LfD Logo

TAQO-PAM: Tailored Application of Quantum Optimisation for Planning and Control of Assembly and Manufacturing

This project addresses the real-time optimization of production and intralogistics, in particular of modern matrix manufacturing facilities, using hybrid quantum-classical algorithms adapted to customized medium-term NISQ hardware. This is done by holistically integrating problem-specific adapted quantum processing units (QPUs) into existing scenarios and by extending existing factory automation and production planning methods.

The development of systems that can be integrated into existing technologies at the operational level allows QPUs to be used in latency- and determinism-dependent scenarios. The focus on local data processing avoids the need to share sensitive production runtime knowledge and data with third parties. Based on the assumption that suitable custom QPUs will be available in the medium term, the project explores quantum algorithms for optimizing manufacturing tasks, considers the integration of quantum computing into industrial processes, and makes the technology usable for users without deep quantum mechanical and quantum computing knowledge. By systematically transferring real problems from industry, the advantages of quantum algorithms are to be combined with advantages of classical algorithms and thus industrially usable use cases are to be successfully solved.

For more information, please refer to the project's homepage.

This project is sponsored by the Federal Ministry of Education and Research.