantum advantage on gate-based quantum computers and quantum annealers by designing integrated quantum algorithms, systems and software.

Systems Engineering

The Systems Architecture Research Group investigates modern architectures for embedded systems, with a strong focus on OSS components. Head: Dr.-Ing. Ralf Ramsauer

Software Engineering

We further quantum and classical software engineering by mining quantitative insights using statistics and machine learning, with a particular focus on reproducibility.

News and Trivia

2022-06-21 Manuel Schönberger takes second place in the SIGMOD Student Research Competition 2022

PhD student Manuel Schönberger took second place in the graduate track of this year's Student Research Competition at the CORE A* SIGMOD conference in Philadelphia!

The Student Research Competition takes place annually for various ACM conferences including SIGMOD. In the first round, students submit an extended abstract about their research. Based on the quality of their submission, a select few students from universities around the globe, including Columbia University, University of Illinois at Urbana-Champaign, Hasso-Plattner-Institut and TUM were invited to present their research posters at the SIGMOD conference. Three students were selected for the third round, where they gave a more detailed presentation on their research. In the graduate category, Manuel reached the second place, competing against Alex Yao and Sughosh Kaushik, both from Columbia University, who took first and third places respectively.

In his research, Manuel analyses the applicability of quantum computing on database query processing. The research goes beyond merely mapping problems onto quantum hardware, and moreover addresses the co-design of future quantum systems, such that they become tailor-made for database problems. Congrats, Manuel, for achieving this international recognition!

2022-04-30 Join Order Optimisation on Quantum Hardware – Preprint available

Manuel Schönberger et al. submitted Ready to Leap (by Co-Design)? Join Order Optimisation on Quantum Hardware

The prospect of achieving computational speedups by exploiting quantum phenomena makes the use of quantum processing units (QPUs) attractive for many algorithmic database problems. Query optimisation, which concerns problems that typically need to explore large search spaces, seems like an ideal match for the known quantum algorithms. We present the first quantum implementation of join ordering, which is one of the most investigated and fundamental query optimisation problems, based on a reformulation to quadratic binary unconstrained optimisation problems. Current QPUs are classified as noisy, intermediate scale quantum computers (NISQ), and are restricted by a variety of limitations that reduce their capabilities as compared to ideal future quantum computers, which prevents us from scaling up problem dimensions and reaching practical utility. To overcome these challenges, our formulation accounts for specific QPU properties and limitations, and allows us to trade between solution quality and problem size. We empirically characterise our method on two state-of-the-art NISQ approaches (gate-based quantum computing and quantum an- nealing), and confirm that technological limits are quickly reached. In contrast to prior work on quantum computing for query optimisation, we go beyond currently available QPUs, and explicitly target the scalability limitations: Using insights gained from numerical simulations and our experimental analysis, we identify key criteria for co-designing QPUs to improve their usefulness for join ordering, and show how even relatively minor physical architectural improvements can result in substantial enhancements. Finally, we outline a path towards practical utility of custom-designed QPUs, which we envision as local query optimisation accelerators.

2022-04-28 The World is Quantum

Quantum technologies are on the verge of breaking out of their ivory tower existence and entering the general marketplace.
With the premier of the World of Quantum researchers and industry presented the latest findings on potential quantum applications and quantum hardware at the Laser World of Photonics in Munich. Research Master student Maja Franz and others visited the fair and explored the new platform for quantum technologies.
Exhibitors from industry and manufacturers of quantum computers gave a broad overview of current quantum technology, for instance IBM Quantum let visitors see inside its quantum computer via augmented reality. Researchers in the field of quantum computing, such as from Fraunhofer IKS, offered a lively exchange on hybrid quantum-classical algorithms.

Thanks to the sponsors of the Bayerisches Staatsministerium für Digitales and other partners the World of Quantum was a success and an interesting experience.

2022-03-31 Visit by Bavarian State Minister Judith Gerlach

State Minister announces extension of KI-Transfer Plus project headed by Wolfgang Mauerer

In the state-funded project "KI-Transfer Plus", AI regional centers such as the Regensburg Center for Artificial Intelligence (RCAI) support SMEs in getting started with artificial intelligence. At the closing event, Bavarian digital minister Judith Gerlach reviewed results of the first project round. The host of the event, Horsch Maschinen GmbH from Schwandorf, showed how artificial intelligence enhances its own agricultural machinery. Horsch developed an algorithm to recognize plants and their center points, which is important for autonomous driving in the field as well as for automated weed removal. The other five project participants from Upper Bavaria and the Upper Palatinate also presented innovative AI developments in a wide range of domains. Digital minister Judith Gerlach was pleased with the results and announced the expansion of the project. As a consequence of the program's success, Gerlach announced an extension for another year to prepare the Bavarian economy for the key technologies of the future. See a summary video of the impressive work engineers Nicole Höß and Matthias Melzer did together with our industry partners!

2022-03-01 Beitrag "Fork à la carte für In-Memory-Datenbanken" auf dem Frühjahrstreffen der Fachgruppe Betriebssysteme angenommen.

Masterand Mario Mintel stellt seine Arbeiten zur Adressraumduplikation mit dem von ihm entworfenen Scoot-Mechanismus auf der FGDB'22 in Hamburg vor.

2022-03-01 1-2-3 Reproducibility for Quantum Software Experiments - Accepted at Q-SANER

1-2-3 Reproducibility for Quantum Software Experiments was accepted at Q-SANER 2022.

Various fields of science face a reproducibility crisis. For quantum software engineering as an emerging field, it is therefore imminent to focus on proper reproducibility engineering from the start. Yet the provision of reproduction packages is almost universally lacking. Actionable advice on how to build such packages is rare, particularly unfortunate in a field with many contributions from researchers with backgrounds outside computer science. In this article, we argue how to rectify this deficiency by proposing a 1-2-3~approach to reproducibility engineering for quantum software experiments: Using a meta-generation mechanism, we generate DOI-safe, long-term functioning and dependency-free reproduction packages. They are designed to satisfy the requirements of professional and learned societies solely on the basis of project-specific research artefacts (source code, measurement and configuration data), and require little temporal investment by researchers. Our scheme ascertains long-term traceability even when the quantum processor itself is no longer accessible. By drastically lowering the technical bar, we foster the proliferation of reproduction packages in quantum software experiments and ease the inclusion of non-CS researchers entering the field.

2022-02-07 QSAP will take place in September

QSAP@INFORMATIK 2022: "Workshop on quantum software and applications" was accepted at the annual conference of the German Gesellschaft für Informatik (GI) and will take place in September. It is co-organised by Stefanie Scherzinger (University of Passau) and Wolfgang Mauerer.

2022-02-01 Beyond the Badge: Reproducibility Engineering as a Lifetime Skill - Accepted at SEENG@ICSE

Beyond the Badge: Reproducibility Engineering as a Lifetime Skill was accepted at the SEENG@ICSE 2022.

Ascertaining reproducibility of scientific experiments is receiving increased attention across disciplines. We argue that the necessary skills are important beyond pure scientific utility, and that they should be taught as part of software engineering (SWE) education. They serve a dual purpose: Apart from acquiring the coveted badges assigned to reproducible research, reproducibility engineering is a lifetime skill for a professional industrial career in computer science. SWE curricula seem an ideal fit for conveying such capabilities, yet they require some extensions, especially given that even at flagship conferences like ICSE, only slightly more than one-third of the technical papers (at the 2021 edition) receive recognition for artefact reusability. Knowledge and capabilities in setting up engineering environments that allow for reproducing artefacts and results over decades (a standard requirement in many traditional engineering disciplines), writing semi-literate commit messages that document crucial steps of a decision-making process and that are tightly coupled with code, or sustainably taming dynamic, quickly changing software dependencies, to name a few: They all contribute to solving the scientific reproducibility crisis, and enable software engineers to build sustainable, long-term maintainable, software-intensive, industrial systems. We propose to teach these skills at the undergraduate level, on par with traditional SWE topics.

2022-02-01 BayIntAn Reiseförderung zur Anbahnung internationaler Forschungskooperationen bewilligt.

Die Bayerische Forschungsallianz hat Gastwissenschaftleraufenthalte am FORTH-Institut in Kreta der Universität Ioannina bewilligt. Prof.Dr. Wolfgang Mauerer wird seine Software-Engineering- und Reproduzierbarkeitsexpertise in ein Projekt zur Schemaevolution in Datenbanken einbringen.

2022-01-21 Peel | Pile? Cross-Framework Portability of Quantum Software - Accepted at QSA@ICSA

Peel | Pile? Cross-Framework Portability of Quantum Software was accepted at the QSA@ICSA 2022.

In recent years, various vendors have made quantum software frameworks available. Yet with vendor-specific frameworks, code portability seems at risk, especially in a field where hardware and software libraries have not yet reached a consolidated state, and even foundational aspects of the technologies are still in flux. Accordingly, the development of vendor-independent quantum programming languages and frameworks is often suggested. This follows the established architectural pattern of introducing additional levels of abstraction into software stacks, thereby piling on layers of abstraction. Yet software architecture also provides seemingly less abstract alternatives, namely to focus on hardware-specific formulations of problems that peel off unnecessary layers. In this article, we quantitatively and experimentally explore these strategic alternatives, and compare popular quantum frameworks from the software implementation perspective. We find that for several specific, yet generalisable problems, the mathematical formulation of the problem to be solved is not just sufficiently abstract and serves as precise description, but is likewise concrete enough to allow for deriving framework-specific implementations with little effort. Additionally, we argue, based on analysing dozens of existing quantum codes, that porting between frameworks is actually low-effort, since the quantum- and framework-specific portions are very manageable in terms of size, commonly in the order of mere hundreds of lines of code. Given the current state-of-the-art in quantum programming practice, this leads us to argue in favour of peeling off unnecessary abstraction levels.

2022-01-01 TAQO-PAM-Projekt zur Quantenoptimierung in industriellen Systemen vom Bundesforschungsministerium bewilligt.

Projektvolumen: 8,2 Millionen EUR, Konsortialführer: Wolfgang Mauerer.
Die zunehmende Massenproduktion individualisierter Güter und die dafür notwendige komplexe Logistik innerhalb moderner Fabriken erfordern die Lösung umfangreicher Optimierungsprobleme in Echtzeit. Klassische Computer können solche Probleme nicht ausreichend gut lösen. In diesem Projekt sollen daher hybride, quanten-klassische Algorithmen entworfen werden. Diese befähigen die demnächst verfügbaren Quantencomputer mit einigen 10 Qubits zur Lösung dieser Probleme beizutragen. Dies erfolgt durch die Integration von angepassten Quantenprozessoren (QPUs) in bestehende Szenarien, und durch Erweiterung bestehender Methoden der Fabrikautomation und Produktionsplanung. Durch den Fokus auf lokale Datenverarbeitung direkt im Betrieb statt durch Nutzung externer Cloud-Dienste wird die Notwendigkeit vermieden, grundlegende Kenntnisse und Daten zur Produktionslaufzeit mit Dritten zu teilen. Zudem treten bei zeitkritischen Berechnungen keine Verzögerungen durch Datenübertragungen auf. Ausgehend von der Annahme, dass geeignete maßgefertigte QPUs mittelfristig verfügbar sein werden, befasst sich das Projekt mit dem Mangel an Quantenalgorithmen zur Optimierung von Fertigungsaufgaben, der fehlenden Integration des Quantencomputing in industrielle Prozesse und der Zugänglichkeit zur Technologie für Anwender, denen die Resultate ohne tiefe quantenmechanische und quanteninformatische Kenntnisse zugänglich gemacht werden sollen. Durch die systematische Übertragung realer Problemstellungen auf Verfahren, die Vorteile von Quantenalgorithmen mit Vorteilen klassischer Algorithmen kombinieren, sollen industriell verwertbare Anwendungsfälle erfolgreich gelöst werden. Perspektivisch lassen sich die in diesem Projekt entwickelten Algorithmen zukünftig auch auf leistungsstärkeren Quantencomputern ausführen und erweitern, sodass noch komplexere Optimierungen von Produktionsprozessen möglich werden, die die Produktivität und Wettbewerbsfähigkeit der Unternehmen weiter steigern (Textquelle: BMBF).

2021-12-21 PhD Defense: Ralf Ramsauer - OSS Architecture for Mixed-Criticality Systems: A Dual View from a Software and System Engineering Perspective
Ralf Ramsauer successfully defends his PhD Thesis OSS Architecture for Mixed-Criticality Systems: A Dual View from a Software and System Engineering Perspective. Congrats, Ralf!

Abstract: Computer-based automation in industrial appliances led to a growing number of logically dependent, but physically separated embedded control units per appliance. Many of those components are safety-critical systems, and require adherence to safety standards, which is inconsonant with the relentless demand for features in those appliances. Features lead to a growing amount of control units per appliance, and to a increasing complexity of the overall software stack, being unfavourable for safety certifications. Modern CPUs provide means to revise traditional separa- tion of concerns design primitives: the consolidation of systems, which yields new engineering challenges that concern the entire software and system stack.

Multi-core CPUs favour economic consolidation of formerly separated systems with one efficient single hardware unit. Nonetheless, the system architecture must provide means to guarantee the freedom from interference between domains of different criticality. System consolidation demands for architectural and engineering strategies to fulfil requirements (e.g., real-time or certifiability criteria) in safety-critical environments.

In parallel, there is an ongoing trend to substitute ordinary proprietary base platform software components by mature OSS variants for economic and engineering reasons. There are funda- mental differences of processual properties in development processes of OSS and proprietary software. OSS in safety-critical systems requires development process assessment techniques to build an evidence-based fundament for certification efforts that is based upon empirical software engineering methods.

In this thesis, I will approach from both sides: the software and system engineering perspective. In the first part of this thesis, I focus on the assessment of OSS components: I develop software engineering techniques that allow to quantify characteristics of distributed OSS development processes. I show that ex-post analyses of software development processes can be used to serve as a foundation for certification efforts, as it is required for safety-critical systems.

In the second part of this thesis, I present a system architecture based on OSS components that allows for consolidation of mixed-criticality systems on a single platform. Therefore, I exploit virtualisation extensions of modern CPUs to strictly isolate domains of different criticality. The proposed architecture shall eradicate any remaining hypervisor activity in order to preserve real- time capabilities of the hardware by design, while guaranteeing strict isolation across domains.

2021-12-01 Video of our ICDE '21 Tutorial about Reproducibility for Database Systems Research available
2021-12-01 Making-of video about the Reproducibility Engineering lecture.
2021-12-01 KI-Transfer+

KI-Transfer Plus wurde vom Bayerischem Staatsministerium für Digitales im Jahr 2021 als Pilotprogramm initiiert. Dabei übernimmt die appliedAI Initiative die zentrale operative Steuerung und Koordinierung.

Basierend auf der Expertise von appliedAI sowie den weiteren KI-Regionalzentren entsteht ein starkes KI-Regionalzentren-Netzwerk, das lokal und spezifisch bei allen Fragestellungen rund um Künstliche Intelligenz unterstützt. Die Regionalzentren begleiten die Unternehmen bei der Umsetzung und Implementierung eigener KI Use Cases und unterstützen die KI-Kompetenzentwicklung der Mitarbeiter. Ebenso ist das Ziel, gemeinsam mit den teilnehmenden Unternehmen eine strategische KI-Langfristperspektive zu erarbeiten.
Weitere Informationen finden Sie auf KIT+ und dem Flyer.

2021-11-23 Infineon AG unterstützt das Labor für Digitalisierung mit einem KUKA-Roboterarm

Nach dem erfolgreichen Ende des iDev-Projekt unterstützt die Infineon AG Regensburg das Labor für Digitalisierung mit der Spende eines Kuka iiwa-Roboterarms. Aufgrund der Einschränkungen durch die Covid-19-Pandemie konnte die ursprünglich mit Standortleiter Jörg Recklies geplante Übergabe nur im sehr kleinen Kreis stattfinden. "Wir freuen uns sehr über die hochwillkommene Unterstützung durch Infineon", sagt Prof. Dr. Wolfgang Mauerer. "Labore an der OTH sind auf Hilfe durch die Industrie angewiesen, um moderne Lehrangebote sicherstellen zu können. Durch die neuen Flächen, die mit den Mitteln der High-Tech-Agenda Bayern an der OTH Regensburg entstehen werden, sind wir zuversichtlich, dass ein Betrieb des Roboterarms bis 2030 möglich sein wird", prognostiziert Mauerer. Das Labor ist gespannt auf die Möglichkeiten, die der hochmoderne Greifer bei Forschung und Entwicklung an Mixed-Criticality-Systemen bieten wird (Bildquelle: Kuka).

2021-07-01 QLindA-Projekt zu Quantum Reinforcement Learning vom Bundesforschungsministerium bewilligt.

Neuste Fortschritte in der Künstlichen Intelligenz (KI) haben es in den letzten Jahren ermöglicht, dass KI‐Systeme selbstständig lernen können, Spiele wie Schach oder Go besser zu spielen als je ein Mensch oder Computer zuvor. Die Schlüsseltechnologie dazu wird Reinforcement Learning (bestärkendes Lernen) genannt und mittlerweile auch für die lernende Regelung im industriellen Umfeld eingesetzt. Die aktuell schnell voranschreitende Steigerung der Kapazität von Quantencomputern eröffnet die Möglichkeit, Quantencomputer in KI‐Systemen einzusetzen, und bietet das Potential für bahnbrechende Leistungssteigerungen, die eine technologische Revolution mit Auswirkungen auf eine Vielzahl von Anwendungen auslösen können. Das Projekt zielt darauf ab, die jüngsten Fortschritte im Quantencomputing und in künstlicher Intelligenz, insbesondere im Reinforcement Learning (RL), zu kombinieren und technisch nutzbar zu machen. Dazu wird basierend auf den existierenden wissenschaftlichen Beiträgen untersucht, wie RL auf Quantencomputern (QRL) realisiert werden kann, um eine Vielzahl relevanter Probleme aus der industriellen Anwendung lösen zu können: die auf RL basierende Regelungsoptimierung in der Prozessindustrie, der Einsatz verteilter Automatisierungssysteme in der Smart Factory sowie die Optimierung in der Produktionsplanung. Die im Vergleich zum klassischen Algorithmendesign grundlegend andere, an die Hardware gekoppelte, Vorgehensweise erfordert schon vor Verfügbarwerden fehlerkorrigierter Quantenrechner die Erforschung der Übertragbarkeit klassischer Ansätze auf Quantenalgorithmen. Im Projekt werden neuartige Algorithmen entwickelt, ein Benchmark zur Evaluierung der Methoden und eine Bibliothek zur Nutzbarmachung für industrielle Anwendungen erstellt sowie die Möglichkeiten und Potentiale ebenso wie bestehende Limitierungen untersucht (Textquelle: BMBF).

News Archive